Effects of Thawing Methods on the Roasting Quality and Flavor Profiles of Reduced-Salt Marinated Large Yellow Croaker (Larimichthys crocea)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Thawing and Thermal Processing (Roasting)
2.4. Analytical Methods for Moisture and Salt Content Determination
2.5. Texture Profile Analysis (TPA)
2.6. Color Measurement
2.7. Sensory Evaluation
2.8. Electronic Nose Analysis
2.9. Gas Chromatography–Ion Mobility Spectrometer (GC-IMS) Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of Thawing Methods on Thawing Time, Moisture Content, and Salt Concentration
3.2. Effect of Thawing Methods on Texture Properties
3.3. Effect of Thawing Methods on Color Characteristics
3.4. Effect of Thawing Methods on Sensory Attributes
3.5. Effect of Thawing Methods on Volatile Organic Compounds (VOCs)
3.6. Electronic Nose Analysis of Volatile Flavor Profiles
3.7. Multivariate Correlation Analysis of Quality Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.H.; Shao, G.M.; Ding, Y.Y.; Xu, L.B.; Shao, J.C.; Ao, J.Q.; Chen, X.H. Effective CRISPR/Cas9-based genome editing in large yellow croaker (Larimichthys crocea). Aquacul. Fisher. 2023, 8, 26–32. [Google Scholar] [CrossRef]
- Wu, Z.L.; Zhao, J.P.; An, H.M.; Wang, Y.Y.; Shao, J.C.; Weng, H.S.; Chen, X.H.; Zhang, W.N. Effects of laminarin on growth performance and resistance against Pseudomonas plecoglossicida of large yellow croaker (Larimichthys crocea). Fish Shellfish Immun. 2024, 144, 109271. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hu, Y.; Lan, H.; Zhang, J.H.; Gao, Y.P.; Deng, S.G. Comparative analysis of quality and flavor profiles in raw and pre-cooked large yellow croaker (Larimichthys crocea) meat post freezing and reheating. Food Chem. 2025, 464, 141865. [Google Scholar] [CrossRef] [PubMed]
- Bao, T. Large yellow croaker industry in China: Production, market and prospect. Chin. Fish. Econ. 2024, 42, 33–42. [Google Scholar] [CrossRef]
- Hui, G.H.; Liu, W.; Feng, H.L.; Li, J.; Gao, Y.Y. Effects of chitosan combined with nisin treatment on storage quality of large yellow croaker (Pseudosciaena crocea). Food Chem. 2016, 203, 276–282. [Google Scholar] [CrossRef]
- Saha, A.; Lee, Y.; Meullenet, J.F.; Owens, C.M. Consumer acceptance of broiler breast fillets marinated with varying levels of salt. Poult. Sci. 2009, 88, 415–423. [Google Scholar] [CrossRef]
- Sli, M.; Ofstad, R.; Cker, U.B.; Jessen, F.; Einen, O.; Re, T.M.R. Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virens L.) Muscle. J. Sci. Food Agric. 2015, 96, 1252–1259. [Google Scholar] [CrossRef]
- Tan, M.Q.; He, F.; Morris, J.K.; Macgregor, G. Reducing daily salt intake in China by 1 g could prevent almost 9 million cardiovascular events by 2030: A modelling study. BMJ Nutr. Prev. Health 2022, 5, 164–170. [Google Scholar] [CrossRef]
- Barakat, N.; Olabi, A.; Nasreddine, L.; Ismaeel, H.; Kharroubi, S.; Jaoude, L.A.; Zeidan, M.; Rajeh, C.; Toufeili, I. Determination of salt contents of bread types and estimation of salt intake from bread in Lebanon. PLoS ONE 2025, 20, e325857. [Google Scholar] [CrossRef]
- SC/T 3216-2016; Salted Large Yellow Croaker. Standard for the Aquatic Industry of the People’s Republic of China: Beijing, China, 2016.
