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Abstract

A chili pepper variety and origin detection system that integrates a field-programmable
gate array (FPGA) with an electronic nose (e-nose) is proposed in this paper to address the
issues of variety confusion and origin ambiguity in the chili pepper market. The system
uses the AIRSENSE PEN3 e-nose from Germany to collect gas data from thirteen different
varieties of chili peppers and two specific varieties of chili peppers originating from seven
different regions. Model training is conducted via the proposed lightweight convolutional
neural network ChiliPCNN. By combining the strengths of a convolutional neural network
(CNN) and a multilayer perceptron (MLP), the ChiliPCNN model achieves an efficient
and accurate classification process, requiring only 268 parameters for chili pepper variety
identification and 244 parameters for origin tracing, with 364 floating-point operations
(FLOPs) and 340 FLOPs, respectively. The experimental results demonstrate that, compared
with other advanced deep learning methods, the ChiliPCNN has superior classification
performance and good stability. Specifically, ChiliPCNN achieves accuracy rates of 94.62%
in chili pepper variety identification and 93.41% in origin tracing tasks involving Jiaoyang
No. 6, with accuracy rates reaching as high as 99.07% for Xianjiao No. 301. These results
fully validate the effectiveness of the model. To further increase the detection speed of
the ChiliPCNN, its acceleration circuit is designed on the Xilinx Zynq7020 FPGA from
the United States and optimized via fixed-point arithmetic and loop unrolling strategies.
The optimized circuit reduces the latency to 5600 ns and consumes only 1.755 W of power,
significantly improving the resource utilization rate and processing speed of the model.
This system not only achieves rapid and accurate chili pepper variety and origin detection
but also provides an efficient and reliable intelligent agricultural management solution,
which is highly important for promoting the development of agricultural automation
and intelligence.

Keywords: e-nose; FPGA-accelerated; lightweight CNN; chili pepper; variety identification;
origin tracing

1. Introduction
As modern agricultural technology has continued to advance, the chili pepper indus-

try has witnessed unprecedented development opportunities. The diversity and market
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circulation rates of chili pepper varieties have significantly increased globally, providing
consumers with a rich variety of choices. However, behind this prosperous scene, issues
such as variety confusion and unknown origins have become increasingly prominent,
constraining the healthy development of the industry and affecting consumer trust and
food safety levels. Chili peppers, as seasoners with unique flavors and wide applications,
include numerous varieties that range from spicy and pungent chilis to sweet and mildly
spicy lantern peppers. Each variety has specific flavor characteristics and regional culture,
serving as a key element in dish seasonings and culinary innovations. Moreover, the
origin information of chili peppers is directly related to their quality, flavor characteristics,
and ability to satisfy the stringent standards of specific geographical products; thus, this
information is of immeasurable value for ensuring the authenticity of food and enhancing
the competitiveness of markets.

Although some progress has been made regarding the identification of chili pepper
varieties and their origins, many challenges remain. High-performance liquid chromatog-
raphy (HPLC), which is a mature chemical composition analysis technique, can be used to
accurately measure the contents of key components such as capsaicin and capsanthin in
chili peppers, providing a scientific basis for performing variety identification [1]. However,
this method requires high sample pretreatment standards, expensive instruments, and a
relatively long analysis period, which is not conducive to quickly responding to market
demands. Gas chromatography-mass spectrometry (GC-MS) provides origin tracing clues
by separating and identifying the volatile compounds contained in chili peppers, but this
approach is also limited by its complex sample processing procedures and high analysis
costs [2]. Stable isotope ratio (SIR) analysis uses the natural distribution differences among
element isotopes, along with geographical and environmental factors, to provide a new
perspective for determining the origins of chili peppers [3]. However, this method is sus-
ceptible to environmental fluctuations and requires high-precision instruments. Molecular
biology techniques, such as polymerase chain reaction (PCR) combined with sequencing,
can achieve precise identification at the species level, but they have high technical thresh-
olds, are costly, and impose requirements on sample storage conditions [4]. In addition,
although sensory evaluation methods are intuitive and simple and rely on the experience
of professional tasters, they are subjective, and ensuring objective consistency in the out-
put results is difficult [5]. Therefore, the use of artificial intelligence technologies such as
computer olfaction to assist in chili pepper identification is a major trend.

An electronic nose (e-nose), which is typically composed of a cross-sensitive gas sensor
array with a pattern recognition algorithm unit, is considered an effective gas analysis
method that can replace laboratory chemical and biological analysis methods. E-noses have
been widely applied in fields such as environmental monitoring [6], medical diagnosis [7],
and food analysis [8] and have particularly unique advantages and great potential in terms
of detecting agricultural products in detail [9,10]. Liu et al. [11] employed a commercial
PEN3 e-nose to detect volatile odors in chili peppers, successfully distinguishing between
three types of chili peppers treated with different drying methods. Rasekh et al. [12] used
a homemade e-nose in conjunction with various machine learning algorithms to identify
sweet peppers and hot peppers. Yan et al. [13] utilized an e-nose to successfully identify five
varieties of chili peppers and employed liquid chromatography to analyze their capsaicin
content. Sun et al. [14] classified soybeans from six different origins via an e-nose system
combined with adaptive deep learning models. The core of an e-nose lies in (1) its multi-
variate sensor array and (2) its sensor signal processing algorithm. The former can finely
capture and effectively distinguish the specific characteristics of the volatile compounds
released by various agricultural products, laying a solid foundation for highly precise
identification and detection processes. The latter conducts feature extraction and pattern
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recognition on the response signals generated by the sensor arrays for various agricultural
products, and it has been continuously optimized to improve its recognition accuracy. A
significant direction concerning current e-nose technology research is the use of machine
learning algorithms for pattern recognition. However, in practical applications, the low
separability of signals and various interference factors encountered during the processes
of data acquisition, processing and prediction severely affect the recognition accuracy of
machine learning algorithms. With the development of deep learning, numerous research
teams have explored its application potential in gas pattern recognition scenarios. For
example, Feng et al. [15] developed a specialized domain node-level graph convolutional
network (SDN-GCNet) paired with an e-nose to evaluate tea leaf quality levels across
different harvest periods. Chen et al. [16] present a sensor-aware convolutional network
(SACNet) that achieves precise chili pepper variety classification. Wang et al. [17] intro-
duced BM-Net by leveraging a bidirectional mixing module (BMM) to identify volatile
compounds effectively in Angelica dahurica. A model that adaptively fuses a lightweight
transformer and an ELM was adopted by Sun et al. [18] to classify odors in refrigerators.
The advanced CNN architectures proposed by Zhai et al. [19] and Yang et al. [20] demon-
strated exceptional accuracy in industrial pollution gas recognition tasks. Compared with
traditional machine learning methods, these deep learning frameworks not only attain
improved recognition precision but also exhibit superior robustness and generalization
capabilities when processing complex sensor data streams. However, most of the existing
research on deep learning algorithms has focused on improving their gas recognition accu-
racy, neglecting the practical limitations of e-nose hardware implementations. Complex
neural network models contain many parameters, imposing high performance demands
on hardware, such as high-performance processors and large-capacity storage devices,
which contradicts the detection capabilities pursued by portable e-noses and limits their
application scope in instant detection scenarios.

