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Abstract: Proteins of animal origin represent physiologically active components in the human diet;
they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and
consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes
endogenous to raw food materials, and enzymes from microorganisms added during food processing.
Milk proteins have different polymorphisms for each dairy species that influence the amount and
the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation) of the
protein. Milk from other species alternative to cow has been exploited for their role in children with
cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status.
Different mechanisms concur for bioactive peptides generation from meat and meat products, and
their functionality and application as functional ingredients have proven effects on consumer health.
Animal food proteins are currently the main source of a range of biologically-active peptides which
have gained special interest because they may also influence numerous physiological responses in
the organism. The addition of probiotics to animal food products represent a strategy for the increase
of molecules with health and functional properties.
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1. Introduction

The general consensus on the impact of lifestyle on human health considers that diet represents a
crucial factor in terms of human health status. Proteins of animal origin have been recognized for their
nutritional properties as an essential source of amino acids upon digestion, but both digestion and
industrial processing may liberate peptides from the parent protein which have biological functions.
Animal food products, in particularly dairy foods, were characterized by genetic polymorphisms of
the main proteins that impact on protein hydrolysis during food processing prior to consumption and
digestion in the human organism. Biologically-active peptides can be produced from milk proteins
through different pathways involving milk secretion, milk storage, milk processing, and milk digestion
due to enzymatic hydrolyses by indigenous enzymes, digestive enzymes, and microbial enzymes
from starter and non-starter cultures. The integrity and structure of meat proteins undergo changes
during rigor mortis, the resolution of rigor mortis, and long-term frozen storage. Particularly, a large
number of peptides showing important physiological activities are released during meat processing.
Dietary supplements allow the delivery of positive molecules in dosages that exceed those obtained
from conventional food products. However, great interest has been observed regarding the bioactive
components naturally contained in foods which have an impact on biological processes. Bioactive
components in foods represent dietary elements that impart a measurable biological effect that affect
health in a beneficial way, such as immune-modulating, antihypertnesive, osteoprotective, antilipemic,
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opiate, antioxidative, and antimicrobial activities [1]. The in vitro bioactivities of food components
have been widely explored and the present effort is to study their effects in vivo on healthy subjects or
patients with different pathologies. This review provides an integrated overview on the occurrence of
bioactive peptides in animal food products, and the role on human health of milk and meat peptides is
also discussed.

2. Role of Dairy Proteins on Human Health

Protein is a very heterogeneous component in cow, sheep, and goat milk, mainly influenced
by genetic variants. The genetic polymorphisms of milk proteins are of importance as they are
associated with quantitative and qualitative parameters in milk. In particular, genetic polymorphism
was associated with different levels of protein synthesis in milk, different rates of phosphorylation
and glycosilation of the peptide chain, and amino acid sequences of the protein [2]. In cattle, the
six main milk proteins are encoded by highly-polymorphic genes with up to 47 protein variants
identified, affecting not only the specific protein expression and, as a consequence, milk composition
and cheesemaking, but they are also involved in various aspects of human nutrition [3,4]. A recent
review paper [5] deepened the presence of a complex polymorphism at casein loci levels in small
ruminant species and its role on the nutritional properties on milk and dairy products. In this contest
the polymorphisms of milk proteins from small ruminant species have significant potential in human
pathology. Genetic polymorphisms of milk proteins also play an important role in eliciting different
degrees of allergic reaction [6–8]. Caseins, and especially α-CN, are among the most important milk
allergens [9–11]. Milk from other species alternative to cow has been investigated for its role in children
with cow milk allergy (CMA); higher TNF-α levels were indeed found after exposure to cow milk
casein and β-Lg than after exposure to the same fractions from goat milk [12]. Some studies have
indicated an unusually high incidence of allergenic illnesses in those suffering with epilepsy [13].
Most of the authors examined the relationship between food allergy and epilepsy by comparing groups
of adult patients with healthy control subjects [14]. Cytokine productions by cultured PBMCs from
infants with generalized epilepsy was influenced by protein fractions of milk from bovine, caprine, and
ovine species. PBMC’s ability to secrete cytokines in response to milk and protein fraction stimulation
may be a predictor of the secretion of pro- and anti-inflammatory cytokines in the bloodstream of the
challenged patients [14].