- Zhang, M.; Fu, J.J.; Mao, J.L.; Dong, X.P.; Chen, Y.W. Correlations of dynamic changes in lipid and protein of salted large yellow croaker during storage. Food Res. Int. 2024, 186, 114410. [Google Scholar] [CrossRef]
- Cai, L.Y.; Wan, J.L.; Li, X.X.; Li, J.R. Effects of different thawing methods on conformation and oxidation of myofibrillar protein from largemouth bass (Micropterus salmoides). J. Food Sci. 2020, 85, 2470–2480. [Google Scholar] [CrossRef]
- Lv, Y.; Xie, J. Quality of cuttlefish as affected by different thawing methods. Int. J. Food Prop. 2022, 25, 33–52. [Google Scholar] [CrossRef]
- Gan, S.L.; Zhang, M.; Mujumdar, A.S.; Jiang, Q.Y. Effects of different thawing methods on quality of unfrozen meats. Int. J. Refrig. 2022, 134, 168–175. [Google Scholar] [CrossRef]
- Sun, Q.X.; Kong, B.H.; Liu, S.C.; Zheng, O.Y.; Zhang, C. Ultrasound-assisted thawing accelerates the thawing of common carp (Cyprinus carpio) and improves its muscle quality. LWT Food Sci. Technol. 2021, 141, 111080. [Google Scholar] [CrossRef]
- Wang, H.L.; Wang, Y.Y.; Xu, K.; Pan, S.K.; Shi, W.Z.; Wang, X.C. Changes in water-soluble taste compounds of tilapia (Oreochromis niloticus) fillets subjected to different thawing methods during long-term frozen storage. J. Sci. Food. Agric. 2024, 104, 10. [Google Scholar] [CrossRef]
- Wan, H.L.; Ying, X.G.; Zhao, B.; Zhang, M.C.; Gong, C.H.; Xu, K.L.; Wang, Y.H.; Yang, Z.P.; Chen, G.C.; Wu, T.; et al. Effects of different thawing methods on the quality of sashimi. Food Sci. 2022, 43, 227–235. [Google Scholar] [CrossRef]
- Zhou, P.C.; Xie, J. Effect of different thawing methods on the quality of mackerel (Pneumatophorus japonicus). Food Sci. Biotechnol. 2021, 30, 1213–1223. [Google Scholar] [CrossRef]
- Gokoglu, N.; Topuz, O.K.; Yerlikaya, P.; Yatmaz, H.A.; Ucak, I. Effects of freezing and frozen storage on protein functionality and texture of some cephalopod muscles. J. Aquat. Food Prod. Technol. 2018, 27, 211–218. [Google Scholar] [CrossRef]
- Zheng, X.R.; Wang, B.; Shi, L.S.; Wang, Z.Y.; Zheng, F.Y.; Xiong, Y.J.; Li, F.Y.; Ding, Y.Y.; Zhang, X.D.; Yin, Z.J. Changes in the objective indices related to meat quality of porcine Longissimus dorsi induced by different thawing methods. Foods 2024, 13, 3159. [Google Scholar] [CrossRef]
- Margolies, B.J.; Barbano, D.M. Determination of fat, protein, moisture, and salt content of cheddar cheese using mid-infrared transmittance spectroscopy. J. Dairy Sci. 2018, 101, 924–933. [Google Scholar] [CrossRef]
- Zhang, B.P.; Dong, Z.Y.; Kang, J.M.; Wang, B.; Cai, W.J.; Shi, B.; Zhang, Y.X. Optimizing full plant protein feed through nutritional and un-nutritional methods on the composition and texture properties of largemouth bass Micropterus salmoides muscle. Acta Hydrobiol. Sin. 2024, 48, 1519–1527. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Li, Z.L.; Bi, J.F.; Zhou, L.Y.; Yi, J.Y.; Wu, X.Y. Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT Food Sci. Technol. 2017, 80, 178–184. [Google Scholar] [CrossRef]
