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Abstract: The morphological, physiological and epidemiological features of  

L. monocytogenes, together with the severity of human listeriosis infections,  

make L. monocytogenes of particular concern for manufacturers of cold-stored “ready to 

eat” (RTE) foods. L. monocytogenes has been isolated from a wide variety of RTE foods 

and is responsible for several outbreaks associated with the consumption of RTE meat, 

poultry, dairy, fish and vegetable products. Although L. monocytogenes is among the most 

frequently-detected pathogens in dry fermented sausages, these products could be included 

in the category of RTE products in which the growth of L. monocytogenes is not favored 

and have rarely been implicated in listeriosis outbreaks. However, L. monocytogenes is 

highly difficult to control in fermented sausage processing environments due to its high 

tolerance to low pH and high salt concentration. In many Mediterranean-style dry 

fermented sausages, an empirical application of the hurdle technology often occurs and the 

frequent detection of L. monocytogenes in these products at the end of ripening highlights 

the need for food business operators to properly apply hurdle technology and to control the 

contamination routes of L. monocytogenes in the processing plants. In the following, 

through an up-to-date review of (personal and un-) published data, the main aspects  

of the presence of L. monocytogenes in Mediterranean-style dry fermented sausages  

will be discussed. 
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1. Introduction to the Main Features of Listeria monocytogenes 

1.1. Taxonomy 

The genus Listeria comprises fifteen species, i.e., L. monocytogenes, L. ivanovii, L. innocua,  

L. welshimeri, L. seeligeri, L. grayi, L. marthii, L. rocourtiae, L. leichmannii, L. weihenstephanensis, 

L. floridensis, L. aquatic, L. cornellensis, L. riparia and L. grandensis (Meloni, 2014 [1]).  

1.2. Morphology of Listeria monocytogenes 

Members of the genus Listeria are non-spore-forming, facultative anaerobic and small  

Gram-positive rods (0.5–4 µm in diameter and 0.5–2 µm in length). Peritrichous flagella give them a 

typical tumbling motility, occurring at 20–25 °C. Based on somatic (O) and flagellar (H) antigens,  

13 serotypes of L. monocytogenes have been recognized. These are identified alphanumerically: 1/2a, 

1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e and 7 (Meloni, 2014 [1]). Serotypes 1/2a, 1/2b and 1/2c 

are the most frequently isolated from food or the food production environment.  

1.3. Physiology of Listeria monocytogenes 

L. monocytogenes is catalase-positive, oxidase-negative and is able to survive between 0 and 45 °C. 

The optimum growth temperature is around 30–37 °C. L. monocytogenes can grow at pH ranges 

between 4.5 and 9.0 (optimum pH between 6 and 8) and is able to multiply in food matrices at water 

activity (aw) values of 0.92 and in NaCl concentrations of 12%, generally lethal to other 

microorganisms. L. monocytogenes is a ubiquitous organism, widely distributed in the environment: 

the principal reservoirs are soil, forage and water (Sauders and Wiedmann, 2007 [2]; Todd and 

Notermans, 2011 [3]; European Food Safety Authority (EFSA), 2014 [4]). Other reservoirs include 

healthy humans and animals (International Life Sciences Instistute (ILSI), 2005 [5]) or infected 

domestic and wild animals (EFSA, 2014 [4]). L. monocytogenes is a psychrotrophic bacterium, can 

multiply at low temperatures, both under aerobic and anaerobic conditions, adapt to disinfectants and 

adhere to various surfaces (Arevalos-Sánchez et al., 2012 [6]). L. monocytogenes is widespread in food 

processing facilities and has been isolated from different processing environments. Once introduced 

into the processing plants, it is able to survive and persist for a long time under adverse conditions 

(Farber and Peterkin, 1991 [7]; Gram et al., 2007 [8]; Gandhi and Chikindas, 2007 [9]). The biofilm 

forming ability is an important cause for such persistence (Cruz and Fletcher; 2012 [10];  

Fonnesbech Vogel et al., 2001 [11]). In the pork meat supply chain, L. monocytogenes has been 

repeatedly isolated (Nesbakken et al., 1996 [12]), with an increase of contamination along the 

production line (Chasseignaux et al., 2002 [13]).  