Field-programmable gate arrays (FPGAs), with their highly customizable computing
structures, parallel processing capabilities, excellent energy efficiency ratios, outstanding
high-performance computing potential, and flexible reconfiguration characteristics, can
achieve precise tuning to satisfy specific algorithmic requirements, thereby providing so-
lutions with ultralow latency and ultrahigh throughput levels [21,22]. Therefore, FPGAs
exhibit significant advantages when complex algorithms such as pattern recognition meth-
ods are deployed. For example, Luo et al. used an FPGA to accelerate CNNs for identifying
plant diseases [23]. Neris et al. implemented efficient CNN operations on an FPGA to im-
mediately process sensor data [24]. Zhang et al. propose an FPGA-based CNN accelerator
that improves the speed and power efficiency of the CNN inference procedure by reducing
the degree of data movement [25]. Research has demonstrated the potential of using FPGAs
to accelerate pattern recognition applications. Traditional e-nose systems typically operate
in isolation, where gas sensor arrays collect response data that are subsequently transmitted
to a computer for analysis. Considering the real-time processing requirements, several
studies have integrated odor recognition capabilities with FPGA platforms. For example,
Ali et al. propose a principal component analysis (PCA)-based hardware–software code-
sign approach that combines e-nose technology with FPGA [26]. Mo et al. implemented
a CNN deployed on FPGA for real-time detection of traditional Chinese medicines via
e-nose data [27]. Tan et al. utilized FPGA as a hardware platform for industrial exhaust
gas monitoring [28]. The integration of the e-nose and FPGA offers multiple advantages:
(1) eliminating the need for external computers by executing recognition algorithms di-
rectly on the FPGA reduces system complexity and enhances portability, as new data can
be processed immediately through the deployed FPGA model; (2) the FPGA’s parallel
processing capabilities and reconfigurable logic enable efficient model acceleration with
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reduced inference latency; and (3) the FPGA’s low power consumption and cost efficiency
make it suitable for embedded applications. These benefits highlight the growing impor-
tance of e-nose edge device design. However, current solutions predominantly rely on
high-performance, resource-intensive FPGA platforms, creating insurmountable challenges
for budget-constrained and power-sensitive e-nose applications. Moreover, the inherent
limitations of these platforms often necessitate simplified pattern recognition algorithms
that may achieve acceptable performance in specific scenarios but struggle with complex
odor recognition tasks. Consequently, developing optimized design methodologies that
enable high-precision, low-power, cost-effective, and rapid e-nose detection remains an
unresolved challenge requiring innovative solutions.

In this study, we constructed a chili pepper variety and origin detection system. The
system collects gases from thirteen different varieties of chili peppers and two specific chili
peppers originating from seven regions via a gas sensor array to train and validate our
proposed lightweight CNN, i.e., ChiliPCNN. This network integrates the advantages of
CNNs in terms of their ability to co-learn features and efficiently rank raw input edges, as
well as the merits of traditional methods such as multilayer perceptrons (MLPs), thereby
forming an efficient and accurate classification model. Finally, the fully trained network
model is deployed on an FPGA platform for forward inference purposes, realizing rapid
and high-precision chili pepper variety and origin detection. The contributions of this work
can be summarized as follows.

(1) We construct a system that integrates an FPGA and an e-nose for rapidly detecting
the varieties and origins of chili peppers. The system can quickly and accurately identify
thirteen chili pepper categories and effectively distinguish among seven different origins of
two chili pepper varieties.

(2) We propose a hardware-friendly, lightweight ChiliPCNN model. This model
is specifically designed for chili pepper data, enabling it to automatically mine deep
features from raw sensor responses, effectively avoiding the feature extraction instability
caused by differences in manual experience. By streamlining the hidden layer structure
and eliminating bias terms, the ChiliPCNN significantly reduces the number of required
parameters while ensuring that high detection accuracy is achieved, thereby reducing the
storage requirements and computational burden imposed during the deployment process.

(3) We design and implement a ChiliPCNN acceleration circuit on the Xilinx Zynq7020
FPGA development board and comprehensively optimize the acceleration circuit by adopt-
ing fixed-point arithmetic technology and loop unrolling strategies. These optimization
measures effectively improve the hardware resource utilization rate, reduce the power
consumption level, and decrease processing delays.

2. Materials and Methods
2.1. System Architecture for Chili Pepper Variety and Origin Detection

Figure 1 illustrates the system architecture constructed for chili pepper variety and
origin detection, which integrates an FPGA with an e-nose. The core components include
gas data acquisition, data processing, and model training mechanisms, as well as a forward
inference module implemented on the FPGA. Gas data acquisition is performed by the
AIRSENSE PEN3 e-nose from Germany, which incorporates a sensor array consisting of ten
gas sensors with cross-selectivities, as listed in Table 1. This array is capable of effectively
capturing and identifying various volatile components of chili pepper samples. After the
sensor signals are amplified and digitized by the electronic circuitry, they are transmitted
to a computer for further processing.
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Figure 1. A pepper variety and origin detection system.

Table 1. Sensors contained within the e-nose.

Sensor Sensitive Gas

W1C Aromatic compounds
W5S Hydrocarbon compounds
W3C Ammonia
W6S Hydrogen
W5C Aromatic hydrocarbons
W1S Methane
W1W Sulfides
W2S Ethanol
W2W Organic sulfides
W3S Alkanes

After the data undergo cleaning, labeling, and other processing tasks on the computer,
they are used for model training and testing. The trained model is subsequently deployed
on the Xilinx Zynq7020 FPGA development board (manufactured by Guangzhou Star Wing
Electronic Technology Co., Ltd., Guangzhou, China). On the development board, Xilinx
Zynq7020 (San Jose, CA, USA) serves as the core chip, which consists of a processing system
(PS side) and a programmable logic module (PL side). The PS side includes a dual-core
advanced RISC machine (ARM) Cortex-A9 CPU (manufactured by ARM Ltd., Cambridge,
UK) operating at 1 GHz, which is primarily responsible for loading the data, displaying the
results, and controlling the process. The PL side is utilized to design the hardware circuit
for accelerating the ChiliPCNN model. When the FPGA development board receives data,
it immediately displays the results on an RGB screen.

