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Abstract: Polar lipids are minor components of olives and olive oil and include a myriad of molecules
such as phospholipids and glycolipids. Even though sensitive and high-resolution analytical
approaches have been used to unveil the polar lipidome of these matrices, new insights on their
composition are needed. In this review, we will describe the findings on the identification and
characterization of polar lipids from olives and olive oil and the underlying analytical challenges.
The significance of polar lipids will also be discussed as potential markers of identity and traceability
of olives and olive oil and in detecting adulteration of olive oil. Their potential impact on nutrition and
health will be presented as a valuable source of bioactive compounds and as promising ingredients
for different uses from olive-derived industrial by-products.

Keywords: authentication; bioactive; by-product; glycolipid; lipidomics; mass spectrometry;
phospholipid; traceability

1. Introduction

For millennia, olive oil has been an essential ingredient in the Mediterranean diet, as a food source
of healthy fat. It is produced mostly by Spain, Italy, Greece and by other countries of Southern Europe
and North Africa [1]. Nowadays, olive oil’s economy has gained global importance, especially in
gourmet cuisine, and its production has been extended to North and South Americas, Australia and
Asia [1].

The increasing investment in the development of olive groves in these regions has been boosted
by the benefits of olive oil’s consumption which is directly related to its composition. Olive oil
is mainly composed of triacylglycerols (Ca. 98%) [2], primarily consisting of monounsaturated
fatty acids, acknowledged for improving several cardiovascular risk factors [3]. In addition to the
primary compounds, high-quality olive oils, such as virgin olive oils (VOOs), possess a plethora of
minor components in the remaining 2% of their composition [2]. Some of the minor components
confer distinct features to olive oil in terms of sensorial attributes and health benefits [4,5], and some
components can be used for providing a chemical identity to olive oil [6].

Polar lipids are a group of minor components of olive oil [2]. The isolation, identification, and
characterization of the minor components, such as polar lipids, might be essential to provide a
molecular fingerprint for traceability and authenticity purposes [7]. The profiling of the major chemical
components, such as triacylglycerols and total fatty acids, is insufficient to discriminate olives or
olive oils, per se, and the simultaneous analysis of minor components is necessary [8]. VOOs are
very susceptible to fraud and to tampering with other oils, as lower grade olive oils [9,10]. With
recent analytical developments, new fast and sensitive methods have been claimed to evaluate olive
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oil’s authenticity [11]. Therefore, it has become urgent to find foolproof analytical approaches and
molecular markers to reveal a specific chemical identity for olives and olive oil and to detect adulterated
olive oil [10]. Polar lipids have been suggested as promising molecular markers of identity [12,13].
Some research has been carried out towards their identification in olives and olive oil, mainly through
mass spectrometry (MS)-based approaches, but there is still much to be done.

Another topic concerning olives’ and olive oil’s polar lipids is their positive impact on human
nutrition and health, which has been little exploited [14,15]. Additionally, in recent years, polar lipids
from olive-derived industrial by-products, such as olive seeds and olive pomace, have been studied as
alternative sources of bioactive lipids. The new applications of polar lipids would favor the sustainable
use of olive’s industrial by-products and make them attractive from the biotechnological standpoint.

2. Identification of Polar Lipids from Olives, Olive Oil, and Their Industrial By-Products

The identification of polar lipids in olives and olive oil is a difficult task since they are minor
components and include a broad range of lipid classes. Different analytical approaches have been used
to unravel the polar lipidome of these matrices. The lipidomic workflows included lipid extraction,
fractionation, analysis and quantification (Figure 1).
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Figure 1. Schematic representation of the methodological approaches used for studying polar
lipids from olives and olive oil. Abbreviations: HPLC, high-performance liquid chromatography;
HPLC-MS, high-performance liquid chromatography coupled to mass spectrometry; HPLC-MS/MS,
high-performance liquid chromatography coupled to tandem mass spectrometry; HPLC-UV,
high-performance liquid chromatography with ultraviolet detector; LLE, liquid/liquid extraction;
NACE, non-aqueous capillary electrophoresis; NACE-MS, non-aqueous capillary electrophoresis
coupled to mass spectrometry; NACE-MS/MS, non-aqueous capillary electrophoresis coupled to
tandem mass spectrometry; NMR, nuclear magnetic resonance; SPE, solid-phase extraction.
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Liquid/liquid extraction (LLE) has been used for extracting polar lipids from olives and olive oil.
The most commonly used LLE methods were a modified Bligh and Dyer method [16], a modified Folch
method [17] and a sequential LLE method developed by Galanos and Kapoulas [17–19]. Solid-phase
extraction (SPE), using aminopropyl-bonded silica as sorbent, was recently used to obtain polar
lipid-enriched fractions directly from olive oil [12]. There are other emerging extraction techniques that
can be used for oil extraction from olives, such as ultrasound or microwave or CO2-assisted techniques,
but these approaches have not yet been reported for the analysis of polar lipids in olives or olive oil.