2.1. Occurrence of Bioactive Peptides in Milk

Biologically-active peptides can be produced from milk proteins through different pathways
involving the action of indigenous enzymes, digestive enzymes, and microbial enzymes from starter
and non-starter cultures acting during milk secretion, milk storage, milk processing, and milk digestion.
Proteolytic activity in fresh raw milk is attributed to indigenous and microbial enzymes. Among the
indigenous enzymes, milk contains at least two main proteinase systems, the plasmin-plasminogen
system and lysosomal enzymes, as well as possibly other proteolytic enzymes. Plasmin is the principal
proteolytic enzyme in raw milk and is associated with casein micelles. The second proteinase in milk is
cathepsin D, activity of which is significantly correlated with somatic cell count, which contains several
proteinases, including cathepsin B, L, and G, and elastase [15]. The principal indigenous proteolytic
enzymes were investigated and characterized in ovine and caprine milk [16–20]. Some bioactive
peptides found in milk and dairy products and their functionality have been reported in Table 1.
Indigenous enzymes play a role in the liberation of bioactive peptides during milk secretion and
storage. A great number of peptides were found in goat milk incubated up to seven days without
any protease inhibitors; plasmin was shown to play a major role in the hydrolysis of casein and
high numbers of peptides were derived from the hydrolysis of β-casein. Almost 90% of the peptides
identified shared a structural homology with previously-described bioactive peptides in caprine and
bovine milk and dairy products showing encrypted sequences of bioactive peptides able to exert
ACE-inhibitory activity [21,22]; antihypertensive activity [22,23], and antioxidant activity [24].
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Table 1. Bioactive peptides in milk and dairy products.

Product Carrier/Regulation Peptide Sequence/Protein Fragment Functionality References

Milk Endogenous
enzymes PYVRYL, LVYPFTGPIPN ACE-I activity [21,22]

Protease from
Enterococcus faecalis,

enzymatic
hydrolysis

LHLPLPL,αs1-CN f(90–94) (RYLGY), αs1-CN f(143–149)
(AYFYPEL), and αS2-CN f(89–95) (YQKFPQY)

Antihypertensive
activity [22,23,25]

endogenous
enzymes VLPVPQK Antioxidant activity [24]

Proteinase of
Lactobacillus

helveticus PR4

Bovine αS1-casein; (αS1-CN) 24–47 fragment (f24–47),
f(169–193), and β-CN f(58–76); ovine αS1-CN f(1–6) and

αS2-CN f(182–185) and f(186–188); caprine β-CN
f(58–65) and αS2-CN f(182–187); buffalo β-CN f(58–66);

ACE-I activity [26]

Ovine as2-CN fragments; f(165–170) LKKISQ,
f(165–181) LKKISQYYYQKFAWPQYL, f(184–208)

VDQHQKAMKPWTQPKTNAIPYVRYL,
f(203–208) PYVRYL.

Antibacterial activity [27]

as1-casein f(1–23) Immunomodulating
activity [28]

Cheese Bovine β-CN f(13–28), αS2-CN f(5–21) Mineral binding [29]

Manchego Ovine β-CN, fragment (199–204); αs1-CN f(102–109)
KKYNVPQL; αs2-CN f(205–208) VRYL ACE-I activity [30,31]

Emmental Fragments from as1_CN and β-CN
Immunostimulator,
antimicrobial and

ACE-I activity
[32]

Gouda αs1-CN f (1–9), αs1-C f (1–13), β-CN f (60–68),
β-CN f (109–111) ACE-I activity [33]

Crescenza b-CN f(58–72) ACE-I activity [34]