2.2. Sample Selection and Experimental Design

To ensure the scientific integrity of the experimental data, we established a collabo-
rative partnership with the Chili Pepper Research Institute of the Guizhou Academy of
Agricultural Sciences, Guiyang, China. Under rigorous expert guidance, three experimental
groups were meticulously curated. Group 1 comprised 13 distinct chili pepper varieties
(Qianjiao No. 8, Jiaoyang No. 1, Dafang zoujiao, Huaxi lajiao, Huangping xianjiao, Chuan-
jiao No. 19, Changla No. 7, Lafengguomei, Huiteng, Xiuting, Cuanjiao No. 1, Yanjiao
425, and Sanyingjiao No. 8) to evaluate the model’s performance in chili pepper variety
identification. Groups 2 and 3 each contained Jiaoyang No. 6 and Xianjiao No. 301 vari-
eties, respectively, sourced from seven geographical origins (Yunnan, Xinjiang, Chongqing,
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Hunan, Shaanxi, Neimenggu, and Henan) to assess the model’s accuracy in origin tracing.
This design enabled the evaluation of model generalizability while mitigating potential
biases arising from cultivar-specific origin differentiation effects.

All gas sensing analyses were performed via a commercial PEN3 e-nose under non-
destructive conditions. During detection, gas molecules released from peppers interact
with sensor arrays, inducing redox reactions that alter sensor conductivity. This change
was quantified through the G/G0 ratio, where G represents the conductivity during chili
pepper gas detection and G0 denotes the baseline conductivity measured with activated
carbon-filtered gas. This methodology enables precise gas component analysis, providing
reliable data for subsequent model validation.

The experiments were conducted in a controlled environment (26 ± 0.5 ◦C, 70 ± 10% RH)
following the following procedures:

(1) The e-nose was preheated for 30 min to stabilize the signals before testing.
(2) Precisely weighed chili pepper samples (1.00 ± 0.05 g) were placed into precleaned

sample bottles and sealed with airtight pads. To minimize random errors, 10 replicate
sample bottles were prepared per sample.

(3) Prior to each measurement, the dynamic headspace method was performed by
purging the system at 150 mL/min for 120 s to eliminate residual gases. Sample responses
were then recorded at a 100 mL/min flow rate and a 1 Hz sampling frequency for 120 s. This
protocol was repeated sequentially for all 10 sample bottles to complete one experimental
cycle, which was replicated 10 times.

(4) Three detection protocols were implemented. The first group was designed to analyze
the identification of 13 varieties of chili peppers. The second and third groups were designed
to analyze the identification of the seven places of origin of the two chili peppers. In steps (2) to
(3), three datasets were generated. The first group of detection experiments yielded a dataset
comprising 13 varieties × 10 samples × 10 repetitions = 1300 data points, named Dataset
A. Similarly, Datasets B and C were generated from the second and third groups of detec-
tion experiments, each consisting of 7 varieties × 10 samples × 10 repetitions = 700 data
points. The raw sensor response curves from the e-nose measurements are presented in
Figures S1–S3 in the Supplementary Materials.

2.3. ChiliPCNN Model for Chili Pepper Variety and Origin Detection

To efficiently deploy a CNN on mobile devices for rapidly detecting the varieties
and origins of chili peppers, we focus on two core design principles: (1) ensuring high
detection accuracy and (2) maintaining low model complexity to ensure the compatibil-
ity of the model with conventional FPGAs in terms of their computational and storage
requirements. On the basis of these principles, we conceive the lightweight ChiliPCNN
architecture, which is specifically designed for chili pepper data, and its structure is detailed
in Figure 2. The proposed model employs a multilevel feature fusion architecture to enable
efficient feature learning. First, during the local feature extraction phase, parallel 1 × 3 and
1 × 5 multiscale convolutional kernels are utilized to capture short-range and medium-
range spatial patterns, respectively. A global receptive field is subsequently constructed
through fully connected layers to establish long-range dependencies among features and
extract high-level abstract representations. The multilevel receptive fields are then su-
perimposed to achieve parallel multiscale fusion. In the feature reorganization stage, the
global feature vector is reconstructed into a 2D feature map through spatial–dimensional
reorganization operations, preserving the spatial structure for subsequent convolution
operations. Fine-grained local features are re-extracted from the reorganized features via
convolutional kernels, enabling deep fusion of global contextual information with local
detailed features. Finally, the fused features are mapped to a low-dimensional discrimina-
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tive space through a feature projection layer, and a fully connected classifier is employed to
accomplish the chili pepper variety and origin detection tasks. This architecture establishes
a hierarchical feature learning pathway through an alternating local–global–local feature
processing mechanism. Notably, we omit pooling layers and bias terms from both the
convolutional and fully connected layers in our network model design. Given the limited
nature of the input features, pooling would lead to information losses, severely impacting
the resulting performance. Moreover, experiments show that the biases exhibited by the
convolutional and fully connected layers contribute minimally to the results. Therefore, to
simplify the model and facilitate its hardware implementation, we do not consider these
layers in our design.

Figure 2. The structure of the ChiliPCNN.

2.4. ChiliPCNN Acceleration Circuit
2.4.1. ChiliPCNN Circuit Design

The acceleration circuit for the ChiliPCNN is initially described at a high level of
abstraction via C/C++ with hardware-specific optimizations (pragmas) and synthesized
into a hardware intellectual property (IP) core via high-level synthesis (HLS) [29]. Unlike
direct implementation in hardware description languages (HDLs), HLS allows developers
to focus primarily on algorithmic behavior via C/C++-like syntax, abstracting away the
manual specification of low-level circuit elements (e.g., gates, registers, and exact timing).
This significantly improves the initial development efficiency. The synthesized IP core is
then integrated and optimized within the full FPGA system via Verilog HDL to ensure
robust implementation, meet timing constraints, and avoid hazards.

The ChiliPCNN accelerator employs a hierarchical modular architecture at the HLS
design level, where each functional layer (e.g., convolution, fully connected, and activation)
is implemented as an independent HLS module. This strategy is driven by four key advan-
tages: (1) decomposing the network into discrete HLS modules reduces algorithmic com-
plexity, enabling independent development, verification, and optimization of each layer;
(2) promoting the reuse of preoptimized HLS components across designs enhances flexibil-
ity and scalability; (3) hierarchical modularity facilitates the implementation of specific opti-
mizations for each module, maximizing the hardware resource utilization rate and attaining
improved performance. For example, the memory access process in the convolutional layers
can be optimized to reduce latency, whereas the matrix multiplication operation executed
in the fully connected layers can be optimized to achieve improved computational effi-
ciency, significantly enhancing the overall performance and efficiency of the network. and
(4) streamlining hardware mapping through modular HLS verification and subsequent
system-level HDL implementation ensures reliability. The pseudocode structures for these
core HLS modules are detailed in Algorithms S1–S4 in the Supplementary Materials.

