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Abstract: The particular characteristics of some of the Ethiopian mustard accessions available from
seed banks could be used to increase the production and the diversity of products available to
consumers and to improve their general quality. The objectives of this study were to determine the
genetic variability for agro-morphological (days to first flowering: DFF and leaf pubescence: LP)
and nutritional traits (total phenolic content: TPC) among accessions, and to evaluate the potential
of near-infrared spectroscopy (NIRS) to predict these traits in Ethiopian mustard leaves. A great
variation was found for the traits evaluated. The reference values were regressed against different
spectral transformations by modified partial least-squares (MPLS) regression. The coefficients of
determination in cross-validation (R2cv) shown by the equations for DFF, LP and TPC were 0.95,
0.63 and 0.99, respectively. The standard deviation to standard error of cross-validation ratio (RPD),
were for these traits, as follows: DFF: 4.52, LP: 1.53 and, TPC: 24.50. These results show that the
equations developed for DFF and TPC in Ethiopian mustard, can be predicted with sufficient accuracy
for screening purposes and quality control, respectively. In addition, the LP equation can be used to
identify those samples with “low”, “medium” and “high” groups. From the study of the mean and
deviation standard spectra, and regression vectors of MPLS models it can be concluded that some
major cell components, highly participated in modelling the equations for these traits.

Keywords: Brassicaceae; near-infrared spectroscopy (NIRS); flowering; pubescence leaf; total
phenolic content

1. Introduction

Changes in production patterns in agriculture and dietary habits are important factors in the
increasing attention to neglected species used on their own or mixed in leaf salads. This is the
case of several species from the Brassicaceae family, such as Ethiopian mustard (Brassica carinata
A. Braun), whose cultivation is thought to have started about 4000 years B.C. in the Ethiopian
highlands. One of the reasons why the Brassica species have increased in popularity is because
they deliver high concentrations of health-promoting bioactive phytochemicals, such as glucosinolates
and phenolic compounds.

Previous works have revealed a large degree of variability in Ethiopian mustard for
agro-morphological characters, such as flowering time, plant height, leaf number/plant, leaf bloom
and leaf blade blistering, seed yield and in main seed storage components [1,2]. For its use as leafy
vegetables (4th generation of vegetables), the following traits are preferred: Low leaf pubescence,
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late flowering, many leaves per plant, tolerance to major diseases and pests and high concentration
of compounds possessing antioxidant capacity [2,3]. Breeding programmes are being conducted to
encourage Ethiopian mustard cultivation and consumption at La Mojonera (Almería, Spain). In this
sense, efforts are being taken to characterize agro-morphological (leaf pubescence and number of days
to flowering) and antioxidant traits (such as phenolic compounds) in B. carinata lines especially from
local populations.

There is evidence that leaf pubescence is a structural adaptation against insect and fungal attack, for
heavy metal detoxification purposes, but also to enhance tolerance to low and high temperature [4–8].

The day to first flowering is an agronomical trait which is recommended to be as high as possible,
due to leaves are harvested before shooting and flowering. Leaves can be harvested after 20–30 days
and then sequentially harvested from regrowth. Sequential planting combined with repeated harvest
may be a way to manage this crop despite high bolting under high temperatures [9].

In relation to the total phenolic acid content previous works have shown variability for the
total phenolic compounds in Brassica juncea leaves with values between 6.51 to 14.9 mg/g DM (dry
matter) [10,11], although higher content have also been found in other Cruciferous species, such as
rocket (4474.5 to 32,700 µg g−1 dw) demonstrating that are an excellent source of these antioxidant
compounds [4].

The high cost and labour input required for characterizing flowering time, leaf pubescence and
total phenolic content by liquid chromatography or Ultraviolet-visible Spectrophotometry in Ethiopian
mustard leaves are serious handicaps to analyse large sets of samples, which is usually necessary to
identify the target genotypes in screening programs.