2. Listeria monocytogenes as a Foodborne Pathogen 

2.1. Pathogenicity of Listeria monocytogenes 

L. monocytogenes is the etiologic agent of listeriosis. Human cases of listeriosis are almost 

exclusively caused by L. monocytogenes. Very rare cases of infections are attributed to L. ivanovii and 
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L. seeligeri. The difference in the pathogenic potential of L. monocytogenes strains has been 

demonstrated by means of in vivo bioassay and in vitro cell assay (Soni et al., 2014 [14]). Whereas 

some L. monocytogenes strains are naturally virulent, inflicting high morbidity and mortality, others 

are non-virulent and unable to infect the mammalian host (Liu et al., 2003 [15]; Velge and Roche, 

2010 [16]). The discrimination between pathogenic and non-pathogenic strains is imperative to assess 

the possible significance of this microorganism from food safety and public health aspects (Jensen et al., 

2008 [17]; Roberts et al., 2009 [18]). Rasmussen et al. (1995 [19]) and Wiedmann et al. (1997 [20]) 

demonstrated that molecular typing methods can also allow L. monocytogenes to divide into three 

evolutionary lineages characterized by different pathogenic potentials: Lineage I, strains associated 

with epidemic outbreaks of listeriosis (serotypes 1/2b, 3b, 4b, 4d and 4e); Lineage II, strains isolated 

from sporadic cases of listeriosis (serotypes 1/2a, 1/2c, 3a and 3c); Lineage III, strains rarely 

associated with cases of listeriosis (serotypes 4a and 4c) (Wiedmann, 2002 [21]). The lineage status of 

serotypes 4ab and 7 still remains unclear due to limited availability of such strains (World 

Organization for Animal Health (OIE), 2014 [22]). The majority of the infections caused by  

L. monocytogenes are thought to be food-borne, and infections most often affect the central nervous 

system, the bloodstream and the pregnant uterus. Two forms of listeriosis have been described in 

humans, and symptoms vary, ranging from febrile gastroenteritis in healthy people (Piana et al.,  

2005 [23]), to life-threatening invasive infections characterized by septicemia and meningoencephalitis 

in risk groups, such as young, old, pregnant and immune-compromised (YOPI) people (De Cesare et al., 

2007 [24]).  

2.2. Epidemiology of Listeriosis 

Listeriosis is an important disease in Europe: it is the fourth most common zoonotic disease, and it 

has an annual incidence of 0.41 cases per 100,000 population, with the highest notification rates in 

Finland, Spain and Denmark (EFSA, 2014 [4]). In 2012, 1642 confirmed human cases were reported, 

mostly domestically acquired. A statistically significant increasing trend was observed over the period 

2008–2012, with a +10.5% increase compared with 2011 (EFSA, 2014 [4]). As reported by previous 

authors, the highest notification rates were reported in persons aged 65 years and above (Denny and 

McLauchlin, 2008 [25]) and in persons aged below one year. Transmission during pregnancy was 

highlighted in 79% of the cases reported in newborns, with the spread of the infection to the fetus 

which is born severely ill. Listeriosis has the highest hospitalization rate cases of all zoonoses under 

EU surveillance: 91.6% of the cases with supplementary long-term sequelae. Listeriosis is the third 

leading cause of death in the EU after West Nile fever and trichinellosis and the first among  

food-borne pathogens, with an estimated case fatality rate of 17.8% (EFSA, 2014 [4]). A total of  

198 deaths were reported in 2012, the highest number of fatal cases reported since 2006 (EFSA,  

2014 [4]). The morphological, physiological and epidemiological features of L. monocytogenes, 

together with the severity of human listeriosis infections, make L. monocytogenes of particular concern 

for manufacturers of cold-stored “ready to eat” (RTE) foods (Romanova et al., 2002 [26]; Van Coillie 

et al., 2004 [27]; Shen et al., 2006 [28]). L. monocytogenes has been isolated from a wide variety of 