After extraction, the total lipid extract can be fractionated to obtain polar lipid-enriched fractions
or specific polar lipid classes. Polar lipid-enriched fractions were obtained using SPE cartridges with
different stationary phases (silica and diol-bonded silica) after olive oil’s LLE [19].

31P nuclear magnetic resonance (NMR) spectroscopy [18] and non-aqueous capillary
electrophoresis (NACE) coupled with MS [17] were used for the detection and characterization of the
phospholipid classes of olive oil.

The separation of the polar lipid classes obtained from olive oil was carried out by
high-performance liquid chromatography (HPLC) coupled to different detectors, as ultraviolet
detectors (HPLC-UV) [20] or mass spectrometers (HPLC-MS) [12,16,19]. The structural characterization
of the polar lipid molecules, namely the polar head and fatty acyl composition, has been achieved by
using tandem MS (HPLC-MS/MS in [12,16,19] and NACE-MS/MS in [17]).

The analytical approaches used so far (Table 1) showed different results. In olive fruits, the
polar lipidome has been studied in the oil extracted both from the pulp and the seed. Bianco et al.
(1998) identified glycolipids in the olive pulp, namely digalactosyldiacylglycerols as DGDG(18:3/18:3)
and DGDG(18:1/18:3) [20]. Montealegre et al. (2013) analyzed the glycerophospholipid profile of
olive fruits from different Spanish cultivars and regions [17]. The glycerophospholipids identified in
the olive pulp and in the seed included phosphatidic acid (PA), lyso-PA, phosphatidylethanolamine
(PE), lyso-PE, phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylglycerol (PG) [17]
(Figure 2).

Olive oil has been shown to possess several classes of glycerophospholipids (Figure 2), but the
presence and amount of each class vary considerably among studies (Table 1). Authors found that
the main glycerophospholipid class is PG [16], PE [17], PA [18], or lyso-PA [19]. In Greek VOOs,
glycerophospholipids were identified and quantified by 31P-NMR [18]. PA, PI, and lyso-PA were the
major classes identified, but PC, PE, and lyso-PI were also found. PG was only detected in one olive
pomace oil that showed higher diversity and concentration in the glycerophospholipid classes: PA,
lyso-PA, PI and lyso-PI [18]. The MS-based approaches used by other researchers also led to different
results. The glycerophospholipid profile of a commercial Tunisian olive oil was composed by PG, PA,
PI, PE, and PC (by descending order of abundance) [16]. In a monovarietal commercial olive oil from
the Spanish cultivar Arbequina, the glycerophospholipid classes identified were, by descending order,
PE, PG, PC, lyso-PE and lyso-PA [17]. The glycerophospholipid classes from an Italian VOO blend
with Leccino, Frantoio, and Picholine cultivars were PG, PA, lyso-PA, PI, PC and lyso-PC [19]. Calvano
et al. (2012) identified different molecular species of PC in one commercial olive oil [13]. Molecular
species of PA, PE, PG, PC, and PI were identified in Portuguese commercial olive oils, as well as
other lipid molecules not identified previously in this matrix [12]. Glycolipids as DGDG(18:3/18:3)
and DGDG(18:3/18:1) were identified in one Italian olive oil [20]. Table 1 summarizes the main
results of each of these works. All the molecular species of glycerophospholipids and glycolipids
identified by the MS-based lipidomic approaches, both in olives and olive oil, are listed in Tables 2
and 3, respectively.

The concentration of glycerophospholipids in olive oils has been estimated by measuring the
total phosphorus amount [21] using reference methods. For absolute quantification authors used
31P-NMR spectroscopy [18] and HPLC-MS [19]. Glycerophospholipids in olive oil are in parts per
million (mg kg−1 of olive oil): 21 to 124 [21]; 11 to 157 [18] and 3.29 to 8.25 [19].
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Analytical Challenges in Identifying Polar Lipids in Olives and Olive Oil

The results provided by the identification and characterization of the mentioned studies are
motivating but not comparable. A systematic analysis of polar lipids in these matrices has not been
performed yet, and there are no official methods for their characterization.

