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Abstract

The cold-chain supply of perishable fruits continues to face challenges such as fuel wastage,
fragmented stakeholder coordination, and limited real-time adaptability. Traditional solu-
tions, based on static routing and centralized control, fall short in addressing the dynamic,
distributed, and secure demands of modern food supply chains. This study presents a
novel end-to-end architecture that integrates multi-agent reinforcement learning (MARL),
blockchain technology, and generative artificial intelligence. The system features large lan-
guage model (LLM)-mediated negotiation for inter-enterprise coordination, Pareto-based
reward optimization balancing spoilage, energy consumption, delivery time, and climate
and emission impact. Smart contracts and Non-Fungible Token (NFT)-based traceabil-
ity are deployed over a private Ethereum blockchain to ensure compliance, trust, and
decentralized governance. Modular agents—trained using centralized training with decen-
tralized execution (CTDE)—handle routing, temperature regulation, spoilage prediction,
inventory, and delivery scheduling. Generative AI simulates demand variability and dis-
ruption scenarios to strengthen resilient infrastructure. Experiments demonstrate up to
50% reduction in spoilage, 35% energy savings, and 25% lower emissions. The system
also cuts travel time by 30% and improves delivery reliability and fruit quality. This work
offers a scalable, intelligent, and sustainable supply chain framework, especially suitable
for resource-constrained or intermittently connected environments, laying the foundation
for future-ready food logistics systems.

Keywords: cold-chain logistics; multi-agent reinforcement learning; generative AI;
blockchain; sustainable food systems

1. Introduction
The fruit cold chain has been an unavoidable tool in ensuring quality of goods,

safety, and freshness at the origin to the final consumption point. It consists of modu-
lar temperature-controlled handling and transportation modules developed to slow down
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spoilage, reduce wastage, and extend the market shelf life, thus providing the produce
a proper arrival to its destination. This necessity is especially urgent in the case of ex-
port processes where the extended logistic delays can deteriorate the quality of goods
without the presence of a healthy cold-chain management. However, the industry faces
various challenges. Time fluctuations of the temperature control generated by the failure
of equipment, power, or improper handling method enables the degradation of products.
Also, few cold storage facilities and refrigerated transportation are hampered by the lack
of critical infrastructure particularly in less-developed areas. High energy consumption
and related impact on the environment linked to refrigeration increase the urge to em-
ploy more sustainable practices. Operation inefficiency can also be brought about by the
complexity of this sector, which is the consequence of the need to coordinate different
players (producers, logistics providers, and retailers). Therefore, mitigating loss, meeting
consumer expectations, and enhancing global food security should become the key priori-
ties when coping with these interimmersive issues [1–17]. The requirement of high quality
and fresh fruits in the world market has grown due to the increased health awareness
and the growth of the global markets. Bioactive properties of strawberry, bananas, and
oranges are also highly expensive, but they are highly perishable and thus sensitive to
changes in temperature and humidity. Strawberries require cold storage at temperatures
of zero to four degrees Celsius to prevent growth of microorganisms; bananas are vul-
nerable to ethylene-mediated over-ripening; and oranges are vulnerable to cold injury in
an inappropriate environment. To ensure that such high standards of preservation are
maintained throughout geographically distributed supply chains adds logistical, economic,
and environmental complexities of a considerable nature. The existing state of cold-chain
logistics is fraught by such issues as improperly designed routing plans, dysfunctional
coordination of stakeholders, high power expenditure, and insufficient end-to-end track-
ing. The rule-based protocols used in these systems are passive and mainly centralized;
therefore, they cannot easily be changed in real time to respond to the changes that may
occur to the system such as traffic delays, equipment malfunction, or changes in demand.
Additionally, lack of common digital infrastructure contributes to siloed decision-making,
eliminates the possibility of accountability, and hampers the chances of optimizing through
collaboration. Blockchain technology is fast transforming the supply chain with improved
transparency, traceability, and security. The system allows sharing of the information in
real time with the involved stakeholders thus a reduction in fraud and inefficiencies. In
its turn, blockchain receives an even greater emphasis in the field of finances, healthcare,
and law when the technology supports safe transactions, ensures the integrity of data, and
provides the implementation of smart contracts to enable automatized activities [18–29].
The need to implement decentralized, collaborative solution in complex environments
activates the further spread of multiple agent systems. These systems are made of self-
governing agents who interact in order to achieve some common or self-centered objectives
and in so doing enhance flexibility and scalability. They find more applications in logistics,
robotics, or AI-enabled simulations where they have proved to have a higher efficiency,
flexibility, and decision-making ability in dynamic fields [30–45]. The paper suggests a
unified AI-powered system of perishable fruit cold-chain logistics based on a composite
of modular multi-agent reinforcement learning (MARL), blockchain-driven governance,
and generative artificial intelligence. The framework develops three major innovations,
namely, (1) LLM-supported negotiation protocols, which will help autonomous agents
across different organizations to establish a consensus in terms of creating schedules of
deliveries and inventory balancing; (2) the alignment of the Pareto principle to the molding
of the reward structures of the RL models so that agents can find some optimal solutions to
conflicts between such objectives as the minimization of spoilage, efficient use of energy,
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adherence to the delivery timelines, and carbon footprint; (3) the application of lightweight
agents. In sum, all these factors make up a strong, de-centralized and sustainable logistics
system with capabilities to dynamically respond to the variability in the real world. The
given architecture is trained on the synthetic but realistic farm-to-retail shipment datasets,
and it has included the disruption scenarios made by different transformer-based fore-
casting models and large language models (LLMs). The system is scalable and can run
well in limited-resource or disconnected environments. Finally, it promotes the overall
objectives of sustainable, transparent, and efficient food systems by means of intelligent
automation and digital trust stacks, as well as context-specific streamlining. The list of
acronyms mentioned in this work are presented in Appendix A as Table A1.

1.1. Key Contributions

• Multi-Agent Specialization: Designed modular agents for specific tasks such as routing,
refrigeration control, spoilage prediction, inventory planning, and delivery scheduling,
each using tailored RL algorithms (Q-Learning, DDPG, and GNN-based actor–critic).

• Centralized Training with Decentralized Execution (CTDE): Adopted a CTDE
paradigm enabling globally coordinated training and autonomous edge-level decision-
making.

• Generative-AI-Enhanced Simulations: Incorporated transformer-based demand fore-
casting and LLM-generated disruption scenarios to train agents under realistic and
extreme edge conditions.

• Blockchain-Enabled Trust Layer: Implemented smart contracts, decentralized iden-
tifiers (DIDs), and performance-based incentive systems on a private Ethereum
blockchain to enforce SLAs and support transparent collaboration.

• Sustainability Optimization: Introduced a Pareto-based multi-objective reward struc-
ture balancing spoilage, delivery timeliness, energy usage, and carbon emissions,
allowing context-aware trade-offs.

• Unlike existing MARL-based cold-chain systems, our framework uniquely integrates
LLM-mediated negotiations, NFT-based traceability, Pareto-optimized RL, and real-
time edge AI within a private blockchain infrastructure, offering a robust and auditable
solution for next-generation food logistics.

1.2. Paper Organization

The paper is organized as follows. Section 2 provides an account of the methodology.
The details of the datasets, the training of the reinforcement learning model, and imple-
mentation of a blockchain are described in Sections 2.1–2.3, correspondingly. In Section 3,
the overview of the system architecture, it has been separated with edge, coordination, and
enterprise layers. Section 4 expounds on the modular multi-agent reinforcement learning
(MARL) framework in terms of agent specialization (Section 4.1), CTDE methodology
(Section 4.2), heterogeneous policy design (Section 4.3), and the Pareto-based reward frame-
work (Section 4.4). Section 5 presents the scenario simulation of using generative AI to
make agents more adaptable. Section 6 discusses the blockchain as a layer, the smart
contracts activities, and the traceability features, such as NFT certification. Section 7 pro-
vides performance analyses in terms of different metrics in an experiment. The study
is concluded in Section 8, which emphasizes its sustainability in terms of AI-based food
systems and the possible future expansion of the study to wider areas of its application and
practical implementation.
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2. Methodology
2.1. Data Collection and Synthetic Dataset Generation

