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Abstract: The milk flavor can be attributed to the presence of numerous flavor molecules and
precursors. In this study, we employed widely targeted metabolomic analysis techniques to
analyze the metabolic profiles of various milk samples obtained from goats, sheep, dairy cows,
and buffaloes. A total of 631 metabolites were identified in the milk samples, which were further
categorized into 16 distinct classes. Principal component analysis (PCA) suggested that the
metabolite profiles of samples from the same species exhibit clustering, while separated patterns
of metabolite profiles are observed across goat, sheep, cow, and buffalo species. The differential
metabolites between the groups of each species were screened based on fold change and variable
importance in projection (VIP) values. Five core differential metabolites were subsequently
identified, including 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid, inosine 5′-triphosphate,
methylcysteine, N-cinnamylglycine, and small peptide (L-tyrosine–L-aspartate). Through multiple
comparisons, we also screened biomarkers of each type of milk. Our metabolomic data showed
significant inter-species differences in the composition and concentration of some compounds,
such as organic acids, amino acids, sugars, nucleotides, and their derivatives, which may affect the
overall flavor properties of the milk sample. These findings provided insights into the molecular
basis underlying inter-species variations in milk flavor.

Keywords: goat; milk; UPLC–ESI–MS/MS-based metabolomics; flavor profile

1. Introduction

Milk from goats, sheep, and cows show differences in composition that set the different
varieties apart from each other. For instance, goat milk exhibits a higher mineral content,
increased calcium levels [1], and a distinct fatty acid composition [2,3]. In addition, due to
the presence of its natural antibiotics and antioxidants, goat milk is also believed to have
a certain degree of immune-boosting effects [4]. Previous studies primarily focused on
conducting a comparative analysis of the nutrient composition between goat milk and
cow milk [5,6], as well as comparing the individual or multiple flavor-related compounds
across species. However, few studies have investigated the role of metabolites in the
determination of milk flavor.

Due to the intricate chemical composition of livestock products, such as milk and
meats, their flavor is typically attributed not to a singular component but rather to a diverse
array of molecules [7]. Previous studies have indicated that the flavor profile of milk
encompasses a wide range of compounds, including free fatty acids, sulfur compounds,
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terpenoids, aromatic compounds, esters, ethers, aldehydes, ketones, alkanes, alcohols,
and lactones [8,9]. Changes in the abundance and composition of these compounds
may explain the distinct flavors observed in milk from different species. Some studies
have identified branched-chain fatty acids as the primary compounds responsible for
the characteristic “goaty” flavor of goat milk and sheep milk [5,10,11]. Additionally, the
presence of 3-methylindole and 4-methyl phenol [12], along with oxidation byproducts
of fatty acids, such as aldehydes, ketones, lactones, and stearic acid, also play a role in
determining milk flavor [13].

Metabolomics provides a powerful tool for investigating intricate metabolite
profiles, facilitating comprehensive investigations into the growth and development
of plants and animals [14,15], stress response [16–18], immune interactions [19], mutant
phenotypes [20,21], nutrient composition [22], bioactive compounds [23], fermentation
flavor [24], brewing technology [25], etc. Recently, extensive investigations have been
conducted on the correlation between microbial metabolite activity in soil, air, water,
and animal intestines and human health [26,27]. Metabolomics has been employed
for the analysis of food composition, identification of food quality, monitoring of
food consumption, and assessment of nutrition [28]. In the field of food metabolomics,
an increasing number of studies have begun to focus on the application of metabolomics in
food flavor analysis. Many studies have quantified various compounds in food, including
sugars, amino acids, and organic acids, to assess their contribution to the formation of
food flavor [29]. For instance, the identification of major flavor compounds associated
with wines [24] and radish taproots [30] has been accomplished through the application
of a widely targeted metabolomics technique. The application of metabolomic analysis
has also been extended to the characterization of flavor profiles in animal-derived foods.
Zhang et al. used nuclear magnetic resonance (NMR) to investigate metabolites of dry-cured
hams, revealing that amino acids and organic acids played a predominant role in determining
the taste profile [31]. Based on liquid chromatography mass spectrometry (LC-MS) techniques,
Wang et al. compared metabolites in three types of goat meat and revealed that fatty acids,
aldehydes, ketones, lactones, alkaloids, flavonoids, and phenolics were responsible for the
nuances of their flavors [32].