There are several advantages of using HPLC-MS approaches. They allow a fast and reproducible
analysis, in a short time-frame [16,17], with high sensitivity [19]. At the same time, it provides detailed
structural information about the polar head and fatty acyl composition of each glycerophospholipid
class, by the analysis and interpretation of the MS/MS data [16]. However, some analytical bottlenecks
of this methodology include: chemical noise in the MS/MS spectra and unachievable MS/MS
identification of the fatty acyl chains for all glycerophospholipids, due to their low amount in the
samples [16]; absence of fragmentation data, possibly due to their low concentration and the complexity
of the matrix [17]; and the need for further validation of quantification values with absolute quantitative
methods [17].

In addition to MS-based approaches, NMR spectroscopy is a potentially valuable technique for
analyzing phospholipids in olive oil [22]. Compared to HPLC-MS, NMR and specifically 31P-NMR,
has higher selectivity, ease of performance and faster analysis. Another advantage of using 31P-NMR is
that glycerophospholipids give a single signal in the spectrum, while different molecules of these lipids
are characterized by specific resonance frequencies derived from their distinct chemical structures.
As such, there is no need to separate the components in the sample before analysis [18], as in
HPLC-MS. Even so, 31P-NMR high-resolution spectra were hampered by the formation of aggregates
and electrostatic complexes with ions in solution [18]. The fatty acyl composition of the phospholipids
could only be estimated since proton signals are common to the various fatty acyl chains attached
to sn-1 and sn-2 positions of glycerol in the phospholipid molecules [23]. Long spectra acquisitions
(one hour) were needed to achieve a reasonable signal to noise ratio, due to the low concentration
of glycerophospholipids in olive oil [18]. The authors needed 100 g of olive oil to carry out the
experiments and to obtain the glycerophospholipid profile, while others, using LC-MS/MS approaches,
demanded 1 g [12] to 50 g [17]. Besides, the 31P-NMR approach cannot identify glycolipids in olive oil
and these lipids also make up the polar lipid pool of this matrix [12,20].

3. The Importance of Studying Polar Lipids from Olives and Olive Oil

3.1. Authentication, Traceability, and Detection of Adulteration

Olive oil’s chemical composition depends on both geographical and botanical origin of olives.
It also varies with pedo-climatic, environmental, agricultural and technological conditions, which gives
rise to a unique product with distinct features. High-quality olive oils, as VOOs, have a specific
chemical fingerprint, but it has been difficult to assign an identity that can differentiate VOOs from
other olive oils. Consequently, the authenticity of VOOs can be at risk during the olive oil chain
production, and ultimately, it may lead to fraud or adulteration. To date, it has not been possible to
provide an identity to each olive oil.

Some research groups studied olive oil’s polar lipids to address identity, traceability, and
authenticity issues. A first approach based on the relative abundances of the glycerophospholipids
allowed to distinguish the botanical and geographical origin of olive fruits. The olives samples used
for the study were from different Spanish varieties (Empeltre, Lechín de Sevilla, and Arbequina) from
the same region (Córdoba), and from the same variety (Arbequina) from different regions (Toledo,
Córdoba and Jaén) [17]. There were variations on the relative abundance of the polar lipid classes
identified in the seeds and in the pulp, and among different olive pulps from different cultivars. Some
classes that were found in the pulp (lyso-PE and PE) were not detected in the respective seed and
not all the classes were detected in all olive pulp samples. For instance, lyso-PA was not detected in
Empeltre variety from Córdoba [17]. In another work, it was found that each olive oil seems to reveal
a unique polar lipid profile [12], showing that each olive oil had a different PC profile and one olive
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oil had specific polar lipid molecular species, not detected in the other samples. These findings are a
promising start for future research on olive oil’s identity and traceability.

In the case of adulteration, it is possible to detect adulterated olive oil with levels as low as 1 to
5% of hazelnut oil, based on glycerophospholipids as biochemical markers [13]. This is a significant
advantage since adulteration of extra VOO with hazelnut oil cannot be straightforwardly detected
by well-established techniques because these oils have similar triacylglycerol, fatty acid, and sterol
profiles [24].