It has been difficult to design an environment with lightweight and data-driven
reinforcement learning interventions in cold-chain logistics with limited resources only on
the storage and computing end. In order to deal with this issue, a synthetic dataset was
built that simulates the major dynamics of cold-store management of perishable goods
with references to strawberries, bananas, and citrus. Instead of using high-resolution,
computationally demanding simulations, the dataset uses simple, memory-sparse models
of operational variables so as to reduce redundancy. The parameterization of the dataset
was conducted within reasonable bounds and trends using informational inputs, such as
agricultural reports by the USDA and FAO, general reports of weather, and case studies of
the industry. The shipment episodes recreate the simplified version of the farm-to-retail
path and include the records of time-series measures of temperature, humidity, and transit
delays, energy use, and simple spoliation indicators. Time-based events like weather
conditions and ambient temperature have been coded as discrete categorical properties,
or else as a tight numerical range to constrain data size. Values relating to fruit-specific
perishability parameters such as strawberries that spoil at temperatures above 40 degree
Celsius or bananas that are ethylene sensitive were hardwired as instruction-based flags
as opposed to real-time sensor data of a high-frequency [21,29,40,46]. The pre-computed
pattern of a supply chain graph along with thresholded risk-scoring based on known
degradation profiles were used to create spoilage labels, which need not depend on real-
time inference of GNN at the training time. There were also memory savings due to
compression of the route and inventory state onto indexed vectors instead of complete
event logs and to storage of only notable transition points. The data structure was structured
into both a tabular–graph hybrid, thus maintaining a fair representation and execution
time. The episodes that collectively make up the shipment amounting to about 10,000 were
generated, and each episode has fixed steps (10–20) and features, which makes the dataset
few in number to train and test modular RL agents. The controlled noise was injected into
demand forecast settled in traffic delays or system failures in order to provide agents with
a meaningful set of edge cases and not to overload a system. It is a simpler design that
allowed intensive agent training without exceeding the limitations of disk space and the
processing capacity. Although smaller, the dataset was able to capture the key variables
that affected cold-chain performance, and this enabled the learning of the agents that could
be transferred to a new logistics environment. This rationalizes the appropriateness of the
dataset in such low-resource experiments and in real-world applications in resource-limited
settings in the future.

2.2. RL Model Training and Evaluation

In this paper, a reinforcement-learning (RL) system that is specifically built to deal with
cold-chain logistics in the perishable-fruits-bearing scenario will be outlined. By use of a
modular multi-agent system, every agent will be responsible for one of the specific functions
of the system: route planning, temperature control, spoilage estimation, stock control, or
delivery scheduling, which leads to task specialization and simplification of the model.
Training is carried out using a centralized training and decentralized execution (CTDE)
paradigm: agents learn policies using access to a shared global-state during training and are
deployed to execute locally observed data. Such real world arrangement has the capability
to support scaled, distributed decision-making, a property that is especially beneficial to
logistics applications involving intermittent connectivity and localized processes. Since
there were also resource limits, lightweight learning algorithms were chosen. Tabular
Q-learning is used by the routing agent because of the low overhead cost and discrete
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action space. A simplicity variant of the Deep Deterministic Policy Gradient (DDPG)
algorithm is used as the temperature-control agent and makes the networks smaller and the
sampling rate fewer in order to reduce the burden of memory. The spoilage-prediction agent
combines a pre-trained Graph Neural Network (GNN) encoder and a shallow actor–critic
block to predict the risk of spoilage based upon environmental sensors and fruit-specific
perishability curves. Inventory and delivery agents use simplified actor–critic approaches
and adopt them to partial-observability and uncertainty in demand. Lastly, agent training
is orchestrated by a Pareto-based multi-objective reward function that balances, sometimes
contradictory, goals such as spoilage reduction, energy efficiency, carbon footprint and
on-time delivery as well as inventory holding costs. The training was carried out on a
synthetic dataset with the number of episodes in each task to be 2000 to 5000 (depending
on the complexity of a task), and early stopping conditions were used in order to prevent
duplicate calculations. The hyperparameters, i.e., learning rate, exploration strategy, and
discount factor were optimized using both manual search and task-dependent heuristics.
Even with limited computing resources, the RL-trained agents showed significant increases
over rule-based and static benchmarks, such as up to 40% reduction in spoilage, more
reliable scheduling, improved Service-Level Agreement (SLA) compliance, and more
sustainable usage patterns in energy consumption. These results confirm the effectiveness
of the RL-based paradigm to improve the cold-chain logistics even when the training
resources are scarce, which is why the approach is appropriate to be considered in resource-
constrained settings.

2.3. Blockchain Implementation Details

A private Ethereum-based blockchain was applied to the proposed cold-chain frame-
work to enhance transparency and ensure data integrity and the ability of decision-making
in a decentralized manner between the participating stakeholders. It was chosen due to
its well-developed smart-contract application environment, ability to be customized to
manage private networks, and suitability with lightweight clients. Understanding the
limited storage and computational capacity of the system, the blockchain structure was
designed so as to strike a trade-off between trust, automation, and efficiency so that a
public chain would not require any overheads. Private Ethereum completely controlled
gas fees and block periods, and sources of agreement were rolled out. The structure and
architecture allowed the implementation of smart contracts that are resource-efficient and
suitable to the cold chain. Important operational data such as an average temperature of
shipments, when deliveries were made, and spoilage warnings, as well as an outcome of
service-level agreements (SLAs), are captured on-chain as efficient summaries. Off-chain
data and high-rate sensor data (e.g., temperature or humidity streams) are stored on-chain,
with secure cryptographic hashes of that data stored on-chain to maintain verifiability
and limit storage overhead. The high frequency in which environmental sensors measure
data, e.g., temperature and humidity, is extremely challenging to compute and store in a
blockchain-based system. A hybrid architecture focusing on minimization of transactions
has been adopted in order to alleviate these limitations. The readings by the sensors are
stored off-chain, either in secured cloud or local databases, whereas their hash digest of
cryptography is reflected on-chain. This setup also allows the verifiability and integrity
of the initial data, and it prevents prohibitive gas and storage costs of recording all data
in full on-chain logging. The smart contracts that will be used in this framework will be
created to be as simple as possible, and they should work on the principle of an event-like
alert occurrence followed by an action linked to an event-like logging of the performance
summary; these smart contracts are the main ones that will enforce SLAs, log performance
skeptons, and send out alerts when SLAs are broken. The system attains rapid execution,
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less gas consumption, and increased throughput in nodes of a private Ethereum network
by constraining the complexity of contracts. Solidity included smart contracts in it with
very little computation logic in them to improve speed and gas consumption. Examples
of modules are (1) a contract to measure the shipment delivery time and condition and
compare pre-agreed thresholds leading to fines or rewards; (2) a contract to capture alerts
when perishable conditions go above critical limits; and (3) a contract that estimates carbon
footprint using total energy usage. These are event-driven and can be called through
RESTful APIs, which allow agents to interact with the blockchain asynchronously and
without carrying the full Ethereum nodes. Decentralized identifiers (DIDs) were employed
to register the participants to enable stakeholder authentication and access control as well
as to provide tamper-resistant audit trails. The outcome of the negotiation by the agents
or a mutual decision is also noted to bring about co-responsibility in the enterprises. All
in all, the Ethereum-based implementation offers secure and traceable digital infrastruc-
ture that can be used to automate, monitor, and coordinate stakeholders compatible with
low-resource settings. The lightweight, decentralized, and modular design guarantees that
the blockchain layer can be hidden in the general cold-chain system without making much
calculation and storage expenses.

