In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Collection and Preparation
2.2. Proximate Analysis
2.3. Extraction and Fractionation
2.4. In Vitro Gastrointestinal Digestion
2.5. Total Phenolic Content
2.6. Total Flavonoid Content
2.7. Antioxidant Activity
2.7.1. DPPH• Radical Scavenging Activity Assay
2.7.2. ABTS•+ Radical Scavenging Ability Assay
2.7.3. Protective Hemolysis Erythrocyte Induced by the Radical 2,2′-Azobis(2-amidinopropane) Dihydrochloride (AAPH)
2.8. Inhibitory Activity of Digestive Enzymes
2.8.1. α-Amylase Inhibitory Activity
2.8.2. α-Glucosidase Inhibitory Activity
2.8.3. Pancreatic Lipase Inhibitory Activity
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, K.; Kumar, A.; Kumar, S.; Gairola, S. Bioprospecting of Plants for Phytochemicals: Important for Drugs. In Phytochemical Genomics; Swamy, M.K., Kumar, A., Eds.; Springer: Singapore, 2022; pp. 63–83. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022, 8, 688. [Google Scholar] [CrossRef]
- Pensamiento-Niño, C.A.; Castañeda-Ovando, A.; Añorve-Morga, J.; Hernández-Fuentes, A.D.; Aguilar-Arteaga, K.; Ojeda-Ramírez, D. Edible flowers and their relationship with human health: Biological activities. Food Rev. Int. 2024, 40, 620–639. [Google Scholar] [CrossRef]
- Wilczyńska, A.; Kukułowicz, A.; Lewandowska, A. Effect of packaging on microbial quality of edible flowers during refrigerated storage. Pol. J. Food Nutr. Sci. 2023, 73, 32–38. [Google Scholar] [CrossRef]
- Monroy-García, I.N.; González-Galván, L.L.; Viveros-Valdez, E. Edible flowers as a source of bioactive compounds. In Improving Health and Nutrition through Bioactive Compounds; Segura Campos, M.R., Ed.; Woodhead Publishing: Cambridge, UK, 2025; pp. 169–190. [Google Scholar] [CrossRef]
- Breda, C.; Nascimento, A.; Meghwar, P.; Lisboa, H.; Aires, A.; Rosa, E.; Ferreira, L.; Barros, A.N. Phenolic composition and antioxidant activity of edible flowers: Insights from synergistic effects and multivariate analysis. Antioxidants 2025, 14, 282. [Google Scholar] [CrossRef]
- Figueredo, C.; Álvarez, G.; Cortés, L. Edible flowers commercialized in local markets of Pachuca de Soto, Hidalgo, Mexico. Bot. Sci. 2022, 100, 120–138. [Google Scholar] [CrossRef]
- Sotelo, A.; López, S.; Basurto, F. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum. Nutr. 2007, 62, 133–138. [Google Scholar] [CrossRef]
- Barriada, L.; Almaraz, N.; Delgado, E.; Gallardo, T.; Ávila, J. Flavonoid composition and antioxidant capacity of the edible flowers of Agave durangensis (Agavaceae). CyTA-J. Food 2013, 12, 105–114. [Google Scholar] [CrossRef]
- Enríquez Estrella, M.Á.; Enrìquez Ujukam, T.J.; Serrano Torres, G.J.; Torres Rodriguez, S.H.; Cuadrado Ayala, D.G. Comportamiento antioxidante y polifenólico de una conserva de flor de cabuya negra (Agave americana). Perfiles 2024, 1, 54–60. [Google Scholar] [CrossRef]
- Wen, H.; Li, S.; Wei, Y.; Dong, J.; Liang, Z.; Guo, L.; Zhang, Y. Yunnan edible flowers and their potential in future foods: Focus on ethnological applications, chemical and pharmacological research. J. Future Foods 2025, 2, 119–133. [Google Scholar] [CrossRef]
- Almaraz-Abarca, N.; Delgado-Alvarado, E.A.; Ávila-Reyes, J.A.; Uribe-Soto, J.N.; González-Valdez, L.S. The phenols of the genus Agave (Agavaceae). J. Biomater. Nanobiotechnol. 2013, 4, 9–16. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef]
- Barros, H.D.D.F.Q.; Junior, M.R.M. Phenolic compound bioavailability using in vitro and in vivo models. In Bioactive Compounds; Segura Campos, M.R., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 113–126. [Google Scholar] [CrossRef]
- Jimenez-Aspee, F.; Thomas, S.; Schulz, A.; Ladio, A.; Theoduloz, C.; Schmeda, G. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Sci. Nutr. 2015, 4, 595–610. [Google Scholar] [CrossRef]
- Morais, J.; Sant’Ana, A.; Dantas, A.; Silva, B.; Lima, M. Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res. Int. 2020, 131, 109046. [Google Scholar] [CrossRef]