RTE foods and is responsible for several outbreaks associated with the consumption of RTE meat, 

poultry, dairy, fish and vegetable products (Aureli et al., 2000 [29]; Gillespie et al., 2006 [30]; Public 
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Health Agency Canada (PHAC), 2009 [31]; U.S. Department of Agriculture’s Food Safety and 

Inspection Service (USDA/FSIS), 2010 [32]; Todd and Notermans, 2011 [3]). The EU legislation 

(Regulation (EC) No. 2073/2005 [33]) lays down food safety criteria for L. monocytogenes in RTE 

foods, and it is generally considered that concentrations of L. monocytogenes greater than 100 CFU/g 

are required to cause human disease in healthy populations. Qualitative results alone are not 

necessarily an indicator of public health risk. In RTE products intended for infants and for special 

medical purposes, L. monocytogenes must be absent in 25 g, while in RTE products in which the 

growth of L. monocytogenes is not favored (pH ≤ 4.4 or aw ≤ 0.92 or pH ≤ 5.0 and aw ≤ 0.94),  

L. monocytogenes must not be present at levels exceeding 100 CFU/g during the shelf-life. In RTE 

foods able to support its growth, L. monocytogenes must be absent in 25 g at the time of leaving the 

production plant. However, if the producer can demonstrate that the product will not exceed the limit 

of 100 CFU/g throughout its shelf-life, this criterion does not apply (European Commission, 2005 [33]). 

In 2012 the highest reported levels of non-compliance in RTE samples taken at processing were 

observed in fishery products (8.0%) and unspecified cheeses (3.4%). The highest proportions of food 

samples exceeding the legal safety limit, at retail, were observed in fishery products (0.5%) and 

fermented meat sausages (0.4%) (EFSA, 2014 [4]). Pork meat products, e.g., fermented sausages that 

are contaminated by L. monocytogenes at more than 100 CFU/g and that are to be consumed without 

further heat treatment, are considered to form a direct risk to human health. 

3. Listeria monocytogenes in the Pork Meat Processing Industry 

3.1. Swine Slaughterhouses 

L. monocytogenes has been previously found in every stage along the pork processing industry 

(Thévenot et al., 2006 [34]; López et al., 2008 [35]), including swine slaughterhouses (Sammarco et al., 

1997 [36]; Korsak et al., 1998 [37]). The sources of L. monocytogenes contamination during swine 

slaughtering are pig-related and environmental (Bonardi et al., 2002 [38]). L. monocytogenes is spread 

to the carcass mainly from the carrier animal: the pathogen has been occasionally isolated from feces 

and from the skin of healthy carriers with intestinal colonization (Autio et al., 2000 [39]). 

3.1.1. Prevalence of Listeria monocytogenes  

The prevalence in feces is generally comprised between 0% and 50% (Belœil et al., 2003 [40]). 

This wide range of prevalence is probably due to the emptying of the rectum before evisceration, an 

operation that usually helps to reduce the extent of dissemination and the consequent fecal 

contamination of carcasses (Kanuganti et al., 2002 [41]). The role of live animals as a source of 

processing environment contamination and, consequently, pork carcasses has been demonstrated: the 

most contaminated areas are usually represented by the area of stunning/hanging (Gobat and Jemmi, 

1991 [42]; Nesbakken et al., 1994 [43]; Saide-Albornoz et al., 1995 [44]; Borch et al., 1996 [45]). 

Contamination may occur during the evisceration, because of the breaking of the intestine  

(Adesyiun et al., 1995 [46]), and reaches a prevalence of around 60%–65% (Thévenot et al., 2005 [47]; 

López et al., 2008 [35]), highlighting the profound influence of good hygiene practices and equipment 

cleanliness on carcass contamination (Bonardi et al., 2002 [38]; Meloni et al., 2013 [48]). Several 
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authors (Buncic et al., 1991 [49]; Ripamonti et al., 2002 [50]; Kanuganti et al., 2002 [41];  

Autio et al., 2003 [51]; Fabbi et al., 2005 [52]) correlated the contamination of equipment and 

consequently of the carcasses with the presence of the pathogen in other niches, such as the tongue 

(14%) and tonsils (7%–61%). This wide range of prevalence is probably due to differences in sampling 

techniques and/or methods of farm management.  