Figure 3 shows the hardware architecture of the convolutional accelerator. This archi-
tecture employs an ARM processor as the primary control unit, coordinating multimodule
operations through the advanced extensible interface (AXI) bus interface. Preprocessed
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input data are injected into the acceleration unit via the direct memory access (DMA)
controller operating in the streaming mode, leveraging a parallel bus structure to minimize
the latency induced during the data transfer step. Following the computation, the gen-
erated feature map data are retransmitted to the main memory through DMA channels,
establishing a closed-loop processing pipeline that integrates “preprocessing → memory
mapping → accelerated computation → result feedback” operations.

ARM Convolution 
Accelerator DMA

DDR3DMA

Result 
Display

Preprocessing

Figure 3. E-nose acceleration engine deployed to the FPGA.

The developed convolution acceleration process, visualized in Figure 4, centers on
parallel computation principles. Specifically, convolution kernels and corresponding feature
map segments are strategically mapped to multiple digital signal processing units (DSPs) to
execute concurrent multiply accumulate operations. Ensuring precise alignment between
the kernel parameters and feature data streams is critical, as kernels must operate on
specific receptive fields within the feature map. The feature data transmitted via the
AXI-Stream protocol undergo shift-register buffering in the FPGA to form convolutional
windows, which are then multiplied in parallel with the weight matrices stored in block
random access memory (BRAM). The accumulation of these parallel products yields the
final convolution results, demonstrating the effective utilization of hardware parallelism
while maintaining high computational accuracy through synchronized data orchestration.

Fixed-Point Conversion

268
I          Shift Register        O

I          Shift Register        O

I          Shift Register        O

Distribute To Block RAM

Parallel Multiplication Adder

Weight 
Data Stream

IFM 
Data Stream

OFM 
Data Stream

Figure 4. Convolution acceleration process.

Inspired by heterogeneous computing architectures, the complete e-nose acceleration
system proposed in this work is structured as shown in Figure 5—which was exported
following the system architecture design and verification process in Xilinx Vivado 2020.2
software—adopting a collaborative design paradigm integrating the PS and PL. The PS
domain comprises an ARM Cortex-A9 central processing unit, a DDR3 dynamic mem-
ory module, and a universal asynchronous receiver/transmitter (UART) serial interface,
whereas the PL domain incorporates a hardware-accelerated ChiliPCNN-based convolu-
tional engine, an on-chip dynamic random access memory (DRAM) buffer, a DSP unit, and
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an AXI DMA high-speed bus. Synergistic acceleration is achieved through heterogeneous
collaboration between the ARM Cortex-A9 (manufactured by ARM Ltd., UK) processor
and the XC7Z020 ZYNQ device (manufactured by Guangzhou Star Wing Electronic Tech-
nology Co., Ltd., China). During the system initialization phase, the ARM processor
configures the hardware platform and loads raw gas sensor data from the DDR3 memory.
The subsequent data exchange process between the PS and PL is facilitated by the AXI4
protocol, which transmits preprocessed gas feature matrices to the hardware acceleration
modules in the PL. The ChiliPCNN engine executes edge feature extraction and pattern
matching with hardware-level parallelism, with the computed results returned to the PS
via the AXI bus before being visualized on external displays through UART controllers for
real-time monitoring.

 

Figure 5. Circuit architecture of the e-nose.

2.4.2. ChiliPCNN Circuit Optimization Method

To increase the hardware resource utilization rate of the ChiliPCNN circuit, reduce
the power consumption of the model, minimize processing delays, and enable the rapid
detection of chili pepper varieties and origins, we adopt fixed-point arithmetic technology
and loop unrolling strategies to optimize the ChiliPCNN circuit.
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In the original ChiliPCNN circuit, floating-point numbers were used for computa-
tions, since both the trained model weights and the collected data were represented in
a floating-point format. However, owing to the complexity of its computation units and
substantial storage requirements, floating-point arithmetic often results in significant hard-
ware resource and power consumption levels, becoming a bottleneck that constrains the
performance of the developed circuit. To overcome this limitation, we decide to integrate
fixed-point arithmetic technology into the ChiliPCNN circuit to replace floating-point arith-
metic. The conversion between fixed-point and floating-point numbers can be performed
according to Equations (1) and (2).

Xfixed =
⌊

Xfloat × 2b + 0.5
⌋

(1)

Xfloat =
Xfixed

2b (2)

Equation (1) is used to scale and round a floating-point number Xfloat to a fixed-point
number Xfixed, where b represents the number of decimal places. Equation (2) achieves
reverse scaling conversion from a fixed-point number to a floating-point number. Compared
with floating-point arithmetic, fixed-point arithmetic significantly reduces the hardware
resource utilization rate by simplifying the representations of numerical values. Specifically,
floating-point arithmetic requires complex computational units such as floating-point
adders and multipliers, which not only occupy many lookup tables (LUTs) and digital
signal processing units (DSPs) but also consume considerable power. In contrast, fixed-
point arithmetic can be implemented with basic adders and multipliers, resulting in a
relatively straightforward hardware implementation that greatly reduces the complexity
and power consumption of hardware. Additionally, fixed-point arithmetic offers clear
advantages in terms of latency. Floating-point arithmetic involves a series of complex
operations, such as alignment, rounding, and normalization, which all require more clock
cycles to complete than other operations do. Fixed-point arithmetic, on the other hand,
directly performs arithmetic operations and can produce results quickly within fewer clock
cycles. Therefore, adopting fixed-point arithmetic technology in the HLS design process can
effectively reduce the hardware resource and power consumption levels while ensuring a
certain level of computational accuracy and significantly improving the execution efficiency
of the utilized hardware, thereby optimizing the performance of the circuit.