- Monroy-García, I.N.; Carranza-Rosales, P.; Carranza-Torres, I.E.; Castro-Ochoa, L.D.; González-Villasana, V.; Islas-Rubio, A.R.; Viveros-Valdez, E. Antioxidant and biological activity of mexican madroño Fruit (Arbutus arizonica). Foods 2024, 13, 2982. [Google Scholar] [CrossRef]
- Monroy-García, I.N.; Carranza-Torres, I.E.; Carranza-Rosales, M.P.; Oyón, M.; García-Estevez, I.; Viveros-Valdez, E. Phenolic profiles and biological activities of extracts from edible wild fruits Ehretia tinifolia and Sideroxylon lanuginosum. Foods 2021, 10, 2710. [Google Scholar] [CrossRef]
- Yang, H.L.; Korivi, M.; Lin, M.K.; Chang, H.C.W.; Wu, C.R.; Lee, M.S.; Hseu, Y.C. Antihemolytic and antioxidant properties of pearl powder against 2, 2′-azobis (2-amidinopropane) dihydrochloride-induced hemolysis and oxidative damage to erythrocyte membrane lipids and proteins. J. Food Drug Anal. 2017, 25, 898–907. [Google Scholar] [CrossRef]
- Burgos, A.; Jimenez, F.; Thomas, S.; Schmeda, G.; Theoduloz, C. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chem. 2017, 237, 1073–1082. [Google Scholar] [CrossRef]
- Pinedo-Espinoza, J.; Gutierrez-Tlahque, J.; Santiago-Saenz, Y.O.; Aguirre-Mancilla, C.L.; Reyes-Fuentes, M.; Lopez-Palestina, C.U. Nutritional composition, bioactive compounds and antioxidant activity of wild edible flowers consumed in semiarid regions of Mexico. Plant Food Hum Nutr. 2020, 75, 413–419. [Google Scholar] [CrossRef]
- De Lima, F.; Rodrigues, M.; Fernando, H.; Farias, J.; Martins, L. Composición química de pétalos de flores de rosa, girasol y caléndula para su uso en la alimentación humana. Cienc. Tecnol. Agropecu. 2019, 20, 149–158. [Google Scholar] [CrossRef]
- Navarro-González, I.; González-Barrio, R.; García-Valverde, V.; Bautista-Ortín, A.B.; Periago, M.J. Nutritional composition and antioxidant capacity in edible flowers: Characterization of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 2015, 16, 805–822. [Google Scholar] [CrossRef]
- Arroyo Uriarte, P.; Mazquiaran Bergera, L.; Rodríguez Alonso, P.; Valero Gaspar, T.; Ruiz Moreno, E.; Ávila Torres, J.M.; Varela Moreiras, G. Informe de Estado de Situación Sobre “Frutas y Hortalizas: Nutrición y Salud en la España del S. XXI”; Fundación Española de Nutrición: Madrid, Spain, 2018. [Google Scholar]
- Kritsi, E.; Tsiaka, T.; Ioannou, A.; Mantanika, V.; Strati, I. In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities. J. Appl. Sci. 2022, 12, 7331. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical content, health benefits, and toxicology of common edible flowers: A Review (2000–2015). Crit. Rev. Food Sci. Nutr. 2015, 56, S130–S148. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Złotek, U.; Zielińska, E. Digestion and bioavailability of bioactive phytochemicals. Int. J. Food Sci. Technol. 2017, 52, 291–305. [Google Scholar] [CrossRef]
- Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of metabolism and bioavailability enhancement of polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. In vitro bioaccessibility of health-related compounds from a blended fruit juice–soymilk beverage: Influence of the food matrix. J. Funct. Foods 2014, 7, 161–169. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2013, 6, 319–330. [Google Scholar] [CrossRef]
- Mlcek, J.; Plaskova, A.; Jurikova, T.; Sochor, J.; Baron, M.; Ercisli, S. Chemical, nutritional and sensory characteristics of six ornamental edible flowers species. Foods 2021, 10, 2053. [Google Scholar] [CrossRef]
- Rashid, A.; Anwar, F.; Qadir, R.; Sattar, R.; Akhtar, M.T.; Nisar, B. Characterization and biological activities of essential oil from flowers of sweet basil (Ocimum basilicum L.) Selected from different regions of Pakistan. J. Essent. Oil-Bear. Plants 2023, 26, 95–107. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible flowers: A new promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules 2018, 5, 1139. [Google Scholar] [CrossRef]
- Moreno Muñoz, M.T. Nuevas Técnicas Electroquímicas Para la Determinación de la Capacidad Antioxidante en Extractos Alimentarios Basadas en el Método CUPRAC. Ph.D. Thesis, Universidad D Córdoba, Córdoba, Spain, 15 July 2021. Available online: https://helvia.uco.es/handle/10396/21901 (accessed on 10 May 2025).