In contrast, the use of fast analytical techniques, such as Near-Infrared Spectroscopy (NIRS) results
in many advantages, since analysis can be carried out with a considerable saving of time, at a low cost
and without using hazardous chemicals [12]. Many authors have used this technique for determining
quantitative analysis in environmental, agricultural and food research in Brassica spp [13–15]. To our
knowledge, no studies have been reported on the use of the NIRS technique for predicting the days
to first flowering (DFF), leaf pubescence (LP) and total phenolic content (TPC) in Ethiopian mustard
leaves. Our objectives were: (1) to determine the genetic variability for DFF, LP and TPC among
accessions, and (2) to evaluate the potential of NIRS to predict these traits in Ethiopian mustard leaves.
In addition, we provide some knowledge about the mechanism used by NIRS for determining these
characters successfully in the leaves of this species.

2. Results and Discussion

2.1. Reference Analysis of Days to First Flowering, Leaf Pubescence and Total Phenolic Content in the Accessions

In the conservation of plant genetic resources, the availability of characterization data and
information on diversity help germplasm users identify the accessions of interest and also provide
plant breeders initial data for use in crop improvement programs. The results of the present study
(Figure 1) revealed a high phenotypic variability in the accessions of Ethiopian mustard studied.
Concerning the DFF trait, it ranged from 77 to 137 days, with a mean value of 108 DFF. As the plants
are harvested before shooting and flowering, DFF is recommended to be as high as possible. Some
authors have also reported DFF values in Ethiopian mustard, similar or lower than those shown in this
work (108 DFF). Thus, comparable DFF values were reported by De Haro et al. [1] (range: 95–126, mean:
111 DFF) for plants grown in Spain. Plants grown in dry regions flower earlier and produce ripe seeds
within four months from sowing in comparison with vegetable crops grown with adequate moisture
which produce seeds in 5–6 months [16]. Other authors indicated lower DFF values, Muthoni [2]
reported 82 DFF (ranging between 64–96 DFF,) while Mnzava and Schippers [16] indicated differences
between oil and vegetable types of Ethiopian mustard; thus, oil types start flowering about 70 days,
while the vegetable cultivars after about 84 days, depending on cultivar and growing conditions.
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Figure 1. Distribution plots for DFF, LP and TCP in the whole set of samples (n = 135 for DFF and LP,
and n = 405 for TPC). DFF, days to first flowering; LP, leaf pubescence; TPC, total phenolic content; DM,
dry matter.

Regarding LP, the accessions exhibited a great variation for this trait from glabrous to trichome
abundance (Figure 1). Tcacenco et al. [17] also reported a large variation for leaf pubescence in
this species.

Among phytochemicals possessing antioxidant capacity, phenolic compounds are one of the
most important groups. The total phenolic content for the leaves of the Ethiopian mustard accessions
showed large variation (Figure 1) with mean values of 8.57 mg/g dry matter (DM) and varying from
2.20 to 12.70 mg/g DM. The TPC of this species has been less studied with regard to other species of
Brassica, although it was similar to previously reported results in Brassica juncea with mean values of
7.95 mg/g DM [10,11].

2.2. Spectral Data Pre-Treatments and Equation Performances

2.2.1. Second Derivative Spectra of Ethiopian Mustard Leaf

Table 1 shows the mean concentrations, standard deviations, and ranges of the different traits
analyzed by the reference methods. It can be seen from Table 1 that the traits under study showed a
wide range of variation.

Table 1. Calibration and cross-validation statistics for the different equations developed for
agro-morphological and nutritional traits in Ethiopian mustard leaves.

Calibration Cross-Validation

Traits n Range Mean SD d SEC e R2 f SECV g R2cv h RPD i

DFF a 135 82–137 107.53 10.87 1.43 0.98 2.40 0.95 4.52
LP b 135 0–7 3.42 0.80 0.32 0.84 0.52 0.63 1.53

TPC c 405 2.20–12.70 8.57 1.96 0.06 0.99 0.08 0.99 24.50
a days to first flowering; b leaf pubescence; c total phenolic content; d SD: standard deviation of the reference data; e

SEC: standard error of calibration; f R2: coefficient of determination of the calibration; g SECV: standard error of
cross-validation; h R2cv: coefficient of determination of the cross-validation; i RPD: ratio SD to SECV. DFF, days to
first flowering; LP, leaf pubescence; TPC, total phenolic content; DM, dry matter.