The ChiliPCNN circuit also contains numerous loop structures, such as the ‘for’ loops
in its convolutional and fully connected layers. These loop structures often incur high
control overhead and waiting times during the execution procedure, severely impacting
the performance of the circuit. To address this issue, we employ a loop unrolling strategy.
The basic idea of this strategy is to replicate the code within the loop body multiple
times, allowing multiple loop iterations to be executed in parallel. This parallel processing
approach not only significantly increases the hardware throughput level but also effectively
reduces the induced branch prediction error rates. In the specific implementation of the
ChiliPCNN circuit, we unroll the key loop structures. Taking the convolutional ‘for’ loop
with a kernel size of five as an example, the loop requires five iterations, each of which
includes a multiplication circuit and an addition circuit. Considering the limited number of
available memory ports, we reasonably set the unrolling factor to two. The principle of loop
unrolling is illustrated in Figure 6. After completing the unrolling step, two identical circuit
modules are formed and complete their first two loop iterations in parallel, followed by
one circuit module for completing the remaining iteration. Although the optimized circuit
obtained after unrolling occupies twice the FPGA resources, it saves 2/5 of the execution
time relative to the original version. Given sufficient FPGA hardware resources and other
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optimization measures, we can significantly improve the computational efficiency of the
convolution operations by trading hardware resources for time. When performing chili
pepper variety and origin detection tasks, the optimized circuit can produce detection
results more quickly.

 

X

weights[i][outd]

input[i][outh][outw]

output[i][outh][outw]

output[i][outh][outw]

unrolling times=2

X
after unrolling

X

weights[i][outd]

input[i][outh][outw]

output[i][outh][outw]

output[i][outh][outw]

X

X

weights[i][outd]

input[i][outh][outw]

output[i][outh][outw]

output[i][outh][outw]

X

ind=0

ind=1

Figure 6. Unrolling process for a loop.

3. Results and Discussion
3.1. Experimental Setup

To facilitate model training and testing, each dataset is split into a training set and a
test set at a 7:3 ratio, ensuring the independence and validity of the data. The experimental
section is divided into two groups: (1) In the first group of experiments, each data sample
contained in the training set is divided into independent training samples at 1 second
intervals for model training. Similarly, each data sample in the test set is also divided
according to the same principle to generate independent test samples, which are used
to evaluate the performance of the model. In addition, we predict the test samples in a
second-by-second manner starting from the first second according to the sampling time
order and calculate the accuracy achieved for each second to assess the timeliness of the
model comprehensively; (2) in the second group of experiments, considering that the chili
gas may not fully contact the sensor array within the first 20 seconds, we select the portion
from the 21st second to the 120th second of each data sample in the training set, dividing it
into training instances at 1 second intervals for model training. The data samples in the
test set are processed in the same way, i.e., the portion from the 21st section to the 120th
second is divided into test instances. We also predict the test samples in a second-by-second
manner starting from the 21st second according to the sampling time order and calculate
the accuracy for each second starting from the 21st second to more accurately evaluate the
performance of the model in the stable stage.

During the training process, we adopt the cross-entropy loss function as the loss metric
for the model. To ensure the stability and efficiency of the training process, the batch size of
the model is set to 32. To optimize the learning process of the model, the initial learning rate
is set to 0.01, and after every 10 epochs, the learning rate is multiplied by 0.95 to gradually
fine-tune the model parameters. The entire training process iterates 500 times to ensure
that the model can fully learn the characteristics of the input data. In addition, we choose
the stochastic gradient descent (SGD) optimizer to perform parameter optimization and
weight updates, which drive the model closer to the optimal solution.

During the acceleration circuit design phase, preliminary experiments are conducted
to evaluate various fixed-point optimization strategies. Through a comparative analysis,
we establish that converting floating-point numbers to fixed-point representations with
a 16-bit width is optimal. To prevent numerical overflow and minimize the quantization
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loss simultaneously, we preserve 12 fractional bits. This configuration results in an average
inference accuracy reduction of merely 0.3% across the three datasets, maintaining the
precision loss within an acceptable margin.

To verify the effectiveness and superiority of the proposed ChiliPCNN model, we
select multiple lightweight machine learning and deep learning networks for comparative
experiments, including a mixed-kernel and variable-dimensional memristive convolutional
neural network (MixVMCNN) [30], an MLP [31], a single-layer perceptron (SLP) [32], a
1D CNN [33], a 2D CNN [34], a gated recurrent unit (GRU) [35], long short-term mem-
ory (LSTM) [36], a convolutional spiking neural network (CSNN) [37], and the classic
MobileNetv2 network [38]. In the experiments, the ratio of the number of samples in the
training set to that in the test set is maintained at 7:3, and all methods are repeated ten times
to ensure the validity of the experimental results. To conduct a comprehensive performance
assessment, we employ five widely used metrics: accuracy, precision, recall, specificity, and
the F1 score. Their definitions are shown in Equations (3)–(7).

accuracy =
TP + TN

TP + TN + FP + FN
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

specificity =
TN

TN + FP
(6)

F1 − score =
2 × precision × recall

precision + recall
(7)

where TP represents the number of true positives, FP represents the number of false
positives, TN represents the number of true negatives, and FN represents the number of
false negatives. In addition, we report three important computational efficiency metrics:
the number of parameters (#Params), the number of floating-point operations (#FLOPs),
and the model size. #Params refers to the total number of trainable parameters contained in
the model, which directly affects the storage requirements and computational overhead of
the model. A smaller #Params can reduce the computational cost and memory usage of the
model, improving its efficiency, especially for resource-constrained devices. The #FLOPs
refers to the number of floating-point operations required during a single forward pass of
the model, which is an important computational efficiency indicator. A smaller #FLOPs
typically results in a faster inference speed. The model size is the amount of memory
required to store the model, which depends on the total number of model parameters.
These metrics assess the computational demands and the model architecture to demonstrate
its suitability for use in resource-constrained environments.

We subsequently select the three directly deployable models with the highest accura-
cies on Zynq7020, namely, the MLP, 1D CNN, and 2D CNN, and implement their hardware
circuits through the HLS design on Dataset A. We then conduct a detailed comparison
with the optimized and accelerated ChiliPCNN circuit in terms of its hardware resource
utilization, power consumption level, processing delay, and other indicators.