In sheep milk, several peptides with functional activity were found deriving from the action
of peptidases of different origins on casein fractions. At least three ACE inhibitory peptides were
liberated by purified proteinase of Lb helveticus [26] from αs1- and αs2-caseins, and antihypertensive
and antioxidant peptides were found in ovine sodium caseinate incubated with Bacillus sp. P7 [35].
Four antibacterial peptides were identified from a pepsin hydrolysate of ovine αs2-casein [27],
corresponding to αs2-casein fragments f(165–170), f(165–181), f(184–208), and f(203–208), with the
former being most effective against Gram-negative bacteria. The peptide corresponding to ovine
αs2-casein f(203–208) is a good example for a multifunctional peptide, because it exhibited not only
antimicrobial activity, but also potent antihypertensive and antioxidant activity [36].

The most common way to produce bioactive peptides is through enzymatic hydrolyses of whole
protein molecules: digestive enzymes and different enzyme combinations of proteinases, including
alcalase, chymotripsin, pancreatin, pepsin, and thermolysin have been utilized to generate bioactive
peptides from various proteins [37]. Ingested proteins undergo different stages of gastrointestinal
hydrolysis in the stomach and intestinal lumen due to proteinases, such as pepsin, trypsin, and
chymotripsin. Finally, these peptides are further digested by brush border peptidases at the surface of
intestinal epithelial cells to produce amino acids and oligopeptides able to undergo the absorption
process. For example, β-casomorphins and phosphopeptides derived from casein (CPPs) are produced
in vivo during digestion of dairy products, including milk, fermented milk, cheese, and yogurt [38].
The quantity of peptides released upon digestion is hardly predictable and, consequently, the beneficial
effects of human health. Peptide bioavailability is dependent on the resistance of the peptide to
hydrolysis in the gastrointestinal tract and serum and its ability to be absorbed across the intestinal
epithelium [39]. However, some authors report that the potential yield of bioactive peptides, during
the digestion of the major dairy proteins, is relatively high. Meisel and Fitzgerald [40] estimated the
theoretical yield of opioid peptides encrypted in milk proteins ranged between 2% and 6%.
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2.2. Occurrence of Bioactive Peptides in Dairy Products

The ripening process in cheese encompasses several biochemical pathways dealing with the
proteolytic, lipolytic, and glicolytic processes. Many dairy cultures are highly proteolytic, leading to
bioactive peptide accumulation in ripened dairy products. Depending on the type of dairy products
the level of peptides naturally formed in the matrix varies along with the equilibrium between the
liberation and the further hydrolysis during ripening. However, the bioactive peptides have been
characterized in a wide variety of dairy products distinguished on the basis of the time of ripening
in fresh, short, and long ripened cheese, and on the basis of the technological process of fermented
cheese, pasta filata cheese, and cooked cheese.

In long-ripened Gruyere de Comté and Cheddar cheese CPPs naturally occurred due to the
primary action of chymosin and plasmin and further hydrolysis of endopeptidases from non-starter
lactic acid bacteria [29,41]. The maximum ACE-inhibitor activities were found in Gouda cheese ripened
for three months than in short- and long-ripened cheese. On the contrary, in Manchego cheese, from
ovine milk, the ACE-inhibitory activity showed a different and complex evolution along with the
ripening time decreasing in the first four months, with a subsequent increase and then decreasing
again in twelve-month cheese [30]. In Emmental cheese, different bioactivities were detected as
mineral-carrying, antimicrobial, antihypertensive, and immunestimulatory due to both the action of
plasmin and cathepsin D and to proteinases associated with microbial starter [32]. In Cheddar cheese,
the sequence RPKHPIK was found in Festivo and Iberian ovine cheeses [42–44] and was also found
when the cheeses were subjected to a hydrolysis process that simulated gastric digestion and reported
antimicrobial activity. The sequence RPKHPIKHQ was found in water-soluble peptide preparation
isolated from Gouda ripened for eight months, showing a potent antihypertensive activity tested in
spontaneously-hypertensive rats [33]. Furthermore, the fragment 1–23 of αs1-CN, known as Isracidin,
originated from the proteolytic activity of chymosin and exerted antimicrobial activity on several
microorganisms [45]. The sequence PQEVLNENLLRF was referenced by Minkiewicz et al. [28] as an
immunomodulating and antimicrobial peptide sequence in the primary structure of αs1-CN freed
by chymosin activity. Furthermore, antimicrobial peptides were isolated from Mozzarella, Italico,
Crescenza, and Gorgonzola cheeses [34] with a specific inhibitory action towards endopeptidase from
Pseudomonas fluorescens. Such a microorganism is responsible for the impairment of technological and
organoleptic features of dairy products. The fermented milks are a source of bioactive peptides with
anticariogenic, antihypertensive, mineral binding, and stress relieving activities due to the action of
probiotic strains such as Lb. casei, Lb. helveticus, and S. cerevisiae [46–48].