Figure 2 shows the mean spectrum without preprocessing (Figure 2a), the mean spectra (Figure 2b)
and Standard Deviation spectra (Figure 2c) using Standard normal variate and detrend transformations
and second derivative treatment (2, 5, 5, 2)) of the freeze-dried Ethiopian mustard samples used to
conduct this work (n = 135). The average spectrum without (Figure 2a) and with preprocessing
(Figure 2b) showed absorption bands in the visible region of the spectrum with a maximum at
λ = 676 nm, which corresponds to electronic transitions in the red, which has been assigned to
absorption by chlorophyll [18].
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Figure 2. Near-infrared mean spectrum without preprocessing (a); Near-infrared mean spectrum
using Standard normal variate and detrend transformations and second derivative (b) and standard
deviation using Standard normal variate and detrend transformations and second derivative (c) of
Ethiopian mustard samples. (R: is reflectance)

The NIR region of the spectrum (Figure 2b) showed characteristic absorption bands at 1432 and
1916 nm related to O–H stretch second and first overtones of water, respectively; 1726, 2310 and
2348 nm related to C–H stretch first overtones and combination bands of lipids [19]; at 2058 nm related
to N–H stretch of amides [20] and 2000 and 2274 nm related to O–H + C–O deformation, O–H stretch
plus deformation, and O–H + C–C stretch of starch respectively [20]. The highest SDs of the spectral
data (Figure 2c) were found in the visible region of the spectrum (electronic transitions in the red) and
also at 1434 nm, due to the first overtone of O–H stretching; at 1694 nm related to S–H stretch first
overtone or C–H stretch first overtone of CH3 groups; at 1728 and 1764 nm related to C–H stretching by
methylene groups; 1800 to 2000 nm, related to S–H stretch first; 1980 to 2174 assigned to N–H stretch
of amides; 2270 nm which has been assigned to O–H plus C–C stretch groups of cellulose; and 2300,
influenced to C–H combination tones [10,20].

2.2.2. Calibration Equation

Following the considerations reported by Shenk and Westerhaus [21] about the estimation of the
accuracy of a calibration equation from cross-validation, the R2

CV obtained for DFF, LP and TPC were
indicative of equations with good quantitative information. For these traits, the mathematical models
developed explained from 63 to 99% of the variance contained in the data (Table 1).
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For a comparison of the potential of the prediction among the equations obtained,
a standardization of the different SECVs is needed. In this way, the RPD ratio (The standard deviation
(SD) to standard error of cross-validation ratio (SECV)) [10] was estimated for each equation. RPDs in
Ethiopian mustard were as follows: DFF: 4.5, LP: 1.52 and, TPC: 24.73. In general terms RPDs reported
in this work in Ethiopian mustard are higher for TPC (RPD: 24.73) than those obtained for Brassica
napus seed (1.20) and tea leaves [22] and lower than those attained for rice grain (RPD: 47.1) [23].

From the data reported in this work it is concluded that DFF and TPC in Ethiopian mustard
can be predicted with sufficient accuracy for screening purposes and quality control, respectively,
while the LP equation can be used for a correct separation of the samples into “low”, “medium” and
“high” groups.