3.1.2. Serotypes of Listeria monocytogenes  

The most frequent serotypes found in carcasses and slaughterhouse environments are 1/2a, 1/2c 

(Hof and Rocourt, 1992 [53]; Thévenot et al., 2005 [47]; Meloni et al., 2013 [48]), while serotype 1/2b 

is generally found at low prevalence rates.  

3.2. Meat Processing Plants 

The level of L. monocytogenes contamination tends to increase along the pork supply chain  

(López et al., 2008 [35]). Raw meat is an important source of contamination of working environments 

and equipment. The most contaminated zones are the areas of the receipt of raw materials, the cells of 

refrigeration and the processing rooms (Chasseignaux et al., 2002 [13]).  

3.2.1. Prevalence of Listeria monocytogenes  

A higher prevalence is found in raw meat (45%–50%) compared to the muscles of freshly 

slaughtered pigs (0%–2%). Raw meat represents the primary source of contamination of final products 

by L. monocytogenes (Giovannacci et al., 1999 [54]; Kathariou, 2002 [55]; Kanuganti et al., 2002 [41];  

Thévenot et al., 2005 [47]). In turn, due to the presence of favorable conditions for growth and 

multiplication during the processing stages of cooling and cutting, the prevalence of L. monocytogenes 

in minced meat intended to be processed ranges between 16% and 50% (Jay, 1996 [56];  

Chasseignaux et al., 2002 [13]). The level of contamination increases significantly up to 70%–100% 

during the processing stages of grinding and bagging (Nesbakken et al., 1996 [12]; Thévenot et al., 

2005 [47]). Pork meat can also be cross-contaminated through contact with work surfaces and 

equipment. The level of contamination of the surfaces in contact and without contact with meat during 

processing ranges between 17%–50% and 11%–25%, respectively (Thévenot et al., 2005 [47]; 

Mureddu et al., 2014 [57]).  

3.2.2. Persistence of Listeria monocytogenes  

Once introduced into the plants, L. monocytogenes can persist over time in the processing 

environment (López et al., 2008 [35]), forming assemblages of surface-associated microbial cells 

enclosed in hydrated extracellular polymeric substances and growing in biofilms (Mafu et al., 1990 [58]; 

Gandhi and Chikindas, 2007 [9]; Meloni et al., 2012 [59]). In recent surveys carried out in fermented 

sausage processing plants located in Italy (Meloni et al., 2012 [59]; Meloni et al., 2014 [60];  

Mureddu et al., 2014 [57]), the evaluation of the in vitro biofilm production of L. monocytogenes 

strains isolated from several surfaces in contact and without contact with meat showed a low short-time 

persistence (3–4 months) capacity and weak or moderate ability to form biofilm after 24 to 40 h of 
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incubation. Isolates from serotypes 1/2a, 1/2b and 4b presented higher adherence when compared to 

isolates from serotype 1/2c (Meloni et al., 2014 [60]). Harborage sites, such as meat grinders, work 

tables or floor drains, can be critical sites for the processing plant environment (Tompkin, 2002 [61]). 

This could be due to the common presence of meat in these environmental niches: this would likely 

produce a common food-conditioning film, which might select for adhesion, growth and biofilm 

formation by isolates with a common prophage type (Verghese et al., 2011 [62]). Decontaminating 

surfaces in contact and without contact with meat is especially challenging, because, when entrapped 

in a biofilm, L. monocytogenes is afforded unusual protection against available disinfectants and 

treatments (Zhao et al., 2004 [63]). Without suitable sanitization procedures, the presence of  

L. monocytogenes increases the food safety risk (Samelis and Metaxopoulos, 1999 [64]; Meloni et al., 

2014 [60]). Previous authors have reported that the recommended concentrations of commercial 

sanitizers are higher than required (Cruz et al., 2012 [10]). In a recent survey (Mureddu et al.,  

2014 [57]), the in vitro evaluation of the resistance to disinfectants (chlorine substances and quaternary 

ammonium compounds, both at 37% concentration) showed a reduction of L. monocytogenes growth 

after 24, 48 and 72 h of incubation in isolates from processing environments and finished products.  