3. System Architecture Overview
The multi-layer approach introduced in the research paper is a multi-level, modular

approach to enhancing the resiliency and sustainability of fruit cold-chain logistics with
the coherent implementation of multi-agent reinforcement learning (MARL), generative AI,
blockchain, and edge computing. The introduced architecture is based on three layers that
are planned to be used as the core: edge, coordination, and enterprise with their functions
and intra-layer interactions, allowing the realization of global system optimality and imple-
menting real-time decentralized decision-making. At the edge layer, lightweight RL agents
are deployed autonomously onto Internet-of-Things (IoT)-enabled infrastructure like smart
crates, sensors that are inside vehicles. They are mostly involved in local activities such as
mediating temperature, risk of spoilage calculation, and route adjustments in real time. The
results are quick responsiveness to environmental changes because the edge layer provides
a prompt reaction to real-time sensor information, hence reducing delays and spoilage ca-
pacity without the collaboration of a centralized communication system. The coordination
level works as an intermediate between the operations (which are heterogeneous at the
edge level) and the logistics strategy as a whole. In this layer, service-level agreements
(SLAs) are overseen with the help of smart contracts, which are hosted on a dedicated
blockchain, together with delivery results and enforcement regulations. The layer also
includes large language models (LLMs) that enable the negotiation of agents and integrates
modules of generative AI that can simulate change in demand, any disruptions in the
supply chain, and any extreme weather conditions. Such simulations brief the agent in
training as well as operation and help these agents be more proactive in responding. The en-
terprise store provides centralized training installations, using the centralized training and
decentralized execution (CTDE) model. Based on this position, the agents have the global
perspective of the cold-chain system, thus coordinating and aligning the similar objective
of reducing waste, optimizing energy use and on-time delivery. Analytics of sustainability,
life-cycle assessment, and optimization on multiple dimensions of operational objectives
are also obtainable through the enterprise layer. Aggregates of data collected by the edge
and coordination levels are fed up to this level, providing iteration and evolution of agent
policies. It is the combination of those design features that provide an increased level of
adaptability, resilience, and trust on the distributed and heterogeneous supply chain. The
framework also centralizes a range of technology and stake holders as well as maintaining
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secure and transparent processes. This is a type of arrangement that enables an effective
cold chain, even in resource-limited or unreliably connected situations, and combines the
immediate responsiveness with long-run optimization. Under the described framework,
the deliberate transport of information through each layer enables the coherent integration
of the locally taken decisions with the general supply-chain smartness. The position of the
edge layer is placed in collecting sensor inputs, which include notifications and condition
data, e.g., temperature and humidity of control instruments connected to the Internet-of-
Things. Edge agents operate on lightweight client implementations that communicate to
blockchains through JSON-RPC protocol based interfaces or through Infura-like gateways,
running in a private mode that facilitates entirely asynchronousblockchain communica-
tions, with no need to deploy full nodes. This architecture supports resource-restrained
devices and situations when the connectivity is intermittent. According to initial simulated
experimentation, and steady-state tests, every client is assured to process a maximum of
10 transactions per second, and the occurrence of a latency that triggers an SLA is less than
2 s. The lightweight agents at the edges process such readings instantly in determining
them, and they are selectively sent off to the coordination layer. Relevant data points in
the coordination layer such as the condition of a shipment, warnings about spoilage, and
compliance with SLA are noted on a private blockchain through the use of smart contracts.
The high-volume stream sensor out-of-chain data are available, but on-chain, the cryp-
tographic hash representations of the out-of-chain streams described represent on-chain
traceability and verifiability. In this layer, the coordinating agents also spread summaries
and participate in negotiable processes, whose text-based business is seen and brokered
by large language models. Aggregated data streams are at the enterprise layer examined
in order to tune policy training, to plan the simulation of future scenarios, and to update
system-wide goals. A result like demand forecast, sustainability, and disruption scenario
analysis is then disseminated to the coordination and the edge layer. These values apply in
both the training programs of an agent and the decision-making algorithm of the real-time
computing logic. Moreover, with the help of asynchronous and bandwidth non-intensive
protocols, the architecture will allow edge agents to work in an autonomous fashion but at
the same time maintain operational consistency when placed within operating coherence in
the larger supply-chain environment, thus rendering coordination central to the operation.

4. Modular Multi-Agent RL Framework
4.1. Agent Specializations and Objectives

With agent consensus and cross-company coordination, the present paper proposes
a framework that will allow independent, collaborative processes in the cold chain, in
particular, organization boundaries. The offered mechanism is crucial to fragmented
supply chains where no infrastructure is shared by its actors who are growers, transporters,
warehouse operators, and retailers and have no comprehensive visibility. The negotiation
point is an LLM-mediated negotiation: the agents of both stakeholders negotiate about
delivery times, re-stocks, and change of routes. Offers that are proposed are compared with
local utility functions and personal preferences. Through dialogue, the LLM examines past
negotiations in order to determine intent, determine areas of common concern, and provide
win–win solutions. The summary of the LLM acts as a common ground, which enables the
agents to come to an agreement. In case both parties consider the given solution useful, a
contract is formulated and signed (using smart contracts on the implementation of a private
blockchain). The contracts outline performance measures and compliance requirements,
such as acceptable limits of spoilage, delivery time, and quota of carbon emissions. Once a
shipment or an assignment regarding an assignment is over, the sensor information and
delivery records are written up and contrasted with the consensual conditions. Deposits
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are made in order to receive rewards depending on the requirements; thus, violations
lead to sanctions, improving the criteria of enforcement and openness. Under this system,
therefore, operations are automated and risks of dispute minimized. By maintaining
autonomy of the agents and promoting collaborative actors, the framework allows both
asynchronous communication and decentralized decision-making, which are both desirable
traits when a permanently connected environment is not certain. Decentralized identifiers
(DIDs) are used to identify agents and allow tracking of their activities on the network
safely. This architecture also allows flexible and dynamic reallocation of resources under
disruptions: in cases where one warehouse is under increased demand, it can engage other
nearby warehouses to balance the inventory. Taken together, those characteristics enable
adaptive, peer-to-peer negotiations that do not require a central authority to support supply
chain agility and resilience. To conclude, negotiation with LLM mediation, blockchain-
enforced agreements, and decentralized identities of agents provides scalable trust-based
solution to maintain the complex logistics between independent businesses in the cold
chain. Table 1 comprehensively presents an overview of the functional modules, listing
inputs, outputs, and reinforcement learning models in the framework. Table 2 details agent
roles, observations, and coordination mechanisms, describing multi-agent interactions and
distributed decision-making in the cold-chain system.

Table 1. Overview of functional modules, inputs, and learning models.

Module Purpose Input Output Method RL Model

Route Optimization Minimize travel time,
cost, spoilage

Traffic, weather,
perishability,
fuel data

Optimal route, speed,
mode of transport

State-aware route
prioritization

Q-Learning with
Perishability
Awareness

Temperature
Regulation

Maintain optimal
storage temperature
and humidity

Product temp/
humidity, cooling
status,
energy use

Temperature
adjustments, energy
usage optimization

Dynamic adjustment
of refrigeration
settings

Deep Deterministic
Policy Gradient
(DDPG)

Spoilage Forecasting
Predict and minimize
spoilage risk
across nodes

Sensor data (T, H),
quality score, location

Spoilage probability,
inspection trigger

Graph Neural
Network (GNN) with
preventive RL actions

Actor–Critic
RL Framework

Inventory
Management

Optimize storage,
shelf life, and
demand matching

Inventory levels,
energy usage,
predicted demand

Storage zone
allocation,
reorder levels

Pareto-front
multi-objective
optimization

Multi-Agent
Reinforcement
Learning (MARL)

Delivery Scheduling
Schedule efficient
delivery windows
and resource use

Customer window,
vehicle status,
route risk

Delivery time,
vehicle–driver
pairing,
reallocation plan

Multi-agent dynamic
allocation Cooperative MARL

Table 2. Roles, observations, and coordination strategies of multi-agent system.

Agent Primary Role Key Inputs/Observations Shared Information Coordination Mechanism

Routing Agent Optimize transport routes
considering perishability

Traffic status, weather
data, perishability index

Route status, fruit
degradation risk

Shared state buffer,
spoilage-aware Q-values

Temperature Agent
Control refrigeration
settings for
quality preservation

Current temp/humidity,
desired settings Energy usage, fault signals

Shared reward with
Energy Agent;
actor–critic feedback

Spoilage Agent
Predict and prevent
spoilage at
distribution nodes

Sensor data, location,
freshness score

Spoilage risk,
inspection alerts

GNN output sharing,
coordination with Route
Agent for
expedited delivery

Inventory Agent Allocate storage zones and
match demand

Inventory levels, demand
forecast, shelf life

Predicted demand, zone
energy usage

Pareto-optimal policy with
shared critic

Delivery Agent
Schedule delivery
windows and
assign resources

Vehicle availability,
customer window,
spoilage risk

Breakdown alerts,
route delays

Dynamic reassignment
with feedback from Route
and Inventory Agents
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Algorithm 1 designates a dynamic path selection perishability aware Q-learning
routing protocol. It also optimizes the selection of the journeys, which in turn facilitates
strong and effective temperature-regulated transportation by calculating rewards that
penalize travel time, chance of spoilage, and emissions. Algorithm 2 is a Deep Deterministic
Policy Gradient (DDPG) system performed in real-time, crate-level temperature regulation.
This model will save energy and reduce spoilage, which will be caused by the thermal
deviation, and thus will enable it to attain both energy and product integrity. Algorithm 3 is
a junction of Graph Neural Network (GNN) encoding and actor–critic training, and it makes
it possible to predict the probabilities of spoilage at a distribution node. All these forecasts
make it possible to carry out proactive measures aimed at ensuring that spoilages do not
occur as often. Algorithm 4 can implement an actor–critic structure of controlling inventory,
with sustainability-driven rewards that ensure trade-offs between carbon footprint, holding
costs, and risk of spoilage. Cooperative multi-agent reinforcement learning is used in
Algorithm 5 to schedule the delivery and fulfill the service-level agreements, to limit delays,
and to minimize emissions by coordinating these actions with joint-policy optimization.