- Armenteros, M.; Aristoy, M.C.; Barat, J.M.; Toldrá, F. Biochemical changes in dry-cured loins salted with partial replacements of NaCl by KCl. Food Chem. 2009, 117, 627–633. [Google Scholar] [CrossRef]
- Sheng, J.S.; Gao, F.; Dong, Y.; Li, Q.; Xu, X.L.; Wang, H.H. Evaluating the effects of different preheating and reheating procedures on water-holding capacity and flavor in meat patties. Food Res. Int. 2025, 203, 115849. [Google Scholar] [CrossRef]
- Li, K.; Zhang, L.Y.; Yi, D.H.; Luo, Y.X.; Zheng, C.; Wu, Y.L. Insights into the volatile flavor profiles of two types of beef tallow via electronic nose and gas chromatography–ion mobility spectrometry analysis. Foods 2024, 13, 1489. [Google Scholar] [CrossRef]
- Ko, G.A.A.K.; Karabacak, A.Z.; Süfer, Z.; Adal, S.; Elebi, Y.; Yak, B.D.K.; Ztekin, S. Thawing frozen foods: A comparative review of traditional and innovative methods. Compr. Rev. Food. Sci. Food Saf. 2025, 24, e70136. [Google Scholar] [CrossRef]
- Backi, C.J. Methods for (industrial) thawing of fish blocks: A review. J. Food Process Eng. 2017, 41, e12598. [Google Scholar] [CrossRef]
- Cheng, L.; Sun, D.W.; Zhu, Z.W.; Zhang, Z. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Crit. Rev. Food. Sci. Nutr. 2015, 57, 769–781. [Google Scholar] [CrossRef]
- Aursand, I.G.; Gallart-Jornet, L.; Erikson, U.; Axelson, D.E.; Rustad, T. Water distribution in brine salted cod (Gadus morhua) and salmon (Salmo salar): A low-field 1H nmr study. J. Agric. Food. Chem. 2008, 56, 6252–6260. [Google Scholar] [CrossRef]
- Jiang, Q.Q.; Jia, R.; Nakazawa, N.; Hu, Y.Q.; Osako, K.; Okazaki, E. Changes in protein properties and tissue histology of tuna meat as affected by salting and subsequent freezing. Food Chem. 2019, 271, 550–560. [Google Scholar] [CrossRef]
- Jiang, Q.Q.; Nakazawa, N.; Hu, Y.Q.; Osako, K.; Okazaki, E. Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles. Food Chem. 2019, 293, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; Hu, Y.H.; Lv, C.X.; Zhang, H.E.; Yang, H. Effects of different thawing methods on the quality characteristics of cultured large yellow croaker (Pseudosciaena crocea) after liquid nitrogen treatment. Sci. Technol. Food Indus. 2020, 41, 259–264, 271. [Google Scholar] [CrossRef]
- Boonsumrej, S.; Chaiwanichsiri, S.; Tantratian, S.; Suzuki, T.; Takai, R. Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. J. Food Eng. 2007, 80, 292–299. [Google Scholar] [CrossRef]
- Wang, X.S.; Xie, J. Effects of different thawing methods on the quality of frozen horse mackerel. Food Sci. 2020, 41, 137–143. [Google Scholar] [CrossRef]
- Jiang, Q.Q.; Huang, S.Y.; Du, Y.F.; Xiao, J.B.; Wang, M.F.; Wang, X.C.; Shi, W.Z.; Zhao, Y.L. Quality improvement of tilapia fillets by light salting during repeated freezing-thawing: Contribution of structural rearrangement and molecular interactions. Food Chem. 2023, 406, 135097. [Google Scholar] [CrossRef]
- Liu, L.; Jiao, W.J.; Xu, H.; Zheng, J.N.; Zhang, Y.H.; Nan, H.J.; Huang, W. Effect of rapid freezing technology on quality changes of freshwater fish during frozen storage. LWT Food Sci. Technol. 2023, 189, 115520. [Google Scholar] [CrossRef]