Even though there are still methodological bottlenecks in studying polar lipids from olives and
olive oil, these lipids are considered as new important biochemical markers. A phospholipid profile
has been suggested to be included in a flowchart to detect the presence of a specific adulterant in olive
oils [10].

3.2. Nutrition and Health

It has been widely acknowledged that olive oil’s intake, either within the Mediterranean diet or
alone, has a positive impact on human health [25,26]. Nevertheless, little is known about the bioactivity
or health benefits of phospholipids and glycolipids from olives and olive oil. A few in vivo and
in vitro studies revealed anti-cancer or cancer-preventative effects of food glycolipids [27–29], as well
as anti-inflammatory effects in arthritis and osteoarthritis [27–30]. Olive fruits possess glycolipids
(DGDG) in a concentration of 280 mg kg−1 [20], but their bioactivity remains to be studied.
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Table 1. Summary of the polar lipid classes identified and quantified in olives and olive oils in different studies.

Reference
Sampling Analysis Polar Lipid Classes

Type of Sample Amount of Sample Extraction Method

[20] Olive fruit and olive oil from varieties Carolea and
Ottobratica, both from Calabria region (Italy)

Olive fruit (250 g); olive
oil (10 mL)

Glycosidic fraction in olive fruit:
ethanol and “charcoal method”;

glycosidic fraction in the aqueous
phase of olive oil: ethyl

acetate/dichloromethane (1:1 by
volume) and water

HPLC-UV (µ-Bondapak
C18 column) DGDG

[16] Tunisian commercial olive oil Not said Modified Bligh and Dyer method HPLC-MS/MS (diol
column)

PG (63%), PA (12%), PI (11%), PE (9%),
PC (5%)

[18]
Greek virgin olive oil, refined olive oil and olive

pomace oil from local cooperatives (7 regions and
5 cultivars)

100 g According to Galanos and Kapoulas
(1962)

31P-NMR
PA, lyso-PA, lyso-PI, PI, PG (PG only in
pomace oil), PC and PE (these two only

in virgin olive oil).

[17]
Olive pulp and olive stone from Spanish Arbequina
variety from three geographical regions (Córdoba,

Jaén, and Toledo) and two Spanish varieties (Empeltre
and Lechín de Sevilla) from the same region

(Córdoba); commercial monovarietal extra virgin
olive oil from Arbequina variety

Olive pulp or stone (2.5 g);
olive oil (50 g)

PL from olive pulp and stone:
modified Folch method; PL from olive

oil: LLE according to Galanos and
Kapoulas (1962)

NACE-ESI-MS and
MS/MS

Olives (stone and pulp studied
independently): PA (54−82%), PE

(4−16%), PC (3−9%), lyso-PE
(1.3−18%), PI (4.4−8%), PG

(3.7−6.3%), and lyso-PA (0.1−0.2%).

Olive oil: PE (42%), PG (38%), PC
(15%), lyso-PE (4.5%), and lyso-PA

(0.2%)

[19]
Italian olive oil blend (Leccino, Frantoio and Picholine

varieties) from a local mill of Emilia Romagna
region (Italy)

100 g for LLE; 40 g for SPE

LLE according to Galanos and
Kapoulas (1962) followed by SPE (diol
and silica). PL eluted with methanol

and chloroform/methanol/water (3:5:2
by volume)

HPLC–ESI-qTOF-MS
(HILIC column)

Diol extracted veiled extra virgin olive
oil (mg kg−1): lyso-PA (4.23), lyso-PC

(1.21), PI (1.03), PC (0.90), PA (0.81), PG
(0.07). Crystallized veiled virgin olive
oil (mg kg−1): lyso-PA (1.15), lyso-PC

(0.87), PC (0.74), PI (0.48), PA (0.14)

[12] Portuguese commercial extra virgin and virgin
olive oils 1 g

PL extracted by SPE (aminopropyl
columns) and eluted with acetonitrile:

ammonium hydroxide (95:5 by
volume)

HPLC-ESI-ion
trap-MS/MS (HILIC

column)