Algorithm 1 Perishable-Aware Route Optimization via Q-Learning with Context-Aware
Weights and Conflict Avoidance

1: Input: Cold-chain graph G(V, E), perishability profile P, disruption model D, emission matrix C
2: Initialize: Q-table Q(s, a)← 0; learning rate α; discount factor γ; exploration rate ϵ
3: Initialize: Static priority coefficients α1, α2, α3
4: Initialize: Shared intention buffer B ← ∅ ▷ For coordination
5: for each episode do

6: Initialize joint global state S0 = {s(1)0 , . . . , s(n)0 } using D
7: while shipment not delivered do
8: for each routing agent i do
9: With probability ϵ, choose random action a(i)

10: Otherwise, choose a(i) ← arg maxa′ Q(s(i), a′)
11: Append (s(i), a(i)) to B ▷ Declare action intention
12: end for
13: Detect conflicts in B (e.g., duplicate vehicle or route allocation)
14: if conflict detected then
15: Apply coordination penalty ρ or reassign conflicting agent(s) via tie-breaking
16: end if
17: for each agent i do
18: Execute a(i), observe s′(i), travel time t(i), temp deviation ∆T(i), emissions e(i)

19: Compute spoilage risk: σ(i) ← f (P, ∆T(i))

20: Extract context vector: ctx(i) = [∆T(i), traffic, SLA priority]
21: Compute dynamic weights:

ω
(i)
j =

αj · ctx(i)j

∑3
k=1 αk · ctx(i)k

, j = 1, 2, 3

22: Compute context-aware reward:

r(i) = −(ω(i)
1 t(i) + ω

(i)
2 σ(i) + ω

(i)
3 e(i))− ρ

23: Update Q-table:

Q(s(i), a(i))← Q(s(i), a(i)) + α

[
r(i) + γ max

a′
Q(s′(i), a′)−Q(s(i), a(i))

]
24: Update state: s(i) ← s′(i)

25: end for
26: Clear intention buffer: B ← ∅
27: end while
28: end for
29: Output: Learned policies π∗i (s) = arg maxa Q(s, a) for all agents i
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Algorithm 2 Edge-Aware Temperature Control via DDPG with Context-Aware Weights
and Coordination

1: Input: Environment state s = [Tcrate, Tambient, H, fruit type], spoilage model S, energy
profile E

2: Initialize: Actor network µ(s|θµ), critic network Q(s, a|θQ)

3: Initialize: Target networks µ′ and Q′ with θµ′ ← θµ, θQ′ ← θQ

4: Initialize: Replay bufferR, noise process N
5: Initialize: Shared intention buffer B ← ∅, static coefficients α1, α2
6: for each episode do
7: Receive initial global state S0 = {s(1)0 , s(2)0 , . . .}
8: for each timestep t do
9: for each agent i do

10: Select action a(i)t = µ(s(i)t |θµ) +Nt

11: Append (s(i)t , a(i)t ) to B
12: end for
13: Detect overlapping cooling requests in B (e.g., shared compressor or

zone contention)
14: if conflict detected then
15: Apply coordination penalty ρ or reschedule conflicting setpoints
16: end if
17: for each agent i do
18: Apply action a(i)t , observe next state s(i)t+1, energy cost E(i)

t , deviation ∆T(i),
duration ∆t

19: Estimate spoilage risk σ
(i)
t = S(s(i)t , a(i)t , ∆t)

20: Define context vector: ctx(i) = [∆T(i), E(i)
t , σ

(i)
t ]

21: Compute dynamic weights:

ω
(i)
j =

αj · ctx(i)j

∑3
k=1 αk · ctx(i)k

, j = 1, 2, 3

22: Compute reward:

r(i)t = −(ω(i)
1 E(i)

t + ω
(i)
2 σ

(i)
t )− ρ

23: Store transition (s(i)t , a(i)t , r(i)t , s(i)t+1) inR
24: end for
25: Sample mini-batch fromR
26: Update Critic using Bellman loss:

L =
(
r + γQ′(s′, µ′(s′))−Q(s, a)

)2

27: Update actor via policy gradient:

∇θµ J ≈ 1
N ∑∇aQ(s, a)∇θµ µ(s)

28: Soft update target networks:

θQ′ ← τθQ + (1− τ)θQ′ , θµ′ ← τθµ + (1− τ)θµ′

29: Clear B ← ∅
30: end for
31: end for
32: Output: Trained temperature control policy µ∗(s)
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Algorithm 3 Spoilage Prediction Using GNN and Actor–Critic Learning with Context-
Aware Weights and Coordination

1: Input: Cold-chain graph G = (V, E), node features Xv = [T, H, delay, fruit type], disruption
scenarios D, spoilage labels y

2: Initialize: Actor µθ , critic Qϕ, GNN encoder fGNN, replay bufferR
3: Initialize: Shared intention buffer B ← ∅; static reward coefficients α1, α2
4: for each training episode do
5: Simulate disrupted scenario from D
6: Build graph G with node features X
7: Compute graph embedding z = fGNN(G, X)
8: Set initial state s0 = z
9: for each timestep t do

10: Select action at = µθ(st) ▷ e.g., spoilage threshold or inspection trigger
11: Append (st, at) to B ▷ Declare spoilage alert intention
12: if conflicting inspections or redundant predictions detected in B then
13: Apply penalty ρ or adjust decision based on criticality
14: end if
15: Predict spoilage: ŷt = sigmoid(Wat + b)
16: Observe ground truth yt and compute classification loss Lpred
17: Compute false negative (FN) rate as critical misprediction signal
18: Extract context vector: ctx = [Lpred, FN, inspection cost]
19: Compute dynamic weights:

ωj =
αj · ctxj

∑k αk · ctxk
, j = 1, 2, 3

20: Compute reward:

rt = −(ω1 · Lpred + ω2 · FN + ω3 · cost)− ρ

21: Observe next state st+1 from updated GNN encoding
22: Store (st, at, rt, st+1) inR
23: Sample mini-batch fromR
24: Update critic:

Lcritic =
(
r + γQϕ(s′, µθ(s′))−Qϕ(s, a)

)2

25: Update actor:
∇θ J ≈ ∇aQϕ(s, a) · ∇θµθ(s)

26: Optionally fine-tune fGNN with prediction loss Lpred
27: Clear B ← ∅
28: end for
29: end for
30: Output: Trained spoilage policy µ∗(s) and GNN encoder f ∗GNN

4.2. Centralized Training with Decentralized Execution (CTDE)

Since the advent of multi-agent reinforcement learning (MARL), the policy of cen-
tralized training with decentralized execution (CTDE) has been a fundamental paradigm
that allows training cooperatively in a centralized training environment but decoupled
execution in real-world distributed environments. Within cold-chain logistics of perishable
fruits, the architecture in this paper offers a scalable and insensible strategy of harmonizing
the multifarious and asynchronous decisions of routing, inventory, temperature control,
spoilage forecasting, and scheduling of deliveries. In the centralized training regime, all
agents, i.e., warehouse manager, refrigeration controller, and transport scheduler, have joint
access to a global state observing environmental factors including the type of fruits, the
prevailing temperature and humidity, delivery conditions, and the impending possibility of
spoilage. Such an integrated view allows agents to formulate coordinated policy covering
such dependence across the cold chain, thus enabling anticipation and reaction to other
agents actions. In complex multi-agent environments, a common critic network could be
added in order to secondarily assess collaborative efforts, thus stabilizing training and
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improving the convergence. Trained separately, these agents will be then implemented in
the decentralized way and can be deployed as a cloud-based system or on the edge devices
themselves (like on smart crates or sensors in trucks). Agents have local observations,
they act in an autonomous manner in this configuration, and they do not require having
constant global synchronization or a centralized communication channel. This autonomy
is fundamental to cold-chain logistics, the sphere where the connection can be occasionally
interrupted, real-time reaction is desirable, and local judgment is limited. The framework
of CTDE is very beneficial in the inference of dynamic modules of generative demand
simulations, disruption forecasting, and blockchain-based traceability. As another example,
a delivery scheduling agent could train on the global awareness of exogenous demand
spikes or weather interference simulated by the generative AI model but locally act due
to the considerations of real-time traffic and service-level agreement (SLA) constraints.
Likewise, an agent that is maximizing global sustainability might consider local emissions
of carbon or trash in packaging to make local decisions. In general, CTDE provides in-
creased adaptability, robustness, and scalability in the system and maintains coherence
in decisions between choices even when agents have to work beneath uncertain, delayed,
or incomplete information. In turn, the paradigm is a suitable option of robust resilient
cold-chain implementations with heterogeneous agents and a decentralized infrastructure.