3.2. Chili Pepper Variety and Origin Detection Results of ChiliPCNN

In this experiment, we conduct a comprehensive and detailed comparative analysis
of the performance achieved by the ChiliPCNN model and multiple other models in chili
pepper variety and origin detection tasks. The experimental results are presented in detail
in Tables 2–4. The data clearly reveal that the ChiliPCNN algorithm has superior test
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accuracy in both sets of experiments designed for the three different datasets. Notably,
while the conventional MobileNetv2 architecture exhibits marginally superior accuracy, its
deployment feasibility is significantly compromised by its prohibitive #Params and #FLOPs.
Therefore, it is necessary to compare the ChiliPCNN with other models at comparable
scales. Specifically, on Dataset A, ChiliPCNN significantly outperforms the other algorithms
in terms of the test accuracies achieved in both sets of experiments; compared with the
third-best 1D CNN, its accuracies are approximately 0.71% and 0.39% higher, respectively,
and compared with the worst-performing MixVMCNN, its advantages are even more
significant, with accuracy improvements of approximately 26.01% and 25.7%, respectively.
On Dataset B, the ChiliPCNN also performs excellently. In both sets of experiments,
its test accuracies rank second, approximately 0.91% and 1.84% higher than those of
the third-best 2D CNN. In the first set of experiments, its accuracy is approximately
26.43% higher than that of the worst-performing MixVMCNN, and in the second set of
experiments, the accuracy is approximately 21.58% higher than that of the worst-performing
SLP network. Furthermore, on Dataset C, which contains chili pepper volatiles with richer
compound diversity that provides more discriminative information for model training and
significantly enhances the feature representation ability of the model, ChiliPCNN continues
to maintain its leading position. In the second set of experiments, our proposed model
achieves 0.1% higher accuracy than MobileNetv2 does. Compared with the immediately
following 1D CNN models, it yields accuracy improvements of approximately 1.63% and
0.14%. Compared with those of the worst-performing networks, the accuracies of the
approach are approximately 20.34% greater than those of the MixVMCNN in the first set
of experiments and approximately 16.65% greater than those of SLP in the second set of
experiments. This can be intuitively seen from the line graph shown in Figure 7, where a
and b represent the two sets of experiments conducted on Dataset A, c and d represent
the two sets of experiments conducted on Dataset B, and e and f represent the two sets of
experiments conducted on Dataset C. In each set of experiments conducted across the three
different datasets, the ChiliPCNN model achieves the highest values for the four evaluation
metrics: precision, recall, specificity, and F1 score. This more comprehensively reflects
the excellent performance of the ChiliPCNN model in chili pepper variety and origin
detection tasks.

Table 2. Performance comparison (%) among various models on Dataset A.

Metric MLP SLP 1D
CNN

2D
CNN GRU LSTM CSNN MixVMCNN MobileNetv2 ChiliPCNN

120 s

Accuracy 84.19 68.86 88.34 89.48 82.07 79.05 86.45 63.96 91.82 90.39
Precision 84.58 67.24 88.56 86.64 81.65 79.03 86.36 65.93 93.00 90.62
Recall 84.19 68.86 88.34 86.17 82.07 79.05 86.45 63.96 91.82 90.39
Specificity 97.36 94.81 98.06 97.70 97.01 96.51 97.74 93.99 98.64 98.40
F1 score 84.18 67.14 88.38 86.32 81.62 78.76 86.29 64.00 91.97 90.42

100 s

Accuracy 88.52 71.83 90.66 91.57 87.32 75.98 88.32 77.82 94.44 93.41
Precision 89.17 71.41 91.07 90.93 87.02 74.95 88.19 77.50 94.78 93.39
Recall 88.52 71.83 90.66 90.09 87.32 75.98 88.32 77.82 94.44 93.41
Specificity 98.09 95.31 98.44 98.35 97.89 96.00 98.05 96.30 99.07 98.90
F1 score 88.73 70.80 90.79 90.34 87.08 75.15 88.22 77.56 94.48 93.39

#Params 295 77 275 291 297 291 277 44 2,232,295 244
#FLOPs 272 70 928 5425 325 316 582 140 2,375,472 340
Model size 1180 308 1100 1164 1188 1164 1108 176 8,929,180 976
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Table 3. Performance comparison (%) among various models on Dataset B.

Metric MLP SLP 1D
CNN

2D
CNN GRU LSTM CSNN MixVMCNN MobileNetv2 ChiliPCNN

120 s

Accuracy 84.65 67.16 86.64 85.45 83.49 74.76 83.79 61.34 88.37 87.35
Precision 85.23 67.58 87.30 84.29 84.38 76.28 84.17 61.40 89.20 87.63
Recall 84.65 67.16 86.64 83.94 83.49 74.76 83.79 61.34 88.37 87.35
Specificity 98.72 97.26 98.89 98.79 98.62 97.90 98.65 96.78 99.03 98.95
F1 score 84.69 66.99 86.53 83.99 83.59 75.09 83.75 60.97 88.39 87.26

100 s

Accuracy 92.59 74.29 94.23 93.45 88.61 83.21 89.64 68.92 95.73 94.62
Precision 92.76 74.64 94.46 91.95 89.33 83.71 89.97 69.10 95.95 95.04
Recall 92.59 74.29 94.23 91.68 88.61 83.21 89.64 68.92 95.73 94.62
Specificity 99.38 97.86 99.52 99.31 99.05 98.60 99.14 97.41 99.64 99.55
F1 score 92.57 74.20 94.22 91.69 88.64 83.23 89.68 68.53 95.72 94.69

#Params 397 143 377 321 333 321 319 68 2,239,981 268
#FLOPs 368 130 1024 5448 355 340 618 164 2,383,152 364
Model size 1588 572 1508 1284 1332 1284 1276 272 8,959,924 1072

Table 4. Performance comparison (%) among various models on Dataset C.

Metric MLP SLP 1D
CNN

2D
CNN GRU LSTM CSNN MixVMCNN MobileNetv2 ChiliPCNN

120 s

Accuracy 93.52 76.73 93.85 92.37 91.42 87.77 91.09 74.81 95.82 95.15
Precision 93.58 77.13 93.90 92.02 91.53 88.38 91.18 74.56 96.03 95.21
Recall 93.52 76.72 93.85 91.89 91.42 87.77 91.09 74.81 95.82 95.15
Specificity 98.92 96.12 98.97 98.65 98.57 97.96 98.51 95.80 99.30 99.19
F1 score 93.52 76.16 93.84 91.88 91.40 87.82 91.09 74.56 95.86 95.14

100 s

Accuracy 98.44 82.42 98.93 98.03 98.15 94.63 97.50 93.44 98.97 99.07
Precision 98.47 82.74 98.97 97.04 98.14 94.64 97.53 93.63 99.00 99.08
Recall 98.44 82.42 98.93 96.96 98.15 94.63 97.49 93.44 98.97 99.07
Specificity 99.74 97.07 99.82 99.49 99.69 99.10 99.58 98.91 99.83 99.85
F1 score 98.44 82.10 98.93 96.96 98.14 94.59 97.49 93.36 98.97 99.07

#Params 295 77 275 291 297 291 277 44 2,232,295 244
#FLOPs 272 70 928 5425 325 316 582 140 2,375,472 340
Model size 1180 308 1100 1164 1188 1164 1108 176 8,929,180 976

 

Figure 7. Comparison among the metrics produced across different models. (a,b): Dataset A;
(c,d): Dataset B; (e,f): Dataset C. Each dataset shows two experimental configurations.
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A further analysis of the data contained in Tables 2–4 reveals that the ChiliPCNN
model has very small #Params, #FLOPs, and model size values (in Bytes). In terms of its
hardware circuit design, the model requires significantly fewer resources, such as BRAM,
DSPs, and LUTs, making it easily deployable on lower-performance FPGAs and satisfying
the hardware resource requirements of most FPGAs. For chili pepper variety identification,
the model has only 268 parameters and requires only 364 FLOPs per second. For chili
pepper origin tracing, the model has only 244 parameters and requires only 340 FLOPs
per second. Although the MixVMCNN model has the fewest #Params and the SLP model
has the fewest #FLOPs, their detection accuracies are low, and their feature extraction
capabilities are weak. On the other hand, the 1D CNN model and 2D CNN model, which
offer good detection accuracy, have #FLOPs that are multiple times greater than those of
the ChiliPCNN, and they also require significantly more hardware resources.