The development of probiotic cheeses regarded Cheddar cheese [42,49–54], Gouda cheese [55],
Cottage cheese [56], Pategrás cheese [57], Crescenza cheese [58], Minas fresh cheese [59,60], and
Turkish white cheese [61]. Few studies have been conducted on the production of functional cheeses
made from ewe milk; the first research was performed on PDO Canestrato pugliese cheese using
B. bifidum and B. longum [62] as a starter adjunct. Probiotics added to cheese yield a wide spectrum of
enzymes able to influence the biochemical events involving the protein and lipid fractions in cheese
during ripening. These events have an impact on the development of texture, flavor and health
components of cheese. The use of lamb rennet paste containing probiotics is a suitable strategy for
innovation in traditional ovine cheese without modification of the production procedures [19,63–67].
This could provide a spin-off for health properties of cheese and for its ripening features, such as
an acceleration of the ripening process with economic advantages to producers. It was found that
using starter cultures and L. acidophilus and Bifidobacteria spp. Produced ACE-inhibitory activity
peptides in Festivo cheese [43] and Manchego cheese [31]; peptides with antimicrobial activity were
found in Cottage cheese produced with Bifidobacteria [68]. In functional Scamorza cheese made from
ovine milk, containing a mix of B. longum-, B. lactis-, and L. acidophilus-specific peptides deriving
from microbial enzymes were found in cheese at fifteen days of ripening. Several fragments were
identified which shared structural homology with previously-reported peptides with ACE-inhibitory
activity, antimicrobial activity, antihypertensive activity, and immunomodulating activity. Specific
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peptides deriving from microbial enzymes may be regarded as tracing fragments and may represent
a tool to verify the presence and activity of probiotic cultures in cheese. In functional Scamorza
cheese fragments were identified deriving from β-galactosidase and from endonuclease associated to
B. longum, or deriving from enzymes yielded by Lactobacillus acidophilus.

3. Bioactive Peptides in Meat and Meat Products

3.1. Bioactive Peptide Generation

Due to the presence of high-quality proteins, meat represents the most investigated source for the
isolation of novel bioactive peptides. Different mechanisms concur for bioactive peptide generation
from meat and meat products (Table 2). During meat post-mortem aging, the proteolytic activity due
to endogenous enzymes (calpains and cathepsins) is a key process that affects the destructuration of
proteins and, consequently, the production and release of a large number of peptides and free amino
acids [69,70]. Bauchart et al. [71], in a study on aged beef, found an increase of bioactive peptides in
meat after 14 days of post mortem storage than in fresh meat. In a recent study, Fu et al. [72], also
demonstrated that post-mortem aging can generate bioactive peptides of about 3 kDa in longissimus
dorsi and in semitendinosus muscles after 20 days of extensive proteolysis. During post-mortem meat
storage the generation of peptides may also be driven by oxidation processes [73]. An oxidative status
could regulate the endogenous enzymatic activity and, consequently, the myofibrillar and sarcoplasmic
protein degradation [74]. Changes of temperature and pH can affect the content of bioactive peptides
during meat storage due to the variation in the activity of endogenous enzymes and the destruction of
pH or heat-sensitive amino acids [75,76].