- Yang, K.; Ma, X.; Bian, C.H.; Mei, J.; Xie, J. Effect of multi-frequency ultrasound-assisted immersion freezing on quality changes in large yellow croaker (Larimichthys crocea) during frozen storage. Food Biosci. 2023, 54, 102828. [Google Scholar] [CrossRef]
- Randall, C.J.; Bratzler, L.J. Changes in various protein properties of pork muscle during the smoking process. J. Food Sci. 1970, 35, 248–249. [Google Scholar] [CrossRef]
- Lei, Y.L.; Ai, M.Y.; Lu, S.F.; Xu, H.L.; Wang, L.; Zhang, J.; Xiong, S.B.; Hu, Y. Effect of raw material frozen storage on physicochemical properties and flavor compounds of fermented mandarin fish (Siniperca chuatsi). Food Chem. X 2023, 20, 101027. [Google Scholar] [CrossRef]
- Guo, Q.Y.; Li, S.; Li, B.G.; Yang, X. Effects of frozen storage time on body color and muscle quality of cultured Pseudosciaena crocea. Food Ferment. Indus. 2020, 46, 99–107. [Google Scholar] [CrossRef]
- Liang, Y.F.; Xie, Y.Y.; Li, D.P.; Luo, Y.K.; Hong, H. Dynamics of water mobility, salt diffusion and hardness changes in bighead carp fillets during low-salting. LWT Food Sci. Technol. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, C.; Dong, K.; Chen, S.; Hu, Y. Effect of thawing methods on the characteristics of protein and the quality of muscle in hairtail (Trichiurus haumela). J. Chin. Inst. Food Sci. Technol. 2016, 16, 17–27. [Google Scholar] [CrossRef]
- Yin, C.J.; Zhang, C.; Xu, Y.L.; Su, L.J. Effects of different roasting methods on the quality of roasted large yellow croaker (Larimichthys crocea). Foods 2024, 13, 2772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Liu, S.J.; Li, S.G.; Chen, X.E.; Xu, M.; Su, Y.C.; Qiao, K.; Chen, X.T.; Chen, B.; Zhong, H.; et al. The effects of four different thawing methods on quality indicators of Amphioctopus neglectus. Foods 2024, 13, 1234. [Google Scholar] [CrossRef]
- Varlet, V.; Prost, C.; Serot, T. Volatile aldehydes in smoked fish: Analysis methods, occurence and mechanisms of formation. Food Chem. 2007, 105, 1536–1556. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, Y.C.; Gu, S.Q.; Zhu, S.C.; Zhou, X.X.; Ding, Y.T. Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Res. Int. 2020, 137, 109339. [Google Scholar] [CrossRef]
- Iglesias, J.; Medina, I.; Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Study of the volatile compounds useful for the characterisation of fresh and frozen-thawed cultured gilthead sea bream fish by solid-phase microextraction gas chromatography–mass spectrometry. Food Chem. 2009, 115, 1473–1478. [Google Scholar] [CrossRef]
- Afolabi, I.S. Moisture migration and bulk nutrients interaction in a drying food systems: A review. Food Nutr. Sci. 2014, 5, 692–714. [Google Scholar] [CrossRef]
- Wittevrongel, G.R.; Simoens, M.; Denayer, J.F.M. Investigating steam regeneration as rapid temperature swing adsorption method for biobutanol recovery using an activated carbon monolith. Sep. Purif. Technol. 2025, 362, 131848. [Google Scholar] [CrossRef]