PA, PE, PG, PC, PI, SQDG, SQMG,
DGTS

Legend: DGDG, digalactosyldiacylglycerol; DGTS, diacylglyceryl-N,N,N-trimethylhomoserine; HILIC, hydrophilic interaction liquid chromatography; HILIC-ESI-MS/MS, hydrophilic
interaction liquid chromatography coupled to electrospray ionization tandem mass spectrometry; HPLC, high-performance liquid chromatography; HPLC-ESI-qTOF-MS, high-performance
liquid chromatography coupled to electrospray ionization-quadrupole time-of-flight mass spectrometry; HPLC-UV, high-performance liquid chromatography with ultraviolet
detector; HPLC-MS/MS, high-performance liquid-chromatography coupled to tandem mass spectrometry; LLE, liquid/liquid extraction; MS/MS, tandem mass spectrometry;
NACE-ESI-MS, non-aqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry; NMR, nuclear magnetic resonance; PA, phosphatidic acid; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PL, polar lipid; SPE, solid-phase extraction; SQDG, sulfoquinovosyldiacylglycerol;
SQMG, sulfoquinovosylmonoacylglycerol.
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Figure 2. Chemical structures of the classes of glycerophospholipids and glycolipids identified in
olives and olive oil. Polar lipids include a broad range of molecules. Phospholipids are divided into
two main classes depending on whether they contain glycerol (glycerophospholipids) or a sphingosyl
(sphingophospholipids) backbone. Glycerophospholipids, besides the glycerol backbone, contain a
polar phosphorus moiety. They derive mainly from sn-1,2-diacylglycerols and, thus, contain structures
that are based on 3-sn-phosphatidic acid [31]. These lipids are grouped into classes based on the
composition of their polar head group that is attached to the phosphate residue in sn-3 position. The
polar head may be an amino acid, an amino-alcohol, a carbohydrate or another functional moiety. Each
head group class is further differentiated into subclasses based on the sn-1 and sn-2 substituents on
the glycerol backbone [31]. Glycolipids also include a wide variety of structures. These structures
consist in acylglycerols (in the case of glycosylglycerides and sulfolipids) joined to a carbohydrate
moiety by a glycosidic linkage at the sn-3 position [31]. Betaine lipids are ether-linked glycerolipids
containing a betaine moiety. These lipids contain a polar group linked by an ether bond at the sn-3
position of the glycerol moiety, with the fatty acids esterified in the sn-1 and sn-2 positions [31].
1,2-diacylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (DGTS) have been commonly found in lower
plants, algae, fungi, and bacteria [32]. R, R1, and R2 represent fatty acyl chains.

Some studies evaluated the bioactive properties of the polar lipid fraction of olive oil and olive
pomace and revealed that they possess anti-thrombotic and anti-atherosclerotic activities by inhibiting
platelet aggregation. This inhibition was assigned to inhibitors or antagonists of platelet aggregation
factor (PAF) [15], that were further identified in olive oil as a glycerol glycolipid [14]. Olive pomace’s
polar lipids also inhibited platelet aggregation in vitro [15]. The most potent antagonist was identified
as a glycerylether-sn-2-acetyl glycolipid, structurally similar to the one previously identified in olive
oil [15]. Olive pomace’s polar lipids revealed a higher potency than olive oil’s polar lipids in inhibiting
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PAF-induced aggregation, as well as specific PAF binding [15]. Thus, olive pomace’s polar lipids were
suggested to be used as a dietary supplement in the prevention of the progression of atherogenesis [33].

There is some scientific evidence that the polar lipid fraction from olive oil and olive pomace
possess anti-thrombotic and anti-atherosclerotic activity mediated by PAF. Nevertheless, more studies
are needed to elucidate the chemical structure of the bioactive lipids to understand the mechanisms of
action and to determine the concentration of these compounds in olive oil or olive-pomace to observe
an in vivo effect in human beings.

4. Potential Biotechnological Uses of Polar Lipids from Olives’ and Olive Oil’s Industrial
By-Products

Olive oil mills and pitted table olives’ producing industries generate several by-products, such
as olive pomace and olive stones. These by-products can be recovered to create novel value-added
products. In the case of polar lipids, their concentration is tens to hundred times higher in olive pomace
oil [18] and olive seed oil [34], comparatively to olive oil [18,21]. Thus, polar lipids from olive pomace
and olive seeds have been regarded as potentially useful from the nutritional and biotechnological
standpoints and have been suggested for several novel industrial applications.