It is known that bioactive peptides are generated naturally in mammals within the gastrointestinal
tract during the metabolisms of dietary meat proteins [77,78]. During gastrointestinal proteolysis,
ingested meat-derivative proteins are attacked by stomach-secreted digestive enzymes, such as
pepsin, followed by trypsin, chymotrypsin, elastase, and carboxypeptidase secreted in the small
intestine with a consequent generation of biological peptides [79]. For this reason, in order to
generate potentially-functional peptides from meat products, the gastrointestinal digestive system
has been simulated to generate peptides similar to those released in a physiological digestion process.
The process that simulates the gastrointestinal digestion is based on an enzymatic hydrolysis using
different commercial exogenous proteinases obtained from animal tissues (pepsin and tripsin),
plants (papain, ficin, and bromelain), and microbial sources (alcalase®, flavourzyme®, neutrase®,
collagenase, or proteinase K) [79–81]. Enzymatic hydrolysis is a widespread method selected by
food and pharmaceutical industries to produce bioactive peptides. In addition to meat sources,
several bioactive peptides have been obtained through enzymatic hydrolysis from meat collagen or
slaughtered by-products (trimmings, organs, hemoglobin), as reported in many studies [73,82].

Table 2. Schematic representation of processes generated for obtaining meat bioactive peptides.

Product Process Carrier/Regulation Functionality Peptide Sequence References

Meat

Proteolysis,
oxidation Endogenous enzymes ACE-I activity

APPPPAEVPEVHEEVH, PPPAEVPEVHEEVH,
IPITAAKASRNIA, LPLGG,
FAGGRGG, APPPPAEVP

[71,72,74]

Enzymatic
hydrolysis Exogenous enzymes

ACE-I, antioxidant,
antithrombotic,

antimicrobial, and
anticancer activity

KRQKYD, EKERERQ, KAPVA, PTPVT, RPR,
GLSDGEWQ, GFHI, DFHING, FHG [83–91]

Cooking High temperature ACE-I activity SPLPPPE, EGPQGPPGPVG, PGLIGARGPPGP [72]

Collagen Enzymatic
hydrolysis

Bacterial collagenase,
exogenous enzymes,

protease from
Aspergillus oryzae

ACE-I and
antioxidant activity

AKGANGAPGIAGAPGFPGARGPSGPQGPSGPP,
PAGNPGADGQPGAKGANGAP, GAXGLXGP,
GPRGF, VGPV, QGAR, LQGM, LQGMH, LC

[92–95]

Cured
products Proteolysis Endogenous enzymes Antioxidant activity

DSGVT, IEAEGE, EELDNALN,
VPSIDDQEELM, DAQEKLE, ALTA, SLTA, VT,

SAGNPN, GLAGA, DLEE
[96,97]

Fermented
products Proteolysis Presence of

starter cultures Antioxidant activity FGG, DM [98]
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Other mechanisms, such as freezing and cooking processes, can affect the isolation and availability
of bioactive peptides from meat. Freezing can denature proteins due to different chemical and
physical stress mechanisms, including ice formation, pH variations, and cold temperature [99],
leading to an increase of bioactive peptides. Cooking can affect the generation of peptides and
their related bioactivities [72,76] due to changes in the native conformation (denaturation) and rupture
of intramolecular forces of proteins caused by heat [100].

A number of bioactive peptides were shown to be released, also, from meat products during curing
or ripening processes [101]. The proteolytic degradation that occurs during the ripening of dry-cured
ham or during fermentation of sausages, responsible also for flavor and texture, lead to a production
of small peptides and free amino acids [83,102]. In particular, in fermented meat products the protein
degradation is influenced by different variables as product formulation, processing conditions, and
the presence of starter cultures. The content of peptides is influenced by proteolytic degradation
of endogenous enzymes together with lactic acid bacteria. In particular, the presence of lactic acid
bacteria induces a decrease of pH resulting in a greater activity of endogenous muscle proteases [103].