3.2.3. Serotypes of Listeria monocytogenes  

Several studies have shown that strains of L. monocytogenes isolated from meat-processing 

environments belong mainly to serotypes 1/2c and 1/2a (Chasseignaux et al., 2002 [13]; Thévenot et al., 

2006 [34]; Mureddu et al., 2014 [57]; Meloni et al., 2014 [60]). 

4. Production of Mediterranean-Style Dry Fermented Sausages 

Mediterranean-style dry fermented sausages are characterized by their relatively longer shelf-life 

and the exceptional hygienic background, which is brought about by the production of lactic acid in 

the fermentation process (pH < 4.5–5) and low water activity (<0.90) of the final product (Ordóñez and 

de la Hoz, 2007 [65]). In general, in the manufacturing of fermented sausages, meat and fat involves 

selection, chopping and mincing and mixing with curing ingredients, spices and authorized additives. 

At the end of the ripening and drying process, they come out as cured meat products (Ordóñez and  

de la Hoz, 2007 [65]). Traditionally, fermented sausages are made using lactic acid bacteria (LAB) and 

Gram-positive catalase positive cocci, in particular coagulase-negative staphylococci (CNS) naturally 

present in the meat or with the inoculation of starter cultures at the chopping step. The mixture is then 

filled in natural or artificial casings, left to ferment and then dried. In the Mediterranean area, regional 

customs, environmental variations and family recipes have given rise to a wide range of fermented 

sausages, and it can be said that there are almost as many types of sausages as there are geographical 

regions or even manufacturers, although their production process always requires the combination of 

fermentation and dehydration (Ordóñez and de la Hoz, 2007 [65]). The very wide range of 

Mediterranean dry fermented sausages can be classified according to a range of criteria (Table 1), such 

as the acidity, the mincing size of meat and fat, the addition or absence of molds on the surface, the 

addition of ingredients and the diameter and type of casing used (Ordóñez and de la Hoz, 2007 [65]).  
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4.1. Preliminary Stages 

The meat used depends on eating habits, customs and the preferences prevailing in the geographical 

region where the fermented sausage is produced (Table 1). This is usually pork, sometimes mixed with 

beef (Ordóñez and de la Hoz, 2007 [65]). The fat should be firm, with a high melting point and a low 

content of polyunsaturated fatty acids, because this causes the fermented sausage to turn rancid more 

quickly (Frey, 1985 [66]). Mincing of the meat and fat is done at low temperatures (between −5 and  

0 °C) to achieve a clean cut and to avoid the release of intramuscular fat from fatty meats, which could 

cause changes in the color and the drying process during ripening (Frey, 1985 [66]). Once the meat 

and fat have been comminuted, the starter culture (LAB) and the nitrate reducing CNS, curing salts, 

additives (nitrates, nitrites, glutamate) and other ingredients (sugars, aromatic herbs and spices) are 

added. The mixture, after refrigerated storage overnight, is placed in a kneader and stuffed into natural 

or synthetic casings (Greco et al., 2005 [67]; Ordóñez and de la Hoz, 2007 [65]). The sausages are  

then ripened.  