2.2.3. Modified Partial Least Square Loadings

Previous work has reported NIRS predictions for the flowering cycle of Brassica juncea plants
through the glucosinolate analysis of the seed [24]. These authors postulated that genotypes containing
mainly sinigrin showed a larger flowering cycle. Sinigrin is the main glucosinolate in Ethiopian
mustard seeds and leaves [25]. Although it is difficult to state with precision the degree of participation
of the major cell constituents of leaves (protein, lipids, starch, cellulose, etc.) in the calibration of DFF,
on the basis of the similarities between the MPLS (modified partial least-squares) loading for the DFF
trait (Figure 3a) and the spectrum of the commercial sinigrin (Figure 4) previously reported [13], it
seems that the molecule of sinigrin has a specific signal in the leaf spectrum of Ethiopian mustard
(bands at 1694, 1980, 2172 and 2310, 2348 nm).
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Figure 3. The third regression vector of MPLS (modified partial least-squares) models for DFF (a), LP
(b) and TPC (c) in Ethiopian mustard leaves in the second derivative (2, 5, 5, 2; Standard normal variate
and detrend transformations).
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Figure 4. Near-infrared mean spectrum (2, 5, 5, 2; Standard normal variate (SNV) + detrend
transformations (DT)) of commercial sinigrin.

Concerning LP calibration, in previous work for desert species weaker correlation was found
between this trait and NIR (R2cv < 0.25) than those obtained in this study [26]. Prediction of this trait has
to be done on the basis of secondary correlations with plant components. This phenomenon is supported
by data from regression vectors of MPLS model for LP (Figure 3b).In the visible region of the spectrum,
chromophores (absorption at 672 nm) also participated actively in constructing the third term. Previous
studies evidence that many plants accumulate heavy metals, but also UV-absorbing compounds, such as
flavonols in trichomes or leaf pubescence which further protect the photosynthetic tissues from damaging
amount of radiations (UV-A and UV-B) and were used to develop satisfactory NIRS predictions [4,7].
The third term was influenced by absorption bands (1399–1699 nm) characteristic to vibrations of the
C–H and O–H bonds, corresponding to water and phenolic absorbance [27–29]. It can also be concluded
from Figure 3b, where the group N–H of amides (1980 and 2172 nm); and the C–H groups of oil and fibre
(2348 nm) strongly influenced the third MPLS loadings of the equation for this trait.

Regarding TPC calibration, in the Figure 3c from the third regression vector of MPLS model,
characteristic bands for phenolics can be observed in the regions from 1415 nm and 1512 nm and from
1955 to 2035 nm as previously has been reported by Zhang et al. [23].

3. Materials and Methods

3.1. Plant Material and Greenhouse Experiments

Forty-five B. carinata accessions originating from Ethiopia were sown at the IFAPA Center in La
Mojonera (Almería, Spain). The accessions were randomized and planted in three replicates by direct
seeding in 7-m, single-row plots located at 36◦47’19” N, 02◦42’ 11” W.

Twenty plants at the five-leaf stage in each one of the 45 accessions per replication were used to
study agro-morphological traits (LP and DFF).

3.2. Determination of LP

Leaf pubescence or trichomes was determined according to the International Board for Plant
Genetic Resources according to the descriptors for Brassica and Raphanus [30] where 0—glabrous,
1—very sparse, 3—sparse, 5—intermediate, 7—abundant.

3.3. Determination of DFF

The number of days from seed sowing to the appearance of the first open flower was taken for
determining the DFF.

3.4. Determination of the Total Phenolic Fraction

For TPC analysis three individual plants from each one of the 45 accessions per replication were
collected at five weeks after sowing. For each plant, 3 or 4 leaves were washed with tap water, weighed
to assess their biomass, and placed in Ziploc-type freezer bags at −20 ◦C for post-harvest storage.
The samples were freeze-dried up to performing the TPC analysis.
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The concentration of total phenolic compounds (TPC) was estimated by a modified version of
the Folin–Ciocalteu method [31], using gallic acid as standard, for which a calibration curve was run
with solutions of 50, 100, 200, 300, 400, 500 and 600 mg/L of this compound. A 0.06 mL aliquot of
extract 1.58 mL of distilled water, 0.1 mL of Folin–Ciocalteu reagent and 0.3 mL of Na2CO3 (20% w/v)
were mixed and heated at 50 ◦C for 5 min. After 30 min, the absorbance was measured at 765 nm
against a blank similarly prepared, but containing 70:30 ethanol–water mixture (pH 3.2) instead
of extract. Sodium carbonate (Panreac), Folin–Ciocalteu reagent (FCR) and gallic acid (both from
Sigma–Aldrich) were used to determine the total phenol fraction. The absorbance was measured with
a ThermoSpectronic UV–visible Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).