3.2. Functionality of Meat Bioactive Peptides

Meat peptides have proven effects on consumer health due to different types of bioactivity,
including antihypertensive, antioxidant, antithrombotic, antimicrobial, or anticancer activities [104].
Bioactivities of peptides depend on the sequence, amino acid composition, and molecular mass [105].
Furthermore, Vermeirssen et al. [39] reported that the length of peptides could affect the intensity of
the bioactivity, with smaller peptides characterized by greater bioactivity.

The most extensively-studied meat bioactive peptides are the angiotensin I-converting enzyme
inhibitory (ACE-I) peptides, probably due to their implication in the regulation of blood pressure.
ACE is a dipeptidylcarboxypeptidase enzyme that convert angiotensin I (decapeptide) into angiotensin
II (octapeptide) resulting in a vasoconstriction of the arteries and, consequently, an increase of blood
pressure. Therefore, the inhibition of ACE could be linked to the prevention of cardiovascular
disease [106]. Meat proteins are a good source of ACE-I peptides with in vitro and in vivo bioactivities.
In recent years, several bioactive peptides have been isolated through the hydrolysis of meat proteins
with gastrointestinal enzymes, like pepsin, trypsin, chymotrypsin, or pancreatin. Katayama et al. [84]
found two different ACE-I peptides from pork meat (KRQKYD, EKERERQ) through pepsin treatment.
Both isolated peptides were studied in vivo in rats showing a hypotensive activity after three and six
hours of oral administration.

Twenty-two ACE-I peptides from pork meat using pepsin and pancreatin proteases were isolated
in vitro. Among these, KAPVA and PTPVP peptide sequences showed the highest antihypertensive
activity [85]. Subsequently, in 2012, the same authors [86] investigated, in vivo, the bioactivity of
KAPVA, PTPVP, and RPR peptides in rats, highlighting a major decrease of blood pressure by KAPVA
and PTPVP peptides than RPR sequence in rats after eight hours of oral administration.

Peptides extracted from connective tissue were also identified as inhibitors of ACE [92,93,107].
Gómez-Guillén et al. [108] reported that the bioactivities of collagen-derived peptides depends
on the amount of Gly and Pro amino acids. In vitro and in vivo ACE-I properties were
found in peptides isolated from hydrolysate of bovine Achilles tendon collagen with bacterial
collagenase [92]. After hydrolysis, samples were purified, sequenced, and identified as AKGANGA
PGIAGAPGFPGARGPSGPQGPSGPP and PAGNPGADGQPGAKGANGAP. Both peptides showed
ACE-I activity after an oral administration in rats. In recent years, Fu et al. [72,107] also found bioactive
peptides from collagen extracted derived both from nuchal ligament of bovine carcasses (GPRGF) and
from cooked semitendinosus muscle (SPLPPPE, EGPQGPPGPVG, and PGLIGARGPPGP) showing
greater ACE and renin-inhibitory activities. In addition, Saiga et al. [94] isolated peptides with in vivo
ACE-I activity from chicken collagen after hydrolysis with a protease from Aspergillus oryzae.

