Colour Transition Dynamics of Commercial Plant- and Animal-Based Meat Analogues
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection and Preparation
2.2. Digital Image Acquisition
2.3. Instrumental Colour Measurement
2.4. Shrinkage Analysis
2.5. Quantification Browning Intensity
2.6. Data Analysis
3. Results and Discussion
3.1. External Colour Transition of Burger Samples Across Five Different Internal Temperatures
3.2. The Internal Colour Transition of Burger Samples Across Five Different Internal Temperatures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tziva, M.; Negro, S.O.; Kalfagianni, A.; Hekkert, M.P. Understanding the protein transition: The rise of plant-based meat substitutes. Environ. Innov. Soc. Transit. 2020, 35, 217–231. [Google Scholar] [CrossRef]
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming our world: Implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 2016, 37 (Suppl. S1), 13–31. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; p. 115. [Google Scholar]
- Pachauri, K.; Allen, M.R.; Barros, V.R.; John, B.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Libera, J.; Iłowiecka, K.; Stasiak, D. Consumption of processed red meat and its impact on human health: A review. Int. J. Food Sci. Technol. 2021, 56, 6115–6123. [Google Scholar] [CrossRef]
- Williams, P. Broadening influence on the food supply and environmental sustainability. Nutr. Diet. 2019, 76, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Santo, R.E.; Kim, B.F.; Goldman, S.E.; Dutkiewicz, J.; Biehl, E.M.B.; Bloem, M.W.; Neff, R.A.; Nachman, K.E. Considering Plant-Based Meat Substitutes and Cell-Based Meats: A Public Health and Food Systems Perspective. Front. Sustain. Food Syst. 2020, 4, 134. [Google Scholar] [CrossRef]
- Hefferon, K.L.; De Steur, H.; Perez-Cueto, F.J.A.; Herring, R. Alternative protein innovations and challenges for industry and consumer: An initial overview. Front. Sustain. Food Syst. 2023, 7, 2023. [Google Scholar] [CrossRef]
- Marchese, L.E.; Hendrie, G.A.; McNaughton, S.A.; Brooker, P.G.; Dickinson, K.M.; Livingstone, K.M. Comparison of the nutritional composition of supermarket plant-based meat and dairy alternatives with the Australian Food Composition Database. J. Food Compos. Anal. 2024, 129, 106017. [Google Scholar] [CrossRef]
- Liu, X.; Yang, C.; Qin, J.; Li, J.; Li, J.; Chen, J. Challenges, process technologies, and potential synthetic biology opportunities for plant-based meat production. LWT 2023, 184, 115109. [Google Scholar] [CrossRef]
- Ryu, K.K.; Kang, Y.K.; Jeong, E.W.; Baek, Y.; Lee, K.Y.; Lee, H.G. Applications of various natural pigments to a plant-based meat analog. LWT 2023, 174, 114431. [Google Scholar] [CrossRef]
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.S.; Jo, C. Status of meat alternatives and their potential role in the future meat market-A review. Asian-Australas J. Anim. Sci. 2020, 33, 1533–1543. [Google Scholar] [CrossRef]
- Faustman, C.; Cassens, R.G. The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods 1990, 1, 217–243. [Google Scholar] [CrossRef]
- Ramanathan, R.; Lusk, J.L.; Reuter, R.; Mafi, G.G.; VanOverbeke, D.L. Consumer Practices and Risk Factors that Predispose to Premature Browning in Cooked Ground Beef. Meat Muscle Biol. 2019, 3, 1–7. [Google Scholar] [CrossRef]
- Sakai, K.; Sato, Y.; Okada, M.; Yamaguchi, S. Synergistic effects of laccase and pectin on the color changes and functional properties of meat analogs containing beet red pigment. Sci. Rep. 2022, 12, 1168. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y. Formation and reduction of acrylamide in Maillard reaction: A review based on the current state of knowledge. Crit. Rev. Food Sci. Nutr. 2007, 47, 521–542. [Google Scholar] [CrossRef]
- Dennis, C.; Karim, F.; Smith, J.S. Evaluation of Maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems. J. Food Sci. 2015, 80, T472–T478. [Google Scholar] [CrossRef]
- Forster, R.A.; Hassall, E.; Hoffman, L.C.; Baier, S.K.; Stokes, J.R.; Smyth, H.E. Comparing the sensory properties of commercially available animal and plant-based burgers. J. Texture Stud. 2024, 55, e12838. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E.-D. Causes and Contributing Factors to “Dark Cutting” Meat: Current Trends and Future Directions: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef]