In summary, for both chili pepper variety identification and origin tracing, the
ChiliPCNN model achieves the highest test accuracy in two rounds of experiments con-
ducted across three datasets. Additionally, it consumes very few hardware resources,
making it more suitable for deployment on FPGAs. It significantly outperforms all the
other compared algorithms.

3.3. Results of Rapid Detection Experiments

We conduct two rounds of experiments on the proposed ChiliPCNN model across
three datasets, predicting test samples on a second-by-second basis and calculating the
accuracy achieved for each second. The results are shown in Figure 8. In the first twenty
seconds of the first round of the experiments, the accuracy of the model is relatively low.
However, in the second round of experiments, starting from the 21st second, the accuracy
attained for each second exceeds 87%, with a more stable performance. Therefore, in
practical applications, we choose the model trained in the second round of experiments.
A further analysis of the results derived from the second round of experiments reveals
the following: at the 97th second, the accuracy achieved for the thirteen-class chili pepper
variety identification task reaches a peak for the first time, at 96.7%; at the 45th second,
the accuracy attained for the seven-origin tracing task performed on Dataset B reaches
a peak for the first time, at 94.7%; and at the 48th second, the accuracy achieved for the
seven-origin tracing task conducted on Dataset C reaches a very high value of 99.9%. The
variety identification and original tracing tasks require the complete collection of 120 s
of gas data. However, on the basis of the results of this experiment, we can set the gas
collection time to 97 s, 45 s, and 48 s for different tasks. Once these set times are reached,
detection results can be obtained, thereby achieving the goal of rapid detection.

 

Figure 8. Second-by-second accuracy. (a,b) compare the experimental results of the first and second
groups, respectively.
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3.4. Optimization Results of the ChiliPCNN Acceleration Circuit

To effectively deploy the ChiliPCNN model on a resource-constrained FPGA and
accelerate the process of detecting chili pepper varieties and origins, we design and imple-
ment the ChiliPCNN acceleration circuit. To further enhance the performance of the circuit,
we optimize it via fixed-point arithmetic technology and loop unrolling strategies. Table 5
provides a detailed comparison between the versions of the ChiliPCNN model before and
after implementing the optimization process, along with the MLP, 1D CNN, and 2D CNN
models, in terms of their latency, resource utilization rates, and accuracy. The unoptimized
ChiliPCNN circuit has a latency of 8800 ns and consumes 42 BRAM modules, 57 DSPs,
10,878 flip flops (FFs), and 13,057 LUTs, accounting for 30%, 25.91%, 10.22%, and 24.54% of
the total FPGA resources, respectively. After the optimization step, the circuit latency is
reduced to 5600 ns, representing a speedup of 36.36%. Simultaneously, the resource con-
sumption level is effectively controlled, with 38 BRAMs, 83 DSPs, 5633 FFs, and 8833 LUTs,
accounting for 27.14%, 37.73%, 5.29%, and 16.70% of the total FPGA resources, respectively.
Despite a slight decrease of 0.37% in the accuracy of the model, the optimized version
demonstrates superior performance in terms of latency and most resource metrics. A key
advantage of the optimized model lies in its heightened DSP efficiency, which directly
contributes to reduced processing delays and logical resource conservation, creating an
operational headroom for subsequent system enhancements. Compared with the other
models, the optimized ChiliPCNN circuit has the best performance in terms of latency, and
it has the lowest resource utilization rate with respect to its FFs and LUTs. Although the
resource utilization level of the BRAM is slightly higher than those of the MLP and 1D CNN,
this is primarily due to the network structure of the ChiliPCNN model, which requires
more memory buffering to store the intermediate results. This architectural requirement,
however, is compensated by the demonstrated superiority of the model in terms of accuracy,
surpassing the comparative benchmarks.

Table 5. Latency and resource consumption levels of different models.

Models Latency BRAM/% DSP/% FF/% LUT/% Accuracy

MLP 5800 ns 12/8.57% 89/40.45% 10,371/9.75% 15,389/28.93% 84.19%
1D CNN 6960 ns 36/25.71% 89/40.45% 15,522/14.59% 18,585/34.93% 88.34%
2D CNN 44,860 ns 46/32.86% 87/39.54% 19,815/18.62% 25,378/47.70% 89.48%

ChiliPCNN 8800 ns 42/30% 57/25.91% 10,878/10.22% 13,057/24.54% 90.39%
Optimized 5600 ns 38/27.14% 83/37.73% 5633/5.29% 8883/16.70% 90.02%

Note: the total resources of the Zynq7020 development board include 140 BRAMs, 220 DSPs, 106,400 FFs, and
53,200 LUTs.

Furthermore, device power consumption is an essential indicator for evaluating per-
formance. According to the data shown in Table 6, the total power consumption of the
optimized ChiliPCNN circuit deployed on the FPGA is 1.755 W, which is lower than that
observed before implementing the optimization scheme and those of the other models. The
power dissipation of PS7 mainly originates from the ARM processor and its peripheral
modules, whereas the core power consumption of acceleration circuits focuses on the clock
network and block storage modules. Specifically, the energy consumption of the BRAM
not only includes static retention power during data storage but also generates significant
dynamic switching power during frequent reading/writing operations. Therefore, optimiz-
ing the data transmission mechanism to reduce the dynamic power consumption level is
crucial for improving the overall energy efficiency of the model.
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Table 6. Power consumption (W) comparison among different models.