4.2. Fermentation and Ripening 

After filling and the first warming up at 20–22 °C for 4–6 h, the fermentation stage for the 

manufacture of a standard dry fermented sausage can be summarized as follows: one to two days at 

18–24 °C and 60% relative humidity (RH) and five days at 15 °C and 70% RH (Ordóñez and  

de la Hoz, 2007 [65]). After fermentation, ripening is carried out for five to 15 days in store rooms at 

15 °C and 70%–75% RH. These conditions are maintained until the end of the ripening period, during 

which many flavor compounds develop (Ordóñez and de la Hoz, 2007 [65]). The normal pH of the 

majority of Mediterranean-style fermented sausages is close to 4.5/5.4, which has several beneficial 

effects on both the manufacturing process and the shelf-life (Greco et al., 2005 [67]; Ordóñez and  

de la Hoz, 2007 [65]). However, in some low acid fermented sausages (e.g., Soudjouk, Fuet), the final 

pH is close to 6.0/6.7. The suppression of the acid hurdle can compromise the safety of these products 

(Ordóñez and de la Hoz, 2007 [65]; Jofré et al., 2009 [68]). At the end of ripening, the water activity 

of fermented sausages is close to 0.90, which inhibits bacterial growth. The water activity hurdle is 

strengthened with time and is largely responsible for the stability of fermented sausages (Ordóñez and 

de la Hoz, 2007 [65]). 

4.3. Hurdle Technology in Mediterranean-Style Dry Fermented Sausages 

L. monocytogenes is inhibited in fermented sausages by sequential steps: the “hurdle technology” 

concept includes several sequential hurdles, essential at different stages of the fermentation or ripening 

process (Barbuti and Parolari, 2002 [69]). Due to the sequence of these hurdles, pathogenic and 

spoilage bacteria are effectively inhibited in Mediterranean-style dry fermented sausages, and the 

desired competitive flora (especially LAB) is selected (Leistner, 1995 [70]). These hurdles are 

essential in different steps of the fermentation or ripening process and lead to stable and safe final 

products (Leistner and Gould, 2002 [71]). In the early steps of the fermentation process, nitrite and salt 

added together in the form of nitrite-curing salts inhibit many bacteria in the initial product, such as 

pseudomonads and other Gram-negative oxidative organisms, which rapidly multiply and spoil 
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uncured meats in the presence of oxygen (Leistner and Gould, 2002 [71]). Other bacteria, such as 

CNS, are able to multiply, use up the oxygen and cause the decrease of the redox potential of the 

product to decrease. CNS are also important, because of other biochemical-metabolic properties, such 

as lipolytic activity. Together with the nitrate reduction, these affect the quality (color and flavor) and 

the stability of the products (Selgas et al., 1994 [72]; Greco et al., 1999 [73]; Mazzette et al., 1999 [74]). 

This, in turn, favors the redox potential hurdle, which inhibits aerobic bacteria and promotes the 

selection of LAB (Leistner and Gould, 2002 [71]). This competitive microflora flourish by 

metabolizing the added sugars, producing lactic acid, bacteriocins and inhibitory metabolites, causing a 

decrease in pH value and an increase of the pH hurdle (Papa, et al., 1993 [75]; Torriani et al., 1994 [76]; 

Grazia et al., 1998 [77]; Leroy and de Vuyst, 1999 [78]; Hebert et al., 2000 [79]; Lucke, 2000 [80]). 

These properties explain why LAB are important as starter cultures in the manufacturing of dry 

fermented sausages (Greco et al., 2005 [67]). This is of particular importance for the microbial 

stability of quick-ripened fermented sausages, which are not greatly dried. In long-ripened fermented 

sausages, nitrite is depleted, and lactic acid bacteria slowly die. On the contrary, the redox potential 

and pH increase again (Leistner and Gould, 2002 [71]). Only the water activity hurdle is strengthened 

with time, and this hurdle is then largely responsible for the stability of long-ripened sausages 

(Leistner, 1987 [81]). This sequence of hurdles inhibits pathogenic and spoilage bacteria inside 

Mediterranean-style dry fermented sausages, whereas undesirable mold growth on the surface of the 

sausages is inhibited by smoke or by the use of desirable mold starter cultures (Leistner and Gould, 

2002 [71]).  

Table 1. Formulation (g/100 g) of typical Mediterranean-style dry fermented sausages *. 