- Dawson, P.; Acton, J. Impact of proteins on food color. In Proteins in Food Processing; Woodhead Publishing Ltd.: Cambridge, UK, 2018; pp. 599–638. [Google Scholar]
- Cheung, V. Uniform color spaces. In Handbook of Visual Display Technology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 161–169. [Google Scholar]
- Vu, G.; Zhou, H.; McClements, D.J. Impact of cooking method on properties of beef and plant-based burgers: Appearance, texture, thermal properties, and shrinkage. J. Agric. Food Res. 2022, 9, 100355. [Google Scholar] [CrossRef]
- Pospiech, J.; Hoelzle, E.; Schoepf, A.; Melzer, T.; Granvogl, M.; Frank, J. Acrylamide increases and furanoic compounds decrease in plant-based meat alternatives during pan-frying. Food Chem. 2024, 439, 138063. [Google Scholar] [CrossRef]
- McClements, D.J. Colloidal basis of emulsion color. Curr. Opin. Colloid. Interface Sci. 2002, 7, 451–455. [Google Scholar] [CrossRef]
- King, N.J.; Whyte, R. Does It Look Cooked? A Review of Factors That Influence Cooked Meat Color. J. Food Sci. 2006, 71, R31–R40. [Google Scholar] [CrossRef]
- Spiegel, N.B.; Greenwood, P.L. Meat Production from Wild Kangaroo: The Species, Industry, Carcass Characteristics and Meat Quality Traits. In More than Beef, Pork and Chicken–the Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F.J., Toldrá, F., Eds.; Springer International Publishing: Cham, The Netherlands, 2019; pp. 347–383. [Google Scholar]
- Rabeler, F.; Feyissa, A.H. Kinetic modeling of texture and color changes during thermal treatment of chicken breast meat. Food Bioprocess Technol. 2018, 11, 1495–1504. [Google Scholar] [CrossRef]
- Kang, S.P. Color in food evaluation. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 138–141. [Google Scholar]
- Fraser, R.Z.; Shitut, M.; Agrawal, P.; Mendes, O.; Klapholz, S. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int. J. Toxicol. 2018, 37, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-W.; Wang, C.-K.; Huang, X.-Y.; Hu, D.-G. Anthocyanin stability and degradation in plants. Plant Signal Behav. 2021, 16, 1987767. [Google Scholar] [CrossRef] [PubMed]
- Dorris, M.R.; Voss, D.M.; Bollom, M.A.; Krawiec-Thayer, M.P.; Bolling, B.W. Browning index of anthocyanin-rich fruit juice depends on pH and anthocyanin loss more than the gain of soluble polymeric pigments. J. Food Sci. 2018, 83, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Belem, T.S. Effect of temperature on oxymyoglobin and metmyoglobin denaturation properties. Meat Muscle Biol. 2019, 3, 57. [Google Scholar] [CrossRef]
- Beyer, E.S.; Farmer, K.J.; Kidwell, E.G.; Davis, S.G.; Harr, K.M.; Chao, M.D.; Zumbaugh, M.D.; Vipham, J.L.; Hunt, M.C.; O’Quinn, T.G. Change in myoglobin denaturation and physiochemical properties among three degrees of doneness and three beef whole muscles. Meat Muscle Biol. 2024, 8, 16919. [Google Scholar] [CrossRef]
- Moya, J.; Lorente-Bailo, S.; Ferrer-Mairal, A.; Martínez, M.A.; Calvo, B.; Grasa, J.; Salvador, M.L. Color changes in beef meat during pan cooking: Kinetics, modeling and application to predict turn over time. Eur. Food Res. Technol. 2021, 247, 2751–2764. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
- Ramanathan, R.; Hunt, M.C.; Mancini, R.A.; Nair, M.N.; Denzer, M.L.; Suman, S.P.; Mafi, G.G. Recent updates in meat color research: Integrating traditional and high-throughput approaches. Meat Muscle Biol. 2020, 4, 1–24. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Bolmanis, E.; Bogans, J.; Akopjana, I.; Suleiko, A.; Kazaka, T.; Kazaks, A. Production and purification of soy leghemoglobin from Pichia pastoris cultivated in different expression media. Processes 2023, 11, 3215. [Google Scholar] [CrossRef]
- Fernández-López, J.; Ponce-Martínez, A.J.; Rodríguez-Párraga, J.; Solivella-Poveda, A.M.; Fernández-López, J.A.; Viuda-Martos, M.; Pérez-Alvarez, J.A. Beetroot juices as colorant in plant-based minced meat analogues: Color, betalain composition and antioxidant activity as affected by juice type. Food Biosci. 2023, 56, 103156. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Li, J.; Du, G.; Chen, J.; Zhao, X. Efficient secretory expression of leghemoglobin in Saccharomyces cerevisiae. Fermentation 2024, 10, 146. [Google Scholar] [CrossRef]