Metric Optimized ChiliPCNN MLP 1D CNN 2D CNN

Dynamic 1.611 1.639 1.642 1.694 1.720
Clocks 0.009 0.018 0.024 0.026 0.031
Signals 0.021 0.033 0.035 0.061 0.071
Logic 0.017 0.027 0.029 0.036 0.042
BRAM 0.007 0.014 0.003 0.014 0.016
DSP 0.026 0.016 0.020 0.027 0.029
PS7 1.531 1.531 1.531 1.531 1.531

Static 0.144 0.145 0.143 0.146 0.148

Total 1.755 1.784 1.785 1.840 1.868

To systematically evaluate the effectiveness of different ChiliPCNN circuit optimiza-
tion strategies, ablation experiments are employed in this study by incrementally intro-
ducing fixed-point arithmetic and loop unrolling techniques to quantitatively analyze the
performance contributions of each optimization strategy. According to the data shown in
Table 7, after implementing fixed-point arithmetic, the circuit latency is significantly re-
duced by 30.45% to 6120 ns, which is accompanied by synergistic reductions across multiple
hardware resources. This validates the dual benefits of numerical precision optimization
for enhancing the computational efficiency and controlling the hardware complexity of
the model. The subsequent integration of loop unrolling technology through the strategic
allocation of BRAM and DSP resources yields an additional 8.49% latency reduction to
5600 ns at the cost of increased memory and processing unit utilization. This optimization
approach effectively strengthens the real-time performance advantages of FPGAs in edge
computing scenarios. In summary, the optimized ChiliPCNN circuit excels in terms of
latency, resource utilization, and power consumption, providing strong support for the
rapid and efficient deployment of the chili pepper variety and origin detection.

Table 7. Results of an ablation study concerning the ChiliPCNN circuit optimization strategy.

Method Latency (ns) BRAM DSP FF LUT

Unoptimized 8800 42 57 10,878 13,057
Fixed-point 6120 18 53 5243 7670

Fully optimized 5600 38 83 5633 8883

To evaluate ChiliPCNN’s hardware deployment efficiency in practical edge scenarios
(real-time chili pepper recognition), we compared the inference speed of ChiliPCNN
across different hardware platforms (see table notes for computational device details),
and the comparison results are given in Table 8. The inference speeds were averaged
across multiple tests. The results show that the FPGA achieves single-chili recognition
in 7071 ns, significantly outperforming the CPU (128,800 ns) with an 18.21 × speedup.
Even compared with the GPU’s parallel batch processing (32 samples per batch), the FPGA
remains 3529 ns faster for single-sample inference. While increasing the GPU’s batch size
improves its throughput, the FPGA development board (including peripheral components)
has substantially lower costs than CPU/GPU solutions that rely solely on discrete chips.
Given that practical applications typically require single-inference results, the FPGA’s
fixed-point arithmetic optimizes resource utilization and reduces latency, whereas its
pipeline architecture enables parallel computing—providing critical advantages in resource-
constrained scenarios.
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Table 8. Effect of the ChiliPCNN implementation on different devices.

Platform Batch Size Average Time (ns) Speedup

CPU - 128,800 1.0×
CPU + GPU 1 354,000 0.36×
CPU + GPU 32 10,600 12.15×
CPU + GPU 64 5900 21.83×

FPGA - 7071 18.21×
Note: CPU: AMD Ryzen 9 7945HX (manufactured by AMD, Santa Clara, CA, USA), GPU: NVIDIA GeForce
RTX 4060 (manufactured by NVIDIA, San Jose, CA, USA), FPGA: Xilinx Zynq7020 (manufactured by Xilinx,
San Jose, CA, USA).

4. Conclusions
A lightweight network, ChiliPCNN, is presented in this paper for the rapid identifi-

cation of chili pepper varieties and their origins. The ChiliPCNN model is meticulously
crafted, with only 268 parameters and 364 FLOPs required for the variety identification task
and even fewer parameters (244) and FLOPs (340) needed for the origin tracing task. This
design makes ChiliPCNN highly suitable for deployments and applications in resource-
constrained embedded systems. To address the practical needs of chili pepper variety
and origin identification tasks, we integrate e-nose technology with a gas sensor array to
capture the volatile compound features of chili samples, which serve as input data for
training the ChiliPCNN model. To further increase the inference speed of the ChiliPCNN,
we design an FPGA-based ChiliPCNN accelerator. This accelerator was developed via HLS
tools, enabling efficient hardware implementation of the ChiliPCNN model. During the
accelerator design process, we employ various optimization strategies, such as fixed-point
arithmetic and loop unrolling, to fully leverage the performance of the acceleration circuit.
These optimization techniques not only effectively improve the processing speed and
resource utilization rate of the acceleration circuit of the model but also significantly reduce
its power consumption. After the optimization step, the latency of the acceleration circuit
is reduced to 5600 ns, and the power consumption level is decreased to 1.755 W. Ultimately,
a comprehensive e-nose acceleration circuit is designed, enabling the transmission of ac-
quired data to the FPGA for forward inference processing. The computed results are then
delivered to the display screen in real time for continuous monitoring.

In summary, the chili pepper variety and origin detection system proposed in this
paper, which integrates an FPGA and e-nose technology, achieves a good balance between
high accuracy and rapidity in chili pepper variety and origin identification scenarios. This
system provides an efficient and reliable solution for the intelligent management of the chili
industry. Moreover, this study offers a promising reference example for the use of artificial
intelligence technology in agricultural product quality detection situations within the
agricultural sector, which is highly important for promoting the development of agricultural
automation and intelligence. Notably, this study also has certain limitations, which provide
directions for future work: (1) while the current algorithm performs excellently under
standard laboratory conditions, future research could further enhance its robustness against
complex environmental factors to ensure system stability in broader practical application
scenarios; and (2) the FPGA-based hardware acceleration scheme effectively guarantees
processing speed; however, future efforts could focus on more refined optimization of
FPGA implementation in terms of power consumption and resource utilization to increase
the system’s energy efficiency ratio and potential deployment flexibility.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods14152612/s1. Figure S1: The original data curves of the e-
nose for Dataset A. The subplots (a–m) correspond to the original curves of the sensor responses to the
13 varieties of chili peppers (Qianjiao No. 8, Jiaoyang No. 1, Dafang zoujiao, Huaxi lajiao, Huangping
xianjiao, Chuanjiao No. 19, Changla No. 7, Lafengguomei, Huiteng, Xiuting, Cuanjiao No. 1, Yanjiao
425, and Sanyingjiao No. 8); Figure S2: The original data curves of the e-nose for Dataset B. The
subplots (a–g) correspond to the original curves of the sensor responses to the 7 origins of the chili
peppers (Yunnan, Xinjiang, Chongqing, Hunan, Shaanxi, Neimenggu, and Henan); Figure S3: The
original data curves of the e-nose for Dataset C. The subplots (a–g) correspond to the original curves
of the sensor responses to the origins of the chili peppers (Yunnan, Xinjiang, Chongqing, Hunan,
Shaanxi, Neimenggu, and Henan); Algorithm S1: HLS module of Conv1D layer; Algorithm S2: HLS
module of Conv2D layer; Algorithm S3: HLS module of fully connected layer; Algorithm S4: HLS
module of Softmax.
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