Olive pomace was proposed as the new promising lipid source for the sustainable production of
animal feeds, namely functional fish feeds, feed for aquaculture fish and as an ingredient for inclusion
in animal feedstocks [35]. Olive pomace after stoning has been extensively studied in mammal’s
species as feed integration for improving the nutritional and nutraceutical properties of their meat as
well as their milk and derived cheese [36–40]. Other studies carried out on fish species revealed that
polar lipids from olive pomace oil [41] provide high nutritional value for fish feed [35] and increase
fish cardio-protective properties [42]. The later studies carried out on fish fed with fish oil containing
4% of olive pomace indicated that the lipid fractions containing polar lipids had inhibitory activity
against PAF-induced platelet aggregation [42]. Further research is needed on the bioactive properties
of olive pomace and olive pomace oil for animal feed purposes and to identify the molecules within
the polar lipid fraction responsible for such activity.

Other residues resulting from table olives’ production are the stones that contain the seeds. The
economic potentialities of olive seeds and olive seed oil have been explored in the last few years,
primarily by the industry [43].
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Table 2. List of glycerophospholipid molecular species identified in olives and olive oil through mass spectrometry-based lipidomic approaches.

Reference Olive Fruit
and/or Oil

Molecular
Species (C:N) Fatty Acyl Chains (C:N) [M + H]+

m/z
[M + Na]+

m/z
[M + K]+

m/z
[M − H]−

m/z
[M + HCOO]−

m/z
[M + CH3COO]−

m/z

[19] Oil LPA(16:1) 16:1 407.2
[19] Oil LPA(18:1) 18:1 435.3
[19] Oil LPC(18:1) 18:1 566.3
[19] Oil LPC(18:2) 18:2 564.3
[19] Oil PA(34:1) 16:1/18:0 673.5
[17] Fruit PA(36:0) 18:0/18:0 703
[17] Fruit PA(36:1) 18:1/18:0 701
[19] Oil PA(36:2) 18:0/18:2 699.5
[12] Oil PA(38:2) 18:1/20:1 and 18:0/20:2 and 18:2/20:0 727.2
[12] Oil PC(32:0) 16:0/16:0 734.5
[12] Oil PC(32:1) 16:0/16:1 and 14:0/18:1 732.4 754.5
[12] Oil PC(32:2) 16:1/16:1 and 14:1/18:1 730.4 752.4

[12,19] Oil PC(34:1) 16:0/18:1 and 16:1/18:0 and 14:0/20:1
and 14:1/20:0 760.5 782.5 798.5 804.6 818.2

[12,19] Oil PC(34:2) 16:1/18:1 or 16:0/18:2 and 14:0/20:2 758.5 780.5 796.5 802.6

[12] Oil PC(34:3) 16:1/18:2 and 14:0/20:3, 16:0/18:3 and
16:1/18:2 756.5 778.5 794.5

[12,17] Oil and fruit PC(36:1) 18:0/18:1 788.5 826.5

[12] Oil PC(36:2) 18:1/18:1 or 18:0/18:2 or 16:0/20:2 or
16:1/20:1 786.5 808.6 824.5

[17] Fruit PC(38:5) 20:2/18:3 809
[12] Oil PC(O-34:2) O-16:0/18:2 and O-16:1/18:1 766.4
[12] Oil PC(O-34:3) O-16:0/18:3 764.4
[12] Oil PC(O-36:1) O-18:1/18:0 and O-16:0/20:1 796.6
[12] Oil PC(O-36:3) O-18:0/18:3 and O-18:1/18:2 792.4
[12] Oil PE(34:1) 16:0/18:1 and 16:1/18:0 716.3
[17] Fruit PE(38:2) 20:2/18:0 773
[12] Oil PG(32:0) 16:0/16:0 721.5
[17] Fruit PG(34:0) 16:0/18:0 749

[12,17,19] Fruit and oil PG(34:1) 16:0/18:1 771.5 747.5
[17] Fruit PG(36:1) 18:1/18:0 775

[17] Fruit PG(36:2),
PA(42:7) PG(18:1/18:1) 797.5 813.5 773

[17,19] Fruit and oil PI(34:0) 16:0/18:0 837.6
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Table 2. Cont.