Widely targeted metabolomics represents an advancement technique in the field of
metabolomics, integrating the merits of both targeted and untargeted methods. It offers
remarkable advantages, such as high throughput, enhanced sensitivity, and extensive
coverage [33,34]. By utilizing a self-constructed compound database and employing the
multiple reaction monitoring (MRM) scanning mode of mass spectrometry, this method
facilitates both qualitative and quantitative identification of over a thousand metabolites.
This tool enables us to investigate the metabolic profiles of milk from different species and
the identification of biomarkers associated with milk flavor.

In this work, we employed a widely targeted metabolomic mean to compare the
composition and relative abundance of milk metabolites across multiple species, including
goats, sheep, cows, and buffaloes. Notably, characteristic metabolites specific to each type of
milk and their associated metabolic pathways were identified. The findings are anticipated
to contribute to a more comprehensive understanding of the regulation of milk flavor and
propose further research for manipulating the flavor of milk products.

2. Materials and Methods
2.1. Milk Samples

Xinong Saanen dairy goats (approximately 3–4 years old, 2 parities) and Holstein
cows (approximately 4–5 years old, 2 parities) utilized in this study were selected from
the experimental farm located at Northwest A&F University, Yangling, Shaanxi Province,
China. The East Friesian dairy sheep (approximately 3 to 4 years old, 2 parities) utilized in
this research were selected from Yuan Sheng Nong Mu Co., Ltd., Jinchang, Gansu Province,
China. The buffaloes (approximately 4 to 5 years old, 2 parities) utilized in this study were
selected from a commercial farm located in Guangxi, Province, China. The animals were
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all managed similarly and were provided with a mixed diet consisting of corn, soybean
meal, bran, rapeseed meal, and a mineral-vitamin premix. The milk samples were collected
from each dairy animal during the peak lactation period (60 days postpartum; 6 goats,
GMM group; 6 sheep, SMM group; 6 cows, CMM group; 6 buffaloes, BMM) (Table 1),
with a sample volume of 100 mL. Subsequently, the collected samples were divided into
centrifuge tubes of 50 mL capacity, ensuring secure seals. Finally, the samples were stored
at −80 ◦C in a refrigerator.

Table 1. Sample information.

Species Type of Samples Name of Samples Group

Goat Milk GMM1 GMM
Goat Milk GMM2 GMM
Goat Milk GMM3 GMM
Goat Milk GMM4 GMM
Goat Milk GMM5 GMM
Goat Milk GMM6 GMM

Sheep Milk SMM1 SMM
Sheep Milk SMM2 SMM
Sheep Milk SMM3 SMM
Sheep Milk SMM4 SMM
Sheep Milk SMM5 SMM
Sheep Milk SMM6 SMM
Cow Milk CMM1 CMM
Cow Milk CMM2 CMM
Cow Milk CMM3 CMM
Cow Milk CMM4 CMM
Cow Milk CMM5 CMM
Cow Milk CMM6 CMM

Buffalo Milk BMM1 BMM
Buffalo Milk BMM2 BMM
Buffalo Milk BMM3 BMM
Buffalo Milk BMM4 BMM
Buffalo Milk BMM5 BMM
Buffalo Milk BMM6 BMM

2.2. Sample Preparation and Extraction

The samples stored at −80 ◦C were thawed on ice until there was no ice in the
sample and vortexed for 10 s. Subsequently, 50 µL of the sample and 300 µL of extraction
solution (ACN:methanol = 1:4, v/v) containing internal standards were added to a 2 mL
microcentrifuge tube. The sample was vortexed for 3 min and then centrifuged at 12,000 rpm
for 10 min (at a temperature of 4 ◦C). A volume of 200 µL of the supernatant was collected
and placed in a freezer set at −20 ◦C for a duration of 30 min, followed by centrifugation
at 12,000 rpm for another period of three minutes (at a temperature of 4 ◦C). An aliquot
consisting of 180 µL from the supernatant was transferred for LC-MS analysis. The sample
extracts were analyzed using ultra-performance liquid chromatography (UPLC, ExionLC
AD (AB SCIEX Pet. Ltd., Framingham, MA, USA), https://sciex.com.cn/, accessed on
1 December 2022) and tandem mass spectrometry (MS/MS, QTRAP® (AB SCIEX Pet. Ltd.,
Framingham, MA, USA), https://sciex.com/, accessed on 1 December 2022).