Several peptides isolated from meat are characterized by an antioxidant activity due to their
capability to inhibit lipid peroxidation, chelate metal ions, and remove free radicals and ROS [109,110].
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The most important antioxidants naturally present in meat are carnosine and anserine dipeptides,
which explicate their antioxidant activity chelating pro-oxidative metals [87]. In addition to the
peptides that are naturally present in meat, peptides with antioxidant activity were also generated
through the hydrolysis with specific proteases. Saiga et al. [87], in an in vitro study on porcine
myofibrillar proteins hydrolyzed with papain and actinase E, found five peptides (DSGVT, IEAEGE,
EELDNALN, VPSIDDQEELM, and DAQEKLE) that exhibited an antioxidant activity using the
linolenic acid peroxidation system. The same authors suggested that the highest antioxidant activity
was reached by the DAQEKLE peptide obtained by actinase E, corresponding to a part of the
tropomyosin alpha-1 chain. Thus, the type and specificity of proteases used play an important role in
determining the antioxidative properties of peptides. Furthermore, three peptides (ALTA, SLTA, and
VT) obtained from porcine skeletal muscle actomyosin showed antioxidative activity not only in vitro,
but also in vivo in rats [88]. Four antioxidant peptides were also obtained from porcine collagen
by Li et al. [95] using three different protease treatments (pepsin and papain, protease from bovine
pancreas, and a cocktail of protease from bovine pancreas, bacterial proteases from Streptomyces, and
Bacillus polymyxa). Results of this study showed that collagen treated with the cocktail of three enzymes
demonstrate higher antioxidant activity and a major number of peptides (QGAR, LQGM, LQGMH,
and LC) rather than the other treatments. In recent years, Banerjee and Shanthi [92] isolated a 36-amino
acid residue peptide with free radical scavenging and metal chelating properties from bovine tendon
collagen α1. Peptides with antioxidant activity can be produced during meat processing. Twenty-seven
antioxidant peptides were sequenced using LC-MS/MS in samples of Spanish dry-cured ham [96];
in this study the highest scavenging activity was identified in the two different peptides (SAGNPN and
GLAGA). Broncano et al. [98] also isolated two peptides (FGG and DM) with antioxidant activity in
pork Chorizo sausages. Recently, Xing et al. [97] purified several antioxidant peptides from dry-cured
Xuanwei ham, highlighting the highest antioxidant activity in DLEE peptide.

Peptides with antithrombotic properties were also isolated from meat. Morimatsu et al. [89] and
Shimizu et al. [90] isolated peptides that exhibited antithrombotic activity from porcine longissimus
dorsi muscle hydrolyzed with papain. Particularly, Shimizu et al. [90] tested the antithrombotic activity
both in vitro, by a platelet function test using rat blood, and in vivo, by oral administration to mice
(dose 70 mg/kg of body weight). In vivo results showed that the meat-derived peptide significantly
reduced carotid artery thrombosis and decrease platelet activity with a comparable effect to aspirin
treatment (at a dose of 50 mg/kg of body weight).

Although a number of peptides with antimicrobial activity have been isolated from bovine blood,
only one study showed the presence of antimicrobial peptides derived from bovine meat [91]. In this
study, Jang et al. [91] isolated four peptides (GLSDGEWQ, GFHI, DFHING, and FHG) after the
hydrolysis with commercial enzymes of beef sarcoplasmic proteins. All peptides were subsequently
tested for antimicrobial activity against six pathogens (Escherichia coli, Pseudomonas aeruginosa,
Salmonella typhimurium, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes). Results
showed a different antimicrobial effect against one, or more, bacteria. In particular, GLSDGEWQ
peptide showed an inhibition effect on Escherichia coli, Salmonella typhimurium, Bacillus cereus, and
Listeria monocytogenes, while all tested peptides were found to be active against Pseudomonas aeruginosa.

It is known that some peptides can also exhibit anti-cancer activity, inhibit cell proliferation and
have cytotoxic effects against cancer cells [111]. Jang et al. [91], investigated four peptides extracted
from bovine sarcoplasmic proteins against breast, gastric, and lung adenocarcinoma. Results showed
that the GFHI peptide had a greater cytotoxic effect against cancer cells of the breast and decreased the
viability of gastric cells. In addition, an inhibitory effect on the proliferation of gastric cells has been
found for the GLSDGEWQ peptide.

It is known that, after oral intake, bioactive peptides need to be absorbed intact to ensure their
bioactivity within the cellular environments. In this regard, it is important that peptides enter the
circularly system intact and remain active during the digestive process [112]. Small-sized peptides are
more resistant to degradation by the intestinal enzymes and more easily absorbed to the circularly
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system [113]. Ohara et al. [114] detected small peptides derived from collagen in blood after oral
ingestion of protein hydrolysate products. In recent years, nutrient absorption at the intestinal level
is studied using an experimental model involving cultures of colon Caco-2 cells. Shimizu et al. [115]
reported that chicken collagen octapeptide (GAXGLXGP) can be transported across a human intestinal
epithelium. Recently, Fu et al. [107] also identified two peptides derived from bovine collagen
(VGPV and GPRGF) with ACE-inhibitory activity into Caco-2 cells in the human intestinal epithelium,
highlighting the bioavailability of these peptides.