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 2013, 136, 206–212. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, S.G.; Xie, Y.Q.; Chen, F.; Zhao, Y.Y. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Li, C.X.; Wang, F.R.; Zhang, B.; Deng, Z.Y.; Li, H.Y. Stability and antioxidant activity of phenolic compounds during in vitro digestion. J. Food Sci. 2023, 88, 696–716. [Google Scholar] [CrossRef]
- Mercatante, D.; Ansorena, D.; Taticchi, A.; Astiasarán, I.; Servili, M.; Rodriguez-Estrada, M.T. Effects of in vitro digestion on the antioxidant activity of three phenolic extracts from olive mill wastewaters. Antioxidants 2022, 12, 22. [Google Scholar] [CrossRef]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2017, 105, 580–588. [Google Scholar] [CrossRef]
- Mustapha Tacherfiout, M.; Kherbachi, S.; Kheniche, M.; Mattonai, M.; Degano, I. HPLC-DAD and HPLC-ESI-MS-MS profiles of hydroalcoholic extracts of Chamaemelum nobile and Mentha pulegium, and study of their antihemolytic activity against AAPH-induced hemolysis. S. Afr. J. Bot. 2022, 150, 678–690. [Google Scholar] [CrossRef]
- Subramaniyan, V.; Hanim, Y.U. Role of pancreatic lipase inhibition in obesity treatment: Mechanisms and challenges towards current insights and future directions. Int. J. Obes. 2025, 49, 492–506. [Google Scholar] [CrossRef]
- Proença, C.; Ribeiro, D.; Freitas, M.; Fernandes, E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3137–3207. [Google Scholar] [CrossRef]
- Choudhary, N.; Kalra, S.; Unnikrishnan, A.G.; Ajish, T.P. Preventive pharmacotherapy in type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2012, 16, 33–43. [Google Scholar] [CrossRef]
- Rincon, N.; Tincon, J.; Acosta, J. Inhibición de la α-glucosidasa mediante flavonoides de origen natural como vía de control en el desarrollo de diabetes mellitus. Biociencias 2019, 14, 162–181. [Google Scholar] [CrossRef]
- Barrios Silva, I.; Bravo Muñoz, J. Biodisponibilidad y Bioaccesibilidad de Polifenoles y Flavonoides. Bachelor’s Thesis, TALCA Universidad, Talca, Chile, 2020. Available online: http://dspace.utalca.cl/handle/1950/12420 (accessed on 14 May 2025).