Formulation 

Salchichón/Saucisson 

(Spain/France)  

(1) 

Salami 

(Italy)  

(1) 

Salsiccia Sarda 

(Italy)  

(2) 

Fuet 

(Spain)  

(1) 

Chorizo 

(Spain/Portugal) 

(1) 

Lukanka 

(Bulgaria)  

(3) 

Lean pork 35/70 45–84 85–87 60–70 65–80 25 

Pork fat 10–25 14–25 5–8 30–40 20–40 20 

Lean beef 0–50 0–37 - 0–20 0–20 55 

Sugars 0.2–0.5 0.3–0.7 0.8 0.1–0.4 0.6–0.8 - 

Curing salts 2.0–2.4 1.8–2.5 3 2.0–2.4 1.8–2.1 2.24 

Whole/ground 

black pepper 
0/0.2–0.2/0.4 

0/0.2–

0.1/0.14 
0.25 0/0.2–0/0.3 - 0.30 

White pepper - 0–0.2 0.8 - 0–0.3 - 

Paprika - - - - 0/1.5–1.5/2.5 - 

Red pepper - - - - - 0.20 

Cumin - - - - - 0.20 

Garlic - 0–0.2 0.15 - 0.2–1.2 - 

Sodium Glutamate 0.25 - - 0–0.15 - - 

Powdered milk 0–0.6 0–2.5 - - 0–2.5 - 

Caseinate 0–0.6 - - 0–1.0 - - 

Liquid smoke - - - - - 0.20 

* Adapted and modified from Ordóñez and de la Hoz, 2007 [65]. Sources: (1) Ordóñez and de la Hoz, 2007 [65];  

(2) Meloni et al., 2012 [59]; (3) Balev et al., 2005 [82]. 
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5. Listeria monocytogenes in Mediterranean-Style Dry Fermented Sausages 

5.1. Prevalence of Listeria monocytogenes  

Fermented meat products may be contaminated by L. monocytogenes at several stages. The raw 

materials may be contaminated from the slaughterhouse environment, during the production process or 

by contact with contaminated unprocessed raw materials, unclean surfaces or people (Chasseignaux et al., 

2002 [13]; Thévenot et al., 2006 [34]) in the post-processing stages (Colak et al., 2007 [83]).  

L. monocytogenes is among the most frequently-detected pathogens in dry fermented sausages, and 

several studies have documented the prevalence of the pathogen in fermented sausages (Table 2), 

reaching prevalence levels of up to 40%–45% (Cantoni et al., 1989 [84]; Cordano and Rocourt, 2001 [85];  

Levine et al., 2001 [86]; Thévenot et al., 2005 [47]; De Cesare et al., 2007 [24]; Meloni et al., 2009 [87]; 

Meloni et al., 2012 [59]; Mureddu et al., 2014 [57]; Meloni et al., 2014 [60]; Doménech et al., 2015 [88]). 

5.2. Levels of Contamination by Listeria monocytogenes  

Fermented sausages contaminated with L. monocytogenes have rarely been implicated in critical 

listeriosis outbreaks (EFSA, 2014 [4]). Fermented sausages have moderate rates of consumption and 

serving sizes in many countries. The risk per serving is low (2.1 × 10−12), and the global number of 

annual cases per 100,000 people is only 0.0000055 (USDA/FSIS, 2010 [32]). Many Mediterranean-style 

dry fermented sausages could be included in the category of RTE products in which the growth of  

L. monocytogenes is not favored, although there is great variability depending on the local traditions 

that influence fermentation and ripening (Hospital et al., 2012 [89]). Mostly in the manufacturing of 

traditional fermented sausages marketed locally or regionally, an empirical application of the hurdle 

technology often occurs. Some manufacturers tend to reduce the ripening period in order to increase 

profitability. As a matter of fact, the pH and aw of these products are often within the limits for growth 

of L. monocytogenes (Hospital et al., 2012 [89]). Insufficiently dried sausages may have water activity 

levels close to 0.92–0.94 (Meloni et al., 2014 [60]), and L. monocytogenes is able to survive during 

sausage fermentation, overcoming the hurdles encountered during the manufacturing process. In 

general, the contamination levels at the end of ripening are always lower than 100 CFU/g (Farber and 

Peterkin, 1991 [7]), because L. monocytogenes cannot compete with the prevailing lactic acid bacteria. 