3.5. NIRS Analysis

All the samples which were previously analysed by reference method were then analysed in a
NIRS monochromator (NIR Systems mod. 6500, NIR Systems, Inc., Silversprings, MD, USA). In this
work, each spectrum was recorded in triplicate from each sample, and was obtained as an average of
32 scans over the sample, plus 16 scans over the standard ceramic. Samples were placed in a small ring
cup (3.75 cm ϕ) using the spinning sample module and their spectra collected between 400–2500 nm,
registering the absorbance values (log 1/R) at 2 nm intervals for each sample.

Prediction equations for DFF, LP and TPC were developed using the ISI program CALIBRATE
(WINISI II, Infrasoft International, LLC, Port Matilda, PA, USA) with the modified partial least squares
regression option. Modified partial least squares (PLSm) was used as a regression method to correlate
the spectral information (raw optical data or derived spectra) of the samples and TPC and TCC contents
determined by the reference method, using a different number of wavelengths from 400 to 2500 nm
for the calculation. The objective was to perform a linear regression in a new coordinate system
with a lower dimensionality than the original space of the independent variables. The PLS loading
factors (latent variables) were determined by the maximum variance of the independent (spectral data)
variables and by a maximum correlation with the dependent (chemical) variables. The model obtained
used only the most important factors, the “noise” being encapsulated in the less important factors.

Cross-validation was performed on the calibration set to determine both, the ability to predict
unknown samples and the best number of terms to use in the equation [21]. Cross-validation is an
internal validation method that like the external validation approach seeks to validate the calibration
model on independent test data, but it does not waste data for testing only, as occurs in external
validation. This procedure is useful because all available chemical analyses for all individuals can
be used to determine the calibration model without the need to maintain separate validation and
calibration sets. The method is carried out by splitting the calibration set into M segments and then
calibrating M times, each time testing about a (1/M) part of the calibration set.

Calibration equations were computed using four mathematical treatments (0, 0, 1, 1 (derivative,
gap, smooth, second smooth); 1, 4, 4, 1; 1, 10, 10, 1 and 2, 5, 5, 1) on the calibration set. Standard normal
variate and detrend transformations were used to correct scattering, and two passes were the option
chosen to eliminate outliers (spectra with a standardized distance from the mean (H) > 3 (Mahalonobis
distance)), by using principal component analysis (PCA). The objective of this procedure was to detect
and, if necessary, remove possible samples whose spectra differed from the other spectra in the set.

Wavelengths from 400 to 2500 nm every 2 nm, were used for calibration. The standard error of
calibration (SEC), coefficient of determination (R2cv), standard error of cross-validation (SECV) and
1-VR (1 minus the ratio of unexplained variance to total variance) statistics were used to characterise
the different equations obtained and to determine the best calibration equation [32]. SECV was used
as an estimate of the standard error of performance (SEP) [33]. The best calibration equations were
obtained with the 2,5,5,1 mathematical treatments (second derivative of the raw optical data, with a
gap of 5 nm and 5 and 2 nm for the first and second smooth) for all traits evaluated. The regression
vectors of the three factors generated from the MPLS method performed on the 2,5,5,1 mathematical
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treatments were calculated. The loading plots show the regression coefficients of each wavelength to
the parameter being calibrated for each factor of the equation.

4. Conclusions

The results of this study indicate that there is a wide variation in Ethiopian mustard collection
held at IFAPA La Mojonera based on vegetative agro-morphological and nutritional traits and therefore
it offers opportunities for selection and breeding. In addition, the results obtained showed that NIRS
can be used as a screening technique to evaluate a large number of samples in a short period of time.
Once the screening process is done, reference methods can be used to accurately determine these
parameters in samples previously selected by NIRS, avoiding the need of the analyses.
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