- Kondjoyan, A.; Sicard, J.; Cucci, P.; Audonnet, F.; Elhayel, H.; Lebert, A.; Scislowski, V. Predicting the oxidative degradation of raw beef meat during cold storage using numerical simulations and sensors—Prospects for meat and fish foods. Foods 2022, 11, 1139. [Google Scholar] [CrossRef]
- Poveda-Arteaga, A.; Krell, J.; Gibis, M.; Heinz, V.; Terjung, N.; Tomasevic, I. Intrinsic and extrinsic factors affecting the color of fresh beef meat—Comprehensive review. Appl. Sci. 2023, 13, 4382. [Google Scholar] [CrossRef]
- Sen, A.R.; Naveena, B.M.; Muthukumar, M.; Vaithiyanathan, S. Colour, myoglobin denaturation and storage stability of raw and cooked mutton chops at different end point cooking temperature. J. Food Sci. Technol. 2014, 51, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Muche, B.M.; Speers, R.A.; Rupasinghe, H.P.V. Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of “Merlot” and “Ruby” grapes (Vitis vinifera). Front. Nutr. 2018, 5, 100. [Google Scholar] [CrossRef]
- Căta, A.; Ienaşcu, I.M.; Tănasie, C.; Ştefănuţ, M.N. Thermal degradation of anthocyanin pigments in bilberry, blackberry and black mulberry extracts in the presence of some added food antioxidants. Rev. Roum. 2019, 64, 893–899. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. JFST 2016, 53, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Zielbauer, B.I.; Franz, J.; Viezens, B.; Vilgis, T.A. Physical aspects of meat cooking: Time dependent thermal protein denaturation and water loss. Food Biophys. 2016, 11, 34–42. [Google Scholar] [CrossRef]
- Szpicer, A.; Onopiuk, A.; Barczak, M.; Kurek, M. The optimization of a gluten-free and soy-free plant-based meat analogue recipe enriched with anthocyanins microcapsules. LWT 2022, 168, 113849. [Google Scholar] [CrossRef]
- Wu, H.; Sakai, K.; Zhang, J.; McClements, D.J. Plant-based meat analogs: Color challenges and coloring agents. Food Nutr. Health 2024, 1, 4. [Google Scholar] [CrossRef]










| Commercial Name (Sample) | Binder | Colouring Agent | Protein and Fat (g per 100 g) | RCM |
|---|---|---|---|---|
| Plant-based burgers | ||||
| vEEF plant-based premium beef burger | MC, PS, cocoa butter | beetroot powder, malt extract | 12.8; 13.5 | each side 3 min 30 s (74 °C IT) |
| v2food plant-based burger | MC, modified cornstarch, carrageenan | beetroot powder, caramelized sugar | 17.7; 14.6 | each side 3–4 min |
| Beyond burger (plant-based patties) | MC, PS | beetroot juice, apple extract, pomegranate concentrate | 17; 19 | each side 4 min. (75 °C IT) |
| Impossible burger patties (made from plants) | MC, modified starch | soy leghemoglobin (GM) | 16.7; 11.4 | each side 2 min (71 °C IT) |
| Animal-based burgers | ||||
| Coles finest beef | PS | paprika and spices as flavour enhancers | 15.7; 10.3 | each side 5 min. |
| Coles classic beef | MS, PS | spices as flavour enhancers | 12.7; 20.8 | 10–12 min |
| Angus beef | MS, PS | flavour enhancers | 16; 15 | 14 min |
| Beef and pork | PS | flavour enhancers & colourants | 13; 16.5 | each side 4–5 min |
| Chicken | PS | flavour enhancers | 16.2; 9.1 | 10–12 min |
| Kangaroo | rice flour | flavour enhancers | 18; 1.9 | each side 4–5 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathnayake, D.; Moura Nadolny, J.; Sultanbawa, Y.; Smyth, H.E. Colour Transition Dynamics of Commercial Plant- and Animal-Based Meat Analogues. Foods 2025, 14, 3616. https://doi.org/10.3390/foods14213616
Rathnayake D, Moura Nadolny J, Sultanbawa Y, Smyth HE. Colour Transition Dynamics of Commercial Plant- and Animal-Based Meat Analogues. Foods. 2025; 14(21):3616. https://doi.org/10.3390/foods14213616
Chicago/Turabian StyleRathnayake, Dhanushka, Jaqueline Moura Nadolny, Yasmina Sultanbawa, and Heather Eunice Smyth. 2025. "Colour Transition Dynamics of Commercial Plant- and Animal-Based Meat Analogues" Foods 14, no. 21: 3616. https://doi.org/10.3390/foods14213616
APA StyleRathnayake, D., Moura Nadolny, J., Sultanbawa, Y., & Smyth, H. E. (2025). Colour Transition Dynamics of Commercial Plant- and Animal-Based Meat Analogues. Foods, 14(21), 3616. https://doi.org/10.3390/foods14213616