Algorithm 4 Sustainability-Aware Inventory Management via Actor–Critic RL with Context-
Aware Weights and Coordination

1: Input: Local inventory state s = [stock level, demand forecast, shelf life, carbon score]
2: Initialize: Actor network µθ(s), critic network Qϕ(s, a), replay bufferR
3: Initialize: Shared intention buffer B ← ∅, coefficients α1, α2, α3
4: for each episode do
5: Observe global inventory state S = {s(1), s(2), . . . , s(n)} and local state s0
6: for each timestep t do
7: Select order quantity at = µθ(st)
8: Append (st, at) to shared buffer B
9: if conflict detected in B (e.g., stock over-allocation or supply contention) then

10: Apply coordination penalty ρ or reassign at
11: end if
12: Optionally exchange supply info with peers (e.g., via blockchain or DIDs)
13: Execute at, observe new state st+1
14: Compute spoilage loss Lspoil from overstocked perishables
15: Compute holding cost Ht and emissions Et from delivery
16: Define context vector: ctx = [Lspoil, Ht, Et]
17: Compute dynamic weights:

ωj =
αj · ctxj

∑k αk · ctxk
, j = 1, 2, 3

18: Compute reward:

rt = −(ω1 · Lspoil + ω2 · Ht + ω3 · Et)− ρ

19: Store transition (st, at, rt, st+1) inR
20: Sample mini-batch fromR
21: Update critic:

Lcritic =
(
r + γQϕ(s′, µθ(s′))−Qϕ(s, a)

)2

22: Update actor via policy gradient:

∇θ J ≈ Es∼R
[
∇aQϕ(s, a) · ∇θµθ(s)

]
23: Clear B ← ∅
24: end for
25: end for
26: Output: Trained inventory ordering policy µ∗(s)
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Algorithm 5 SLA-Aware Delivery Scheduling via Cooperative Multi-Agent RL with
Context-Aware Weights and Coordination

1: Input: Delivery queue Q, route availability R, SLA terms S, demand forecast F
2: Agents: A1, A2, . . . , An (e.g., vehicle or hub controllers)
3: Initialize: Policy πi(si) for each agent i, shared critic Q(s1, . . . , sn, a1, . . . , an)
4: Initialize: Replay bufferR, intention buffer B ← ∅
5: Initialize: Reward weighting coefficients α1, α2, α3
6: for each training episode do
7: Generate demand and disruptions from F
8: Initialize global state S0 = {s(1)0 , . . . , s(n)0 } from environment
9: for each timestep t do

10: for each agent i do
11: Select action ai = πi(si) ▷ e.g., assign vehicle or reschedule
12: Append (si, ai) to B
13: end for
14: if conflicting vehicle assignments or resource overuse in B then
15: Apply penalty ρ or resolve using SLA priority or distance heuristics
16: end if
17: Execute actions a = [a1, . . . , an], observe s′ = [s′1, . . . , s′n]
18: for each agent i do
19: Observe: delay δi, SLA violation flag vi, fuel used fi, emissions ei
20: Extract context vector: ctx(i) = [δi, vi, ei]
21: Compute dynamic weights:

ω
(i)
j =

αj · ctx(i)j

∑k αk · ctx(i)k

, j = 1, 2, 3

22: Compute reward:

ri = −(ω
(i)
1 · δi + ω

(i)
2 · vi + ω

(i)
3 · ei)− ρ

23: Store transition (si, ai, ri, s′i) inR
24: end for
25: Sample mini-batch fromR
26: Update shared critic Q by minimizing temporal-difference loss:

L =
(
r + γQ(s′1, . . . , s′n, π1(s′1), . . . , πn(s′n))−Q(s1, . . . , sn, a1, . . . , an)

)2

27: for each agent i do
28: Update actor policy πi to maximize expected reward:

∇θi J ≈ E
[
∇ai Q(s, a) · ∇θi πi(si)

]
29: end for
30: Clear B ← ∅
31: end for
32: end for
33: Output: Trained delivery policies π∗1 , . . . , π∗n

4.3. Hybrid Heterogeneous Policy Design

Agents in such systems have different, heterogeneous, roles, which include routing,
refrigeration control, spoilage prediction, and inventory planning in complex, multi-agent
systems like perishable food cold chains. In order to support this diversity, we offer a
hybrid heterogeneous design policy, whereby each agent adopts a domain-specific learning
structure that corresponds to its functional purpose, horizons in decision-making, act space,
and frame obstacles. Unlike the historical homogeneous agent systems where the policy
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structures are assumed to be the same in all the entities, our system adjusts individual entity
policy structures to reflect individual operating properties of the entity. As an example,
the route optimization agent has a discrete action space and is learning using Q-learning
that has to select an optimal next hop in a transportation network. Comparatively, the
temperature control agent chooses a continuous action space by manipulating setpoints
of refrigeration through a policy using DDPG. By using graph-structured data that can
be used, containing the supply chain checkpoints, the spoilage prediction agent combines
a graph-neural-network encoder with an actor–critic reinforcement learning system to
adjust the risk thresholds in real time. Agents of inventory management operate within
the asymmetric information conditions and employ actor–critic models to decide on the
order during the demand uncertainty, local perishability, and sustainability limit, which is
possible due to partial observability at warehouse nodes, distribution centers, and retailer
shelves. The heterogeneous design in addition to the relationship between the complexity of
the model to the structure of the tasks makes it realistic and deployable. Since training each
agent requires a different observation and action specification, the framework is modular
with the possibility of adding more types of agents in future deployment, e.g., recycling
optimizers or demand-side controllers. The different agents are coordinated so that they
have different architectures and have decentralized execution that has centralized training
so that the agents can learn to behave in common goals and act independent of each other.
Single reward functions such as Pareto-weighted penalties calculated based on amount of
spoilage, time of delivery, and amount of carbon emission ensure coordination among the
agents. On the whole, the hybrid heterogeneous policy design renders flexibility and the
optimality of a specific task and generalization even in real-world, dynamic environments
of cold chains.

4.4. Pareto-Based Multi-Objective Reward Structuring

The nature of real-life cold-chain logistics requires the multiple goals, which are
involved with each other, to be pursued simultaneously, i.e., minimum spoilage, min-
imization of the delay in delivery, energy conservation, service-level agreement, and
carbon emission reduction. These trade-offs are easier to overcome in more conventional
single-scalar formulations of reward at the cost of possibly suboptimal behavior by
the agent under study. The following study overcomes this shortcoming by using a
Pareto-based multi-objective structure of rewards according to which each agent will
reward actions according to a set of rewards, which represent a measurement of unique
performance variables. Agents are taught to distinguish Pareto-optimal actions that
solutions to which cannot improve one objective without worsening another; rather than
pre-determining a weighting across these goals, agents learn to associate policies with
Pareto-optimal actions. An example would be where a delivery agent would conclude
that the minor delay they accept will minimize wastes and conserve fuel, hence im-
proving its productivity. Centralized training unites them by feed-backing the resulting
vector-based rewards to a common critic network, which can learn in a coordinated
fashion. The system is also capable of dynamic weighting of objectives based on factors
at hand, given contextual signals like forecast of disruption, level of priority of the
customer, or sustainability demands. Reward shaping is used in practice to impose
constraints, such as a limit to the temperatures that the system can deviate above or
below and service-level agreements with fines that can be associated with smart contracts
on blockchain chains to automate constraint enforcement. This architecture allows the
agents to change their policies on a concurrent basis and, at the same time, be in line
with the general supply-chain goals. When temperatures are high, as in the case at the
moment, the reward vectors covering aspects of spoilage might be stressed more, but
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when the regulatory agencies are cracking the whip on emissions, the sustainability
aspects might take center stage. Pareto-based formulation, in turn, promotes adaptability,
fairness, and resilience based on endowing all of the agents with the capacity to locally
optimize, and contribute to, globally consistent and morally sound decision-making
through the cold chain. Such a reward scheme brings about less imbalanced, less geared
to misperception policy learning that will ultimately enhance generalization, compliance,
and performance in chaotic and uncertain logistics situations.

5. Generative AI-Enhanced Scenario Simulation
The contemporary cold-chain logistics requires active, robust decision-making in

the routing, inventory control, temperature maintenance, and delivery scheduling. This
has to be done through the simulation of realistic operational scenarios. In this respect,
the current research proposes a generative artificial-intelligence-assisted simulation
component that is going to provide context-sensitive projections concerning demand
inconsistency and supply-chain vocations and can be combined with reinforcement-
learning processes aimed at training agents. The heart of the framework includes a
transformer-based module to predict demand in time series based upon transformer
architectures that have been able to achieve the leading results in sequence modeling
as well as temporal data analysis so far. A temporal transformer is trained by using
histories of sales records, seasonal patterns, and exogenous factors like weather condi-
tions, festivals, and promotional activities to predict the demand of perishable fruits at
different retail centers. In contrast with repeated alternatives, the transformer algorithm
estimates both long-term and short-term correlations, as well as sudden changes in
demand that are frequent in markets regarding perishable commodities. The resolving
demand forecasts can use inventory managers, as well as delivery-scheduling agents,
to anticipate shortages or overstock situations. In parallel to hazard-based forecasting,
there is another disruption-based engine that relies on a large language model (LLM).
The model is calibrated using logistic reports, weather warning, traffic information, and
world supply chain incident logs and thus yields realistic scenarios like labor strikes,
route closure, equipment malfunctions, and regulatory actions. Disruptions generated
by LLMs are introduced to each episode of training and transformed to structured vari-
ables by a scenario parser: blocked nodes, longer transit times, or risk flags. The agents
are subjected to the extreme edge cases that can not be captured by historical data due
to unexpected conditions. In general, the addition of generative AI to RL training loop
would increase agent adaptability and resilience. All agents, be it the temperature agent,
the deliveries agent, or inventory optimizer, learn policies that will be robust against
common variations as well as the not common or multiple at a time variations. Since
the transformer and layer modules are ever-improved and fine-tuned, the simulation
framework remained relevant to the changing operating conditions. In addition, by
means of the prescribed variation of the conditions of disruption and the demands,
the system allows testing the policies and quantitatively evaluating the resilience of
the agents in extreme conditions. To sum up, the scenario simulation system based
on generative-AI significantly promotes the realism, coverage, and responsiveness of
RL-based decision systems in cold-chain logistics. The transformation in the paradigm
of traditional training to the one that adopts integration of proactive foresight and adap-
tive establishment of policy is essential in controlling complex, high-risk, and variable
systems like perishable food logistics. This reworked paradigm increases the robustness
of operations and at the same time promotes sustainability and customer-oriented
cold-chain operations.
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Algorithm 6 suggests the negotiation protocol in which an LLM mediates back-and-
forth negotiations with the goal to come to terms of delivery conditions. The process of
each negotiation round involves a creation of a provisional offer followed by a sum-
mary of perceived intent. Algorithm 7 grounds a smart-contract-based service-level-
agreement (SLA) compliance mechanism that grants rewards or deductions based on
the performance of delivery and spoilage, hence providing the element of transparency
and automating accountability.