2.3. Ultra-Performance Liquid Chromatography Conditions

The Ultra-Performance Liquid Chromatography (UPLC) conditions were as follows:
the chromatographic column used was Waters ACQUITY UPLC HSS T3 C18, with a particle
size of 1.8 µm and dimensions of 2.1 mm × 100 mm; the mobile phase consisted of ultra-pure
water (supplemented with 0.1% formic acid) as phase A and acetonitrile (supplemented
with 0.1% formic acid) as phase B; the gradient program employed was Water/Acetonitrile,

https://sciex.com.cn/
https://sciex.com/
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starting at a ratio of 95:5 v/v at 0 min, transitioning to a ratio of 10:90 v/v at 11.0 min,
maintaining this ratio until 12.0 min, then returning to a ratio of 95:5 v/v at 12.1 min and
continuing until the endpoint at 14.0 min; the flow rate utilized was set at a constant value
of 0.4 mL/min; and the column temperature was maintained at a steady level of 40 ◦C
throughout analysis.

2.4. Tandem Mass Spectrometry Conditions

LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-linear ion
trap mass spectrometer (QTRAP), QTRAP® LC-MS/MS System (AB Sciex, Shanghai, China),
equipped with an ESI Turbo Ion-Spray interface (AB SCIEX Pet. Ltd., Framingham, MA,
USA) operating in positive and negative ion mode and controlled by Analyst 1.6.3 software
(Sciex, AB SCIEX Pet. Ltd., Framingham, MA, USA). Electrospray ionization (ESI) was
performed at a temperature of 500 ◦C, with the mass spectrum voltage set to 5500 V (positive)
and −4500 V (negative). The ion source gas I (GSI) pressure was maintained at 55 psi, while
the gas II (GS II) pressure was set to 60 psi. Additionally, the curtain gas (CUR) pressure
was adjusted to 25 psi. For collision-activated dissociation (CAD), the parameter set was
optimized for high performance. In a triple quadrupole (Qtrap), each ion pair underwent
scanning based on an optimized declustering potential (DP) and collision energy (CE).

2.5. Unsupervised Principal Component Analysis

The principal component analysis (PCA) was conducted using the statistical function
prcomp in R (www.r-project.org, accessed on 1 May 2023), with the parameter “scale” set
to “True”. Unit variance scaling is calculated by centralizing the raw data and dividing it
by the standard deviation of the variable. The calculating formula is as follows:

x′ =
x − u
σ

Here, u is the mean, and σ is the standard deviation.

2.6. Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA)

The partial least squares-discriminant analysis (PLS-DA) is a supervised multivariate
statistical analysis method employed for pattern recognition. This specific approach
involves extracting the components of both the independent variable X and dependent
variable Y, followed by calculating their correlation. OPLS-DA integrates orthogonal
signal correction (OSC) and PLS-DA methods to decompose the X matrix information
into two components, one related to Y and the other unrelated to Y, effectively capturing
relevant variance while removing irrelevant differences [35]. OPLS-DA further applies
centralized processing after the log2 transformation of the original data. Here, X represents
the matrix of sample quantitative information, while Y represents the matrix of sample
grouping information.

The prediction parameters of the OPLS-DA evaluation model encompass R2X, R2Y,
and Q2. Herein, R2X and R2Y denote the explanatory power of the constructed model for
X and Y matrices respectively, while Q2 represents the predictive capability of the model.
The closer these three indicators approach 1, the greater stability and reliability exhibited
by the model. A Q2 value greater than 0.5 indicates an effective model, while a Q2 value
exceeding 0.9 signifies an excellent model.

2.7. Differential Metabolites Selected

The differential metabolites for different types of milk were identified based on
the criteria of VIP ≥ 1 and |Log2FC| ≥ 1.0. VIP values are extracted from OPLS-DA
results by using the R software package “MetaboAnalystR”, which includes score plots
and permutation plots. The data underwent logarithmic transformation (log2) and
mean centering before OPLS-DA. To avoid overfitting, we performed a permutation
test (200 permutations).

www.r-project.org
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2.8. Kyoto Encyclopedia of