- Guo, N.; Zhu, Y.W.; Jiang, Y.W.; Li, H.K.; Liu, Z.M. Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Ind. Crops Prod. 2018, 148, 112287. [Google Scholar] [CrossRef]
- Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef]
- Křen, V. Glycoside vs. Aglycon: The Role of Glycosidic Residue in Biological Activity. In Glycoscience; Fraser-Reid, B.O., Tatsuta, K., Thiem, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 2589–2644. [Google Scholar] [CrossRef]
- He, M.; Zhou, X.; Wang, X. Glycosylation: Mechanisms, biological functions and clinical implications. Signal Transduct. Target. Ther. 2024, 9, 194. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.; Zhang, Y. Comparison of alpha-amylase, alpha-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef]
- Coral, E.; Calixto, M.; Soberón, M. Actividad inhibitoria in vitro de los extractos acuosos de los frutos de Hylocereus megalanthus y Passiflora tripartita var. mollisima sobre las enzimas α-amilasa y α-glucosidasa. Rev. Soc. Quím. Perú 2020, 86, 93–104. [Google Scholar] [CrossRef]
- Das, B.; De, A.; Das, M.; Das, S.; Samanta, A. A new exploration of Dregea volubilis flowers: Focusing on antioxidant and antidiabetic properties. S. Afr. J. Bot. 2017, 109, 16–24. [Google Scholar] [CrossRef]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
Nutritional Information | Wet Basis (%) | Dry Basis (%) |
---|---|---|
Moisture | 88.70 ± 12.6 | - |
Crude Fiber | 0.85 ± 0.09 | 7.52 ± 0.98 |
Ash | 0.69 ± 0.05 | 6.11 ± 0.52 |
Crude Protein | 0.36 ± 0.02 | 3.19 ± 0.26 |
Crude Fat | 0.22 ± 0.03 | 1.95 ± 0.16 |
Nitrogen-Free Extract | 10.03 ± 1.2 | 81.24 ± 10.8 |
Energy content (Kcal/100g) | 43.54 ± 2.8 |
Sample | Yield |
---|---|
Methanolic extract (MeOH) | 3.68 ± 0.2 |
Enriched Phenolic Extract (PE) | 0.45 ± 0.08 |
EE fraction in ethyl acetate (EPE) | 0.15 ± 0.01 |
Digested fraction of EPE (DEPE) | 0.03 ± 0.005 |
Sample | Phenols [mg Eq de GA/g de Sample] | Flavonoids [mg Eq de Cat/g de Sample] |
---|---|---|
MeOH | c 16.4 ± 2.0 | c 8.4 ± 0.8 |
PE | b 21.8 ± 3.0 | b 11.2 ± 2.0 |
EPE | a 46.1 ± 7.0 | a 25.3 ± 4.0 |
DEPE | d 7.6 ± 0.5 | b 14.6 ±1.0 |
* FW | 138.0 mg ± 21.0/100 g | 8.0 mg ± 1.2/100 g |
* DFW | 21.0 mg ± 0.4/100 g | 4.6 mg ± 0.3/100 g |
Bioaccessibility (%) | 15.22 ± 1.9 | 57.5 ± 2.5 |
Sample | ABTS [μM/mgExt] | DPPH (IC50) [mg/mL] | AAPH (IC50) [μg/mL] |
---|---|---|---|
MeOH | c 19.0 ± 3.0 | b 0.93 ± 0.08 | - |
PE | b 27.0 ± 2.0 | c 0.61 ± 0.07 | - |
EPE | a 42.0 ± 7.0 | d 0.43 ± 0.05 | b 70.43 ± 2.8 |
DEPE | d 8.0 ± 0.6 | a 4.2 ±0.1 | >100 |
Trolox | - | e 0.012 ± 0.01 | - |
Ascorbic acid | - | - | a 19.37 ± 0.5 |
* FW | 5.7 μM/100 g | - | - |
* DFW | 1.9 μM/100 g | - | - |
Sample | α-Amilase (IC50) [mg/mL] | α-Glucosidase (IC50) [mg/mL] | Lipase (IC50) [mg/mL] |
---|---|---|---|
MeOH | >3.0 | >3.0 | >3.0 |
PE | >3.0 | c 1.2 ± 0.1 | >3.0 |
EPE | b 1.8 ± 0.1 | a 2.7 ± 0.6 | >3.0 |
DEPE | a 2.1 ± 0.4 | b 1.6 ± 0.2 | a 1.4 ± 0.2 |
* Control | c 0.9 ± 0.1 | d 0.2 ± 0.05 | b 0.25 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroy-García, I.N.; González-Galván, L.L.; Leos-Rivas, C.; Treviño-Garza, M.Z.; Sánchez-García, E.; Viveros-Valdez, E. In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower. Foods 2025, 14, 2375. https://doi.org/10.3390/foods14132375
Monroy-García IN, González-Galván LL, Leos-Rivas C, Treviño-Garza MZ, Sánchez-García E, Viveros-Valdez E. In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower. Foods. 2025; 14(13):2375. https://doi.org/10.3390/foods14132375
Chicago/Turabian StyleMonroy-García, Imelda N., Laura Lucely González-Galván, Catalina Leos-Rivas, Mayra Z. Treviño-Garza, Eduardo Sánchez-García, and Ezequiel Viveros-Valdez. 2025. "In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower" Foods 14, no. 13: 2375. https://doi.org/10.3390/foods14132375
APA StyleMonroy-García, I. N., González-Galván, L. L., Leos-Rivas, C., Treviño-Garza, M. Z., Sánchez-García, E., & Viveros-Valdez, E. (2025). In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower. Foods, 14(13), 2375. https://doi.org/10.3390/foods14132375