Algorithm 6 LLM-Mediated Agent Negotiation Protocol

1: Input: Agents A1, A2; initial offers O1, O2; LLM model L; negotiation limit T
2: Output: Final agreement A or failure
3: Initialize history bufferH ← ∅
4: for t = 1 to T do
5: A1 generates offer Ot

1 based on local state and preferences
6: A2 generates counter-offer Ot

2 based on prior offer and utility evaluation
7: Append (Ot

1,Ot
2) toH

8: St ← L(H) ▷ LLM summarizes intents and preferences
9: Compute utility scores U1, U2 from St

10: if U1 ≥ τ1 and U2 ≥ τ2 then
11: return Agreement A ← (Ot

1,Ot
2,St)

12: else
13: Agents update proposal strategy based on feedback or regret
14: end if
15: end for
16: return Negotiation failed

Algorithm 7 Smart-Contract-Based SLA Compliance Enforcement

1: Input: SLA contract S = {deadline, max_spoilage, reward, penalty}, delivery log D,
sensor data X

2: Output: Smart contract outcome (reward or penalty execution)
3: Extract delivery time td and item condition qd from D and X
4: Extract SLA thresholds: tmax, qmin from S
5: if td ≤ tmax and qd ≥ qmin then
6: Outcome: Success
7: Trigger smart contract: execute reward payment S .reward
8: else
9: Outcome: Violation

10: if td > tmax then
11: Log: "Late delivery by (td − tmax) units"
12: end if
13: if qd < qmin then
14: Log: "Spoilage exceeded threshold by (qmin − qd) units"
15: end if
16: Trigger smart contract: execute penalty S .penalty
17: end if
18: Record outcome on blockchain ledger for transparency and auditability

6. Blockchain Layer and Smart Contracts
The proposed set of Solidity-based smart-contract algorithms makes cold-chain oper-

ations on the blockchain safe and understandable. With data integrity, proper stakeholder
responsibilities, route optimization, forecasting spoiled foods, and tracking sustainabil-
ity, these contracts help reduce losses and form trust among all involved individuals.
Algorithm 8 is mainly designed to store and retain temperature, humidity, and location
data from sensors on the blockchain all through the shipment process. The data are
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checked and made sure to be correct through specialized functions. Identities, roles, and
access rights of all stakeholders involved in the contract are controlled by the Stakeholder
Authentication and Access Control Contract to handle their participation in sensitive
contract actions only if their authentication is confirmed. Additionally, the Route Op-
timization Smart Contract saves optimized routes that are ready for use once the AI
calculations are completed on-chain. The Spoilage Prediction and Alert Contract is used
to forestall spoilage as it receives environmental and time data from the contract and
predicts spoilage risks through external machine learning. When the foreseen risk is
too high, alarms sound, and action is recommended to address the problem. When it
comes to finances, the Payment and Incentive Contract ensures safe money transfers,
issues tokens to top-performing partners, and encourages them to stay committed. This
contract also increases accountability by documenting emissions, energy use, and creating
a sustainability score for review and use during ESG reporting. The SLA Compliance
Contract monitors the service conditions and inflicts penalties if any issues arise. At
the same time, the Audit and Regulatory Compliance Contract collects records of audits
completed by authorized staff and ensures the facility follows regulations. By using the
Inventory and Resource Allocation Contract, stocks are managed and assigned, making
operations in the warehouse more effective. Each product is assigned a certification
token by the NFT-Based Product Certification Contract, allowing everyone to check its
authenticity and where it comes from. Finally, the contract allows each party to access the
rate of spoilage, energy-use report, and savings per delivery, which enables stakeholders
to compare and monitor the company’s performance over time. These smart contracts all
work in unison to support a cold-chain solution that uses blockchain.

The smart contract modules of the cold-chain system are presented by Algorithms 9–18
and provide decentralized governance and satisfy the operational transparency require-
ments. Algorithm 9 configures authentication and access to stakeholders to ensure that
only verified actors have privileges to interact with sensitive functions of the system.
Algorithm 10 keeps the optimized transport route after making inferences of the agents.
Algorithm 11 records the environmental measurements and gives spoilage forecast warn-
ings when established limits have been exceeded. Coded as Algorithm 12, there is a solution
that manages the secure transfer of payments and issues performance-based incentives
to stakeholders who are in compliance. This is done by Algorithm 13, which monitors
sustainable indicators including carbon footprint metrics, enables auditing of emissions,
and reports them. Algorithm 14 checks the conditions of the SLA by deleted validation
of the acceptance of shipment delivery and spoilage. Audit and regulatory compliance
information is recorded using Algorithm 15, which further increases traceability as well as
the verification processes. The inventory allocation algorithm is Algorithm 16, which has
been used to record the availability of an item and the movement. Algorithm 17 certifies
the products by mint NFTs onto the block chain, thus providing the end-to-end traceabil-
ity. Lastly, Algorithm 18 tracks the performance of the cold chain, which consists of the
spoilage rate as well as energy efficiency and, therefore, allows the system functions to be
continuously assessed and optimized in a better way.
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Algorithm 8 Supply Chain Data Integrity Contract

1: Define struct ShipmentData
2: Fields: temperature, humidity, location, timestamp, isValid
3:
4: Define mapping(address⇒ ShipmentData) shipmentRecords
5:
6: Define event ShipmentAdded(sender, location, timestamp)
7: Define event ShipmentUpdated(sender, isValid)
8:
9: Define modifier onlyOwner

10: Require sender is contract owner
11:
12: function ADDSHIPMENTDATA(shipmentID, temperature, humidity, location)
13: Validate sender’s authorization
14: Store shipment data in blockchain
15: Emit event ShipmentAdded(sender, location, timestamp)
16: end function
17:
18: function VERIFYSHIPMENTDATA(shipmentID)
19: Retrieve shipment details
20: Return (temperature, humidity, location, timestamp, isValid)
21: end function
22:
23: function UPDATESHIPMENTSTATUS(shipmentID, isValid)
24: Require sender has onlyOwner permission
25: Update shipment validity status
26: Emit event ShipmentUpdated(sender, isValid)
27: end function

Algorithm 9 Stakeholder Authentication and Access Control Contract

1: Define struct Stakeholder
2: Fields: role, isAuthorized
3:
4: Define mapping(address⇒ Stakeholder) stakeholders
5:
6: Define modifier onlyAuthorized
7: Require sender has valid role and authorization
8:
9: function REGISTERSTAKEHOLDER(stakeholderID, role)

10: Verify sender’s permission
11: Assign role and set authorization
12: end function
13:
14: function VERIFYACCESS(stakeholderID)
15: Return stakeholder role and authorization status
16: end function
17:
18: function UPDATEAUTHORIZATION(stakeholderID, status)
19: Only admin can modify authorization
20: Update authorization status
21: end function
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Algorithm 10 Route Optimization Smart Contract

1: Define struct Route
2: Fields: startLocation, endLocation, optimizedPath, estimatedTime
3:
4: Define mapping(address⇒ Route) routeRecords
5:
6: function ADDOPTIMIZEDROUTE(shipmentID, startLocation, endLocation, optimizedPath,

estimatedTime)
7: Validate sender’s authorization
8: Store route data
9: Emit event RouteUpdated(shipmentID)

10: end function
11:
12: function GETOPTIMIZEDROUTE(shipmentID)
13: Retrieve and return optimized route details
14: end function