- Graff, G.L.; Williford, R.E.; Burrows, P.E. Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J. Appl. Phys. 2004, 96, 1840–1849. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.M.; Li, D.J.; Yi, Z.G. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos. Environ. 2010, 44, 5065–5071. [Google Scholar] [CrossRef]
- Yu, T.H.; Wu, C.M.; Rosen, R.T.; Hartman, T.G.; Ho, C.T. Volatile compounds generated from thermal degradation of alliin and deoxyalliin in an aqueous solution. J. Agric. Food. Chem. 1994, 42, 146–153. [Google Scholar] [CrossRef]
- Wu, X.G.; Zhang, Z.G.; He, Z.Y.; Wang, Z.J.; Qin, F.; Zeng, M.M.; Chen, J. Effect of freeze-thaw cycles on the oxidation of protein and fat and its relationship with the formation of heterocyclic aromatic amines and advanced glycation end products in raw meat. Molecules 2021, 26, 1264. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, M.; Zhang, Y.; Liu, Y.; Guan, Z.Q. Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS. South China Fisher. Sci. 2022, 18, 135–143. [Google Scholar] [CrossRef]
- Hassan, S.; El-Gendy, M. Production and evaluation of natural sweeteners and packaging materials on peach compote’s shelf life. Food Technol. Res. J. 2023, 2, 145–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.F.; Zhou, X.; Wang, S.B.; Li, P.L. Salt replacement changed the bacterial community composition and physicochemical characteristics of sodium-reduced fermented sausages during fermentation and ripening. Foods 2021, 10, 630. [Google Scholar] [CrossRef]
- Wang, Y.R.; Luo, R.M.; Wang, S.L. Water distribution and key aroma compounds in the process of beef roasting. Front. Nutr. 2022, 9, 978622. [Google Scholar] [CrossRef]
- Zhong, Z.H.; Wang, Z.Y.; Zhang, Y.; Zheng, B.D.; Zeng, H.L. Correlation study between quality and sensory characteristics of kelp paste by Aspergillus oryzae and Aspergillus niger during fermentation. Foods 2023, 12, 1815. [Google Scholar] [CrossRef]
- Zhao, S.S.; Zhang, Z.C.; Qiao, Y.; Hu, A.; Liu, Q.M.; Xie, Y.F.; Zheng, Y.; Yue, X.Q. Multiple sensor technologies coupled with multivariate analysis for comprehensive evaluation of sensory quality of da-jiang. LWT Food Sci. Technol. 2025, 216, 117326. [Google Scholar] [CrossRef]
- di Guardo, M. Investigating the Fruit Texture Genetic Control in Apple and Its Interplay with the Production of Volatile Compounds Using Multi-Family Based Analysis and Genome Wide Association Mapping. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Jia, H.F.; Fang, X.W.; Long, J.Y.; Lan, N. Effects of different cooking methods on volatile flavor compounds in beef. Sci. Technol. Food Indus. 2022, 43, 305–313. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Liu, X.M.; Zhao, J.X.; Zhang, H.; Chen, W. Fermentation characteristics of Lactobacillus bulgaricus and application in yak fermented milk. J. Food Sci. Technol. 2018, 36, 53–63. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Jiang, J.L.; Zang, M.W.; Zhang, K.H.; Li, D.; Li, X.M. Flavor profile analysis of instant and traditional Lanzhou beef bouillons using HS-SPME-GC/MS, electronic nose and electronic tongue. Bioengineering 2022, 9, 582. [Google Scholar] [CrossRef]