Meat-derived bioactive peptides, due to their biological properties, are promising candidates as
ingredients of functional or health-promoting foods [116]. Although the meat functional peptide-based
products have not yet been commercialized by the industry, meat functional products could open a
new market. In particular, development of functional fermented meat products could be a strategy to
introduce to the market products with high nutritional value.

4. Occurrence of Bioactive Peptides in Egg

The avian egg is an important source of nutrients, containing all of the proteins, lipids, vitamins,
minerals, and growth factors required by the developing embryo, as well as a number of defense
factors to protect against bacterial and viral infection [117]. Especially, egg white contains a number of
proteins with antimicrobial activities, including bacterial cell lysis, metal binding, and vitamin binding.

Lysozyme is well known to exert antimicrobial activity and, more recently, enzymatic hydrolysis
of lysozyme has been found to enhance its activity by exposing antibacterial portions of the protein
and producing peptides with antibacterial activity. Peptides corresponding to amino acid residues
98–112 [118], 98–108, and 15–21 [119] possessed antimicrobial activity against E. coli and S. aureus.
Furthermore, peptides produced by the enzymatic digestion of ovalbumin, and their synthetic
counterparts, were found to be strongly active against Bacillus subtilus and, to a lesser extent,
against E. coli, Bordetella bronchiseptica, Pseudomonas aeruginosa, and Serratia marcescens, as well as
Candida albicans [120].

Several egg white proteins and peptides have demonstrated immunomodulating activity. Tezuka
and Yoshikawa [121] found that the phagocytic activity of macrophages was increased by the
addition of ovalbumin peptides, OA 77-84 and OA 126-134, derived from peptic and chymotryptic
digestions, respectively.

It has been reported that certain egg white-derived peptides can play a role in controlling the
development of hypertension by exerting vasorelaxing effects [122]; a vasorelaxing peptide, ovokinin
(OA 358-365), was isolated by the peptic digestion of ovalbumin. Additionally, a peptide produced
by chymotrypsin digestion and corresponding to OA 359-364, was found to possess vasorelaxing
activity. Both peptides were administered orally in spontaneously hypertensive rats and were found
to significantly lower the systolic blood pressure. The replacement of amino acids in the ovokinin
(2–7) peptide has resulted in enhanced antihypertensive activity, with the most potent derivative
resulting in a 100-fold more potent antihypertensive activity [123]. Two angiotensin I converting
enzyme (ACE)-inhibitory peptides were also identified in ovalbumin by peptic (OA 183-184) and
tryptic (OA 200-218) digestions. Miguel et al. [124] examined peptides with ACE-inhibitory properties
produced by enzymatic hydrolysis of crude egg white, which were mainly derived from ovalbumin.
Among these peptides, two novel peptides with potent ACE-inhibitory activity were found, with
amino acid sequences Arg-Ala-Asp-His-Pro-Phe-Leu and Tyr-Ala-Glu-Glu-Arg-Tyr-Pro-Ile-Leu.

Purified fractions from egg white protein hydrolysate showed several peptides identified
as RVPSLM, TPSPR, DLQGK, AGLAPY, RVPSL, DHPFLF, HAEIN, QIGLF, HANENIF, VKELY,
and TNGIIR, and investigated for angiotensin I-converting enzyme inhibitory activity, antioxidant
properties, and anticoagulation activity [125]. In particular, the sequences ascribed to RVPSL, QIGLF,
and TNGIIR exhibited high ACE inhibitory activity in vitro, with the IC50 value 20 lM, 75 lM, and
70 lM, respectively.
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Hen’s egg white lysozyme-derived peptides showed moderate inhibitory activities against
calmodulin-dependent phosphodiesterase (CaMPDE) and free-radical scavenging properties [126].
Egg lysozyme hydrolysates have potential as functional foods and nutraceuticals, although
bioavailability studies are required to confirm their health benefits in humans.
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