Algorithm 11 Spoilage Prediction and Alert Contract

1: Define struct SpoilageData
2: Fields: temperature, humidity, timeElapsed, spoilageRisk
3:
4: Define mapping(address⇒ SpoilageData) spoilageRecords
5:
6: function RECORDSPOILAGEDATA(shipmentID, temperature, humidity, timeElapsed)
7: Compute spoilage risk using ML model
8: Store risk level in blockchain
9: Emit alert if risk exceeds threshold

10: end function
11:
12: function GETSPOILAGERISK(shipmentID)
13: Return spoilage risk level
14: end function

Algorithm 12 Payment and Incentive Smart Contract

1: Define struct Payment
2: Fields: payer, payee, amount, status
3:
4: Define mapping(address⇒ Payment) paymentRecords
5:
6: function INITIATEPAYMENT(payer, payee, amount)
7: Verify sender’s balance
8: Transfer funds securely
9: Emit event PaymentCompleted(payer, payee)

10: end function
11:
12: function REWARDINCENTIVE(stakeholderID, amount)
13: Validate performance metrics
14: Issue token-based reward
15: Emit event IncentiveGranted(stakeholderID)
16: end function
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Algorithm 13 Carbon Footprint and Sustainability Tracking Contract

1: Define struct CarbonData
2: Fields: shipmentID, emissions, energyUsage, reductionMetrics
3:
4: Define mapping(address⇒ CarbonData) carbonRecords
5:
6: function RECORDCARBONFOOTPRINT(shipmentID, emissions, energyUsage)
7: Validate environmental data
8: Store carbon footprint details
9: Emit event CarbonDataUpdated(shipmentID)

10: end function
11:
12: function CALCULATESUSTAINABILITYSCORE(shipmentID)
13: Compute sustainability index
14: Return score to stakeholders
15: end function

Algorithm 14 SLA Compliance Contract

1: Define struct SLARecord
2: Fields: shipmentID, conditions, complianceStatus, penalties
3:
4: Define mapping(address⇒ SLARecord) SLARecords
5:
6: function LOGSLACONDITIONS(shipmentID, conditions)
7: Store SLA terms on blockchain
8: end function
9:

10: function VERIFYCOMPLIANCE(shipmentID)
11: Check shipment against SLA terms
12: Update compliance status
13: Trigger penalties if violated
14: end function
15:
16: function ENFORCEPENALTIES(shipmentID)
17: Apply penalties for non-compliance
18: Emit event SLAViolation(shipmentID)
19: end function

Algorithm 15 Audit and Regulatory Compliance Contract

1: Define struct AuditRecord
2: Fields: shipmentID, auditor, complianceStatus, remarks, timestamp
3:
4: Define mapping(address⇒ AuditRecord) auditRecords
5:
6: function LOGAUDIT(shipmentID, auditor, complianceStatus, remarks)
7: Validate auditor’s authorization
8: Store audit details in blockchain
9: Emit event AuditLogged(shipmentID, auditor, timestamp)

10: end function
11:
12: function GETAUDITREPORT(shipmentID)
13: Retrieve and return audit details
14: end function
15:
16: function VERIFYREGULATORYCOMPLIANCE(shipmentID)
17: Check shipment against compliance standards
18: Update compliance status
19: Emit event RegulatoryComplianceChecked(shipmentID)
20: end function
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Algorithm 16 Inventory and Resource Allocation Contract

1: Define struct Inventory
2: Fields: itemID, quantity, location, allocated, timestamp
3:
4: Define mapping(address⇒ Inventory) inventoryRecords
5:
6: function ADDINVENTORYITEM(itemID, quantity, location)
7: Validate sender’s authorization
8: Store inventory details in blockchain
9: Emit event InventoryAdded(itemID, quantity, location)

10: end function
11:
12: function ALLOCATERESOURCES(itemID, quantity)
13: Check availability of resources
14: Allocate items to requested party
15: Emit event ResourceAllocated(itemID, quantity)
16: end function
17:
18: function GETINVENTORYSTATUS(itemID)
19: Retrieve and return inventory details
20: end function

Algorithm 17 NFT-Based Product Certification Contract

1: Define struct CertificationNFT
2: Fields: productID, certifier, certificationDetails, timestamp
3:
4: Define mapping(address⇒ CertificationNFT) certificationRecords
5:
6: function MINTCERTIFICATIONNFT(productID, certifier, certificationDetails)
7: Validate certifier’s authorization
8: Generate NFT linked to product ID
9: Store NFT details on blockchain

10: Emit event NFTMinted(productID, certifier)
11: end function
12:
13: function VERIFYCERTIFICATION(productID)
14: Retrieve NFT certification details
15: Return certification status
16: end function
17:
18: function TRANSFERNFT(productID, newOwner)
19: Validate ownership transfer request
20: Update NFT owner
21: Emit event NFTTransferred(productID, newOwner)
22: end function
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Algorithm 18 Cold-Chain Performance Analytics Contract

1: Define struct PerformanceMetrics
2: Fields: shipmentID, spoilageRate, energyEfficiency, costSavings, timestamp
3:
4: Define mapping(address⇒ PerformanceMetrics) performanceRecords
5:
6: function RECORDPERFORMANCEDATA(shipmentID, spoilageRate, energyEfficiency, cost-

Savings)
7: Validate sender’s authorization
8: Store performance metrics in blockchain
9: Emit event PerformanceDataLogged(shipmentID)

10: end function
11:
12: function GETPERFORMANCEMETRICS(shipmentID)
13: Retrieve and return performance metrics
14: end function
15:
16: function COMPARELOGISTICSEFFICIENCY(shipmentID1, shipmentID2)
17: Retrieve performance data of both shipments
18: Compute efficiency comparison
19: Return comparative analysis
20: end function

7. Experimental Evaluation
In this section, we examine the proposed idea of integrating MARL with blockchain

for more sustainable management of the cold-chain logistics process. The system simulates
the fruit supply chain by using data that imitates the features of real-world supply chain
situations, including traffic pattern changes, different weather conditions, the nature of
perishable goods, and use of energy. Spoilage percentage, refrigerator energy use, delivery
schedule, consistency in stock, and reductions in carbon emission are examples of key
performance indicators. Training for these agents happened in similar ways as in real life,
and they were evaluated by themselves as well as with a team of other agents. Thanks
to the CTDE concept, agents could respond to different situations and contribute to the
system’s better performance. Also, the blockchain was reviewed to check if it allowed for
secure data, automated rules by using smart contracts, and held all parties accountable.
The analyses support the concept that our framework is much better than logistics methods
that do not use AI or secure data sharing. Among other achievements, we mention up to
50% less spoiled strawberries, reduced energy use, and higher accuracy in organizing fruit
shipments. Moreover, we study how each module affects the final results and compare our
model with renowned and standard approaches. Overall, these findings prove that our
method for cold-chain logistics is both effective, practical, and sustainable. The given work
offers an empirical evaluation of a multi-agent reinforcement learning framework tailored
towards cold-chain logistics across the provided figures that shed light on the performance
of the given framework and its associated benefits.

Figure 1 records the improvement of SLA compliance that the intelligent agent system
provides. The accuracy of temperature control is illustrated by Figure 2 with little deviation
to the best conditions of storing. Figure 3 shows the comparisons of the fuel consumption
and travel time, which is shown to be efficient route planning and energy saving.

A correlation between the distance traveled and emissions has been shown in Figure 4,
illustrating the potential reduction in carbon emissions with the use of the framework. In
Figure 5, it is seen that the probability of delay is proportional to the traffic states, that is,
the routing agent does not perform very well when congested. Figure 6 indicates a definite
trend of decreasing fuel consumption with time as the agents learn to behave in the most
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appropriate manner, and Figure 7 indicates saving on travel time because of the intelligent
scheduling of delivery. Another contribution to environmental benefits is indicated in
Figure 8 where emissions are lower during the simulation processes.

Figure 1. SLA compliance.

Figure 2. Temperature control precision.

Figure 3. Fuel consumption vs. travel time.
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Figure 4. Emissions vs. Travel Distance.

Figure 5. Delay Probability vs. Traffic State.

Figure 6. Reduction in fuel consumption over iterations.
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Figure 7. Reduction in travel time.

Figure 8. Reduction in emissions.

As shown in Figure 9, there is an increase in delivery rate as agents policies become
closer to each other, i.e., better reliability of the system. It can be seen in Figure 10 and
Figure 11 that the state of temperature and humidity, respectively, is stable and confirms
that cold storage maintenance is successful. Figure 12 evaluates how the activities of agents
affect environmental aspects.

Figure 9. Delivery rate improvement.
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Figure 10. State Evolution: Temperature.

Figure 11. State Evolution: Humidity.

Figure 12. Action impact.

The calculated probability of spoilage of the oranges, strawberries, and bananas is
presented in Figures 13–15, respectively, where the amount is lower in agent-based systems
than in benchmarks.
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Figure 13. Predicted spoilage probability: oranges.

Figure 14. Predicted spoilage probability: strawberries.