| Parameter Measurement | FM | RTT | LTT | FWT | WT |
|---|---|---|---|---|---|
| Thawing time (min) | 32.57 ± 3.08 b | 591 ± 18.33 a | 14.67 ± 1.53 c | ||
| Moisture content (g/100 g) | 65.87 ± 0.84 a | 66.45 ± 3.91 a | 67.21 ± 0.49 a | 68.61 ± 0.23 a | 66.73 ± 3.12 a |
| Salt content (g/100 g) | 4.21 ± 0.04 b | 3.95 ± 0.05 c | 3.85 ± 0.01 d | 3.49 ± 0.01 e | 4.30 ± 0.02 a |
| Texture Index | FM | RTT | LTT | FWT | WT |
|---|---|---|---|---|---|
| Hardness (N) | 3.60 ± 0.15 cd | 3.98 ± 0.14 bc | 3.48 ± 0.16 d | 4.74 ± 0.45 a | 4.38 ± 0.17 ab |
| Adhesiveness (mJ) | 0.041 ± 0.006 d | 0.277 ± 0.029 a | 0.033 ± 0.008 d | 0.183 ± 0.012 b | 0.096 ± 0.010 c |
| Cohesiveness (ratio) | 0.330 ± 0.053 a | 0.290 ± 0.010 a | 0.235 ± 0.015 b | 0.320 ± 0.020 a | 0.310 ± 0.030 a |
| Springiness (mm) | 1.95 ± 0.29 a | 2.15 ± 0.21 a | 2.07 ± 0.21 a | 2.10 ± 0.02 a | 1.80 ± 0.20 a |
| Gumminess (N) | 1.24 ± 0.09 b | 1.47 ± 0.02 ab | 0.648 ± 0.092 c | 1.61 ± 0.29 a | 1.38 ± 0.19 ab |
| Chewiness (mJ) | 4.03 ± 0.25 a | 2.79 ± 0.47 c | 1.19 ± 0.09 d | 3.43 ± 0.39 b | 2.52 ± 0.11 c |
| Color Parameter | FM | RTT | LTT | FWT | WT |
|---|---|---|---|---|---|
| L* | 47.16 ± 1.54 ab | 46.99 ± 0.97 ab | 48.05 ± 0.21 a | 45.28 ± 1.63 b | 45.98 ± 1.78 ab |
| a* | 3.24 ± 0.04 c | 4.03 ± 0.54 bc | 3.32 ± 0.02 c | 5.05 ± 0.15 a | 4.56 ± 0.22 b |
| b* | 12.15 ± 0.47 a | 10.32 ± 0.71 abc | 11.85 ± 0.22 ab | 9.59 ± 1.05 bc | 9.20 ± 1.01 c |
| ΔE | 2.26 ± 0.27 b | 0.97 ± 0.16 c | 4.20 ± 0.27 a | 3.54 ± 0.68 a | |
| BI | 33.93 ± 1.53 a | 30.36 ± 3.15 a | 32.51 ± 0.47 a | 32.08 ± 4.00 a | 29.17 ± 3.52 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Liu, S.; Chen, S.; Kou, Y.; Liang, X.; Jiang, X.; Wang, C.; Gooneratne, R.; Li, J. Effects of Thawing Methods on the Roasting Quality and Flavor Profiles of Reduced-Salt Marinated Large Yellow Croaker (Larimichthys crocea). Foods 2025, 14, 4213. https://doi.org/10.3390/foods14244213
Deng Y, Liu S, Chen S, Kou Y, Liang X, Jiang X, Wang C, Gooneratne R, Li J. Effects of Thawing Methods on the Roasting Quality and Flavor Profiles of Reduced-Salt Marinated Large Yellow Croaker (Larimichthys crocea). Foods. 2025; 14(24):4213. https://doi.org/10.3390/foods14244213
Chicago/Turabian StyleDeng, Yijia, Shumin Liu, Shengjun Chen, Yaqi Kou, Xin Liang, Xinyi Jiang, Chen Wang, Ravi Gooneratne, and Jianrong Li. 2025. "Effects of Thawing Methods on the Roasting Quality and Flavor Profiles of Reduced-Salt Marinated Large Yellow Croaker (Larimichthys crocea)" Foods 14, no. 24: 4213. https://doi.org/10.3390/foods14244213
APA StyleDeng, Y., Liu, S., Chen, S., Kou, Y., Liang, X., Jiang, X., Wang, C., Gooneratne, R., & Li, J. (2025). Effects of Thawing Methods on the Roasting Quality and Flavor Profiles of Reduced-Salt Marinated Large Yellow Croaker (Larimichthys crocea). Foods, 14(24), 4213. https://doi.org/10.3390/foods14244213