Only without competitive microflora L. monocytogenes is able to multiply and reach high levels of 

contamination (higher than 1000 CFU/g), representing a major public health concern  

(McLauchlin et al., 2004 [90]; Thévenot et al., 2006 [34]).  

5.3. Serotypes of Listeria monocytogenes  

As already noted for raw meat and meat-processing environments, also in the Mediterranean-style 

sausages at the end of ripening, serotypes 1/2c, 1/2a and 1/2b are more often detected (Jay, 1996 [56]; 

Thévenot et al., 2006 [34]; Meloni et al., 2014 [60]; Mureddu et al., 2014 [57]), while serotype 4b is 

more rarely seen (Greenwood et al., 1991 [91]; Hayes et al., 1991 [92]). In Italy, serotype 1/2a is 

increasing its importance in the epidemiology of listeriosis. An increase of cases due to serotype 1/2a 

and a decline in cases due to serotype 4b have been reported by several authors (Gianfranceschi et al., 
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2009 [93]; Pontello et al., 2012 [94]). Despite the low prevalence rates of serotype 4b, previous 

surveys have shown that Lineage I strains of serotype 4b belonging to a clonal group (DUP-ID 1038) 

linked to several listeriosis outbreaks (De Cesare et al., 2007 [24]) were recently recovered in 

Mediterranean-style dry fermented sausages produced in Italy (Meloni et al., 2009 [87]).  

Table 2. Prevalence of Listeria monocytogenes in naturally-contaminated Mediterranean-style 

dry fermented sausages *. 

Type of Mediterranean-style dry 

fermented sausage 
Prevalence% Concentration data pH of the final product aw of the final product 

Fermented sausage ** 10 <3 CFU/g 4.7–5.4 0.78–0.90 

Italian salami ** 13.3 Presence in 25 g 4.8–5.2 0.85–0.90 

Soudjouk ** 7 Presence in 25 g 4.9–6.7 nd 

Fermented sausage ** 3.25 Presence in 25 g nd nd 

Fermented sausage ** 20 Presence in 25 g nd nd 

Fermented sausage ** 19.05 Presence in 25 g nd nd 

Fermented sausage ** 44 Presence in 25 g nd nd 

Fermented sausage ** 20 Presence in 25 g nd nd 

Salami ** 16.67 Presence in 25 g nd nd 

Salsiccia ** 11.54 Presence in 25 g nd nd 

Fermented sausage ** 20 Presence in 25 g nd nd 

Salami ** 10 Presence in 25 g nd nd 

Salami ** 16 Presence in 25 g nd nd 

Salami ** 5 20 CFU/g nd nd 

Fermented sausage ** 10 Presence in 25 g nd nd 

Salami ** 40 Presence in 25 g nd nd 

Spanish-style sausage ** 3.70 Presence in 25 g nd nd 

Salsiccia Sarda *** 20 Presence in 25 g 5.32 0.90 

Salsiccia Sarda **** 8 Presence in 25 g 5.37 0.91 

* Adapted and modified from Skandaminis and Nychas, 2007 [95]. nd: no data. Based on: ** Skandaminis and Nychas, 

2007 [95]; *** Meloni et al., 2009 [87]; **** Meloni et al., 2014 [60]. 

6. Conclusions 

The outcome of the previous paragraphs can be summarized from a safety standpoint as follows: 

Mediterranean-style fermented sausages may be contaminated with L. monocytogenes from various 

sources, including raw meat, slaughterhouse environments, production processes and post-processing 

conditions. In order to prevent these contamination sources, good manufacturing practices, correct 

sampling schemes, adequate cleaning and disinfection procedures and HACCP principles have to be 

applied. The use of starter cultures and the correct drying to lower the water activity can minimize the 

potential for growth of L. monocytogenes in Mediterranean-style fermented sausages. However, the 

frequent detection of L. monocytogenes at the end of ripening of these products highlights the need for 

food business operators to apply hurdle technology properly and to control the contamination routes of 

L. monocytogenes in meat processing plants. 
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