Figure 15. Predicted spoilage probability: bananas.

Figures 16–18 demonstrated how dynamic adjustments were made to delivery speed
of oranges, strawberries, and bananas in accordance with perishability and in real time.

Figure 19 proves that there is general decrease in spoilage along the supply chain.
Figure 20 deals with inventory mismatch wherein there is closer demand–supply fitments.
Shelf-life optimization is assessed in Figure 21, which means a more promising freshness
by the time of delivery.



Foods 2025, 14, 3004 28 of 39

Figure 16. Delivery speed adjustments: oranges.

Figure 17. Delivery speed adjustments: strawberries.

Figure 18. Delivery speed adjustments: bananas.

Vitamin C preservation is marked by improved nutritional preservation as shown
in Figure 22. Figure 23 examines a number of SLA violations, which have been reduced
drastically compared to the baseline systems. In Figure 24, it is represented how the
adaptive energy use occurred in real time and how it changes according to the risk of
spoilage and energy availability.
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Figure 19. Spoilage reduction.

Figure 20. Inventory mismatch.

Figure 21. Shelflife optimization.

Figure 25 shows the comparisons between used RL models and proves the effective-
ness of the proposed heterogeneous framework in most of the evaluation metrics. Figure 26
indicates the contribution to performance at the level of modules, and it shows spoilage
prediction and routing agents to be the major contributors to improvements.
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Figure 22. Vitamin C retention.

Figure 23. SLA violation count.

Figure 24. Adaptive energy usage.

Figure 27 shows a Pareto frontier of the trade-offs between energy use, delivery time,
spoilage, and emissions, which shows that the framework balances the conflicting objectives
optimally. At large, these values demonstrate the viability, feasibility, and flexibility of the
suggested intelligent cold-chain construction.
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Figure 25. RL model comparison.

Figure 26. Module contribution.

Figure 27. Pareto frontier.

Figure 28 is a graph illustrating how SLA transaction latency remained below 2 s across
varying simulated load levels. It visually supports the claim that the hybrid blockchain
architecture, using lightweight clients, maintained performance even under peak sensor
data loads.
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Figure 28. SLA transaction latency.

KDE plots in Figures 29 and 30 show a real and a synthetic distribution of temperature
and humidity, respectively. The similarity between the two curves is of high level, and this
ensures that the procedure of generating synthetic data is valid.

Figure 29. KDE plot: temperature.

Figure 30. KDE plot: humidity.

Figure 31 compares multi-agent reinforcement learning (MARL) directly with single-
agent RL and federated learning with respect to spoilage rate. Figure 32 compares multi-
agent reinforcement learning (MARL) with single-agent RL and federated learning on
SLA violations.

Figure 33 compares multi-agent reinforcement learning (MARL) with single-agent
RL on energy consumption. MARL is also superior in all the three metrics compared to
the other two strategies. Specifically, it is characterized by the lowest spoilage rate (which
amounts to about 10 percent), the lowest number of SLA violations (which amounts to
about 8 percent), and the lowest energy consumption (which amounts to about 1300 kWh).
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Figure 31. Comparison of spoilage rate.

Figure 32. Comparison of SLA violations.

Figure 33. Comparison of energy consumption.

In comparison, single-agent RL obtains the most outstanding scores in every metric.
The results are further supported in Figures 34 and 35 through boxplots that show that the
two variables of the spoilage rate and energy consumption differed statistically (p < 0.05)
among the methods, whereby MARL reflected tighter distribution and lower median value.
The small diamond-shaped symbol above the box in the Figure 34 represents an outlier. The
symbol indicates that there was at least one spoilage rate measurement that was unusually
high compared to the rest of the data for that method. For Figure 35, the symbol means
that there was one Federated Learning experiment with a consumption value that was
unusually high compared to the rest of its distribution.
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The bar chart provided in Figure 36 shows how adjustments were made by modular
agents (routing, temperature, and delivery) in the reaction to various degradation sensitivi-
ties of chosen fruits. As an example, the temperature agent has the most acute sensitivities
to strawberries, and, as a result, strict regulatory changes are required.

Figure 34. Spoilage rate distributions.

Figure 35. Energy consumption distribution.

Figure 36. Modular agent responsiveness.

Figure 37 is an empirical evaluation of the effect of network uptime, which is reduced,
from 100 to 60%, on the rate of spoilage in strawberry cold-chain logistics. The results
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indicate a significant increase in spoilage with the decreased reliability, and statistics show
significant deterioration in all the types of agents.

The interaction between the blackout time, spoilage, temperature deviation, and
energy saving is made, as examined in Figure 38. In the absence of an adaptive regulation
of the temperature of the meat using the DDPG-based system, the temperature excursion
increases exponentially rising by more than 11 degree celcius within 60 min of the outage
and spoilage reaching over 50% after 240 min of outage. Comparatively, in the deployment
of DDPG agents, there are considerably reduced levels of temperature fluctuation, hence
keeping spoilage below 2%.

Figure 37. Agent performance under varying network uptime.

Figure 38. Impact of power outages on temperature control and spoilage.

Figure 39, in its turn, presents a grouped bar chart breaking down the key performance
indicators, namely, pasteurization, out-of-control service-level agreement (SLA), and the
proportional increases in energy use sorted out across three stress scenarios, i.e., high
temperatures, low humidity, and prolonged transportation periods. The visualization
consequently highlights the issues of operation of the system as well as the trade-offs in the
system performance when it is subjected to adverse environmental conditions.

In Figure 40, there is an immense positive correlation between carbon emission and
energy consumption, an indication that inefficiencies of the system have environmental
consequences. Each dot represents an observation (data point). It shows the actual mea-
sured pair of values for energy consumption and carbon emissions. The red line is the
line of best fit. It represents the trend relationship between the two variables. The red
line slopes upward, which means that as energy consumption increases, carbon emissions
also increase. In combination, the figures reveal that MARL is stronger in conserving
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food quality, reducing operational transgressions, and enhancing energy gathering, which
altogether result in the low ecological imprint.

Figure 39. Performance metrics under adverse shipment conditions.

Figure 40. Correlation: energy consumption and carbon emissions.

8. Conclusions and Future Work
The current architecture is a solution that provides multi-agent reinforcement learn-

ing, blockchain infrastructure, and generative artificial intelligence to decrease frequent
inefficiencies in fruit cold-chain logistics to offer an end-to-end, self-sufficient architecture.
The presented solution finds the way around the traditional drawbacks of centralized
decision-making, lack of traceability, and inflexible approaches to policy enforcement by
using a decentralized agent structure that integrates centralized training and decentralized
action. The edge autonomous agents proved flexible in the relation to changing situations,
such as traffic congestions, increased demands, and changing environmental conditions.
The system allowed negotiating through LLM by heterogeneous parties with the support of
smart contracts and ensuring the validity of service-level agreements and data immutabil-
ity through blockchain. The experimental test recorded some significant gains, such as
50 percent reduction in spoilage, 35 percent less energy expended, 30 percent travel time
shortening, an increase in the delivery accuracy by 28 percent, and 60 percent diminished
SLA violations. Environmental indicators were also promising as the emissions indicated a
25% reduction, although the positive changes are substantial in shelf-life optimization and
vitamin C retention. NFT-based traceability put the items in the custody chain that can be
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verified, thus improving food safety and consumer confidence. It was demonstrated that
the framework can achieve the trade-off between two or more goals—timeliness, energy effi-
ciency, and carbon emissions—which helps validate the effectiveness of the multi-objective
reward structure. The modular nature of the architecture allows it to be applied to other per-
ishable items such as pharmaceuticals and seafood, and its limited resource nature makes it
feasible to be implemented in the developing world where infrastructure is limited. On the
whole, the findings support the Special Issue on AI of sustainable, transparent, and efficient
food systems because, within the framework, resilience is enhanced, environmental impact
is reduced, and inter-organizational transparency is increased. Featuring high automation
levels, strong adherence to sustainability, and powerful decision-making, this architecture
sets a new standard of AI-powered logistics networks that will be ethically controlled
and environmentally conscious enough to be used in food logistics in the new generation.
The next steps would be application on real IoT systems and transfer across sectors to
assess transferability and scrutinize scalability and generalisability, thus promoting the
shift towards smarter and more sustainable food supply chains globally.
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Appendix A

Table A1. List of Acronyms.

Acronyms Meaning

AI Artificial Intelligence
MARL Multi-Agent Reinforcement Learning
LLM Large Language Model
NFT Non-Fungible Token
CTDE Centralized Training with Decentralized Execution
SLA Service-Level Agreement
GNN Graph Neural Network
DDPG Deep Deterministic Policy Gradient
IoT Internet of Things
RL Reinforcement Learning
DID Decentralized Identifier
ESG Environmental, Social, and Governance
API Application Programming Interface
CPU Central Processing Unit
ML Machine Learning
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