Reference Olive Fruit
and/or Oil

Molecular
Species (C:N) Fatty Acyl Chains (C:N) [M + H]+

m/z
[M + Na]+

m/z
[M + K]+

m/z
[M − H]−

m/z
[M + HCOO]−

m/z
[M + CH3COO]−

m/z

[17,19] Oil and fruit PI(34:1) 16:0/18:1 835.6
[12] Oil PI(34:1-OH) 16:0/18:1-OH 851.4
[19] Oil and fruit PI(34:2) 16:1/18:1 and 16:0/18:2 833.6
[19] Oil and fruit PI(34:3) 16:1/18:2 831.5
[17] Fruit PI(36:1) 18:0/18:1 863

[12,17] Oil and fruit PI(36:3) 18:2/18:1 859.2

(C:N) indicates the number of carbon atoms (C) and double bonds (N) in the fatty acyl side chains. Legend: LPA, lyso-phosphatidic acid; LPC, lyso-phosphatidylcholine; PA, phosphatidic
acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol.

Table 3. List of glycoglycerolipid and betaine lipid molecular species identified in olive oil through mass spectrometry-based lipidomic approaches.

Reference Molecular Species (C:N) Fatty Acyl Chains (C:N) [M − H]− m/z [M + H]+ m/z

[12]

SQDG (34:1) 16:0/18:1 819.4
SQDG (35:0) or SQDG(34:1-OH) 16:0/19:0 or 16:0/18:1-OH 835.5

SQDG(28:0) 14:0/14:0 and 12:0/16:0 737.1
SQDG(30:0) 14:0/16:0 765.4
SQDG(32:0) 16:0/16:0 and 14:0/18:0 793.5

SQDG(32:1-OH) 14:0/18:1-OH 807.5
SQDG(34:2-OH) 16:0/18:2-OH 833.5

SQMG(14:0) 14:0 527.2
SQMG(16:0) 16:0 555.3
DGTS(34:1) 16:0/18:1 738.5

(C:N) indicates the number of carbon atoms (C) and double bonds (N) in the fatty acyl side chains. Legend: DGTS, diacylglyceryl-N,N,N-trimethylhomoserine; SQDG,
sulfoquinovosyldiacylglycerol; SQMG, sulfoquinovosylmonoacylglycerol.
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Olive seed oil has 0.1% of phospholipids [34] and may have diverse technological uses in the
soap, cosmetics and pharmaceutic industries [34]. Phospholipids from olive seeds can also be used for
lecithin production in the agri-food industry [34]. Food derived phospholipids have several biomedical
applications, for instance, as emulsifiers in pharmaceuticals and for the preparation of liposomes for
cosmetics and drug delivery [44,45].

The potential biotechnological applications of the olive-derived by-products highlight the valuable
alternatives that underlie the table olive’s and olive oil’s industries. However, more research is needed
to characterize the polar lipidome, its health benefits and the cost-benefit of being extracted from
these by-products.

5. Conclusions and Future Perspectives

Glycerophospholipids, glycolipids and betaine lipids were identified in olives and olive oil, but the
identification of the lipidome of these foodstuffs is far from being fully covered. Distinct analytical
approaches have been carried out to isolate and characterize the polar lipidome from these matrices,
but those relying on NMR and MS have been the most successful. The diversity of polar lipid classes,
the number of molecular species, and their ability to provide a molecular fingerprint for olives and
olive oil claims for further research to achieve a standardized methodology for polar lipid identification.
The study of polar lipids from olives and olive oil is essential for providing new insights into their
quality, identity, authenticity, and traceability. The identification of polar lipids using the most modern
technologies, as mass spectrometry coupled with liquid chromatography in a lipidomic approach,
represent the most promising methodology to fulfill that goal. Simultaneously, it is also an innovative
research opportunity in this field, as it can bring new inputs to the identity of these food matrices and
their recognition as valuable components with health benefits. Few studies reported that polar lipids
from olive oil and olive pomace possess bioactive properties, but this research field is still in its infancy.
Polar lipids from olive pomace and olive seeds are being envisioned as promising ingredients to be
recovered from olives’ and olive oil’s industrial processing for several biotechnological uses (Figure 3).
Additionally, more information is needed on the polar lipidome of olive-derived industrial by-products,
namely olive pomace, olive seeds, and their oils, to promote their recycling and reuse. Based on their
polar lipids, novel value-added products and formulations can be conceived as important sources of
components with biological activity. The wide range of biotechnological applications for these lipids
recovered from olive’s and olive oils’ by-products include the feed, pharmaceutical, nutraceutical
and dermocosmetic industries. Therefore, further investigation of the polar lipidome will foster the
knowledge, valorization and sustainable use of these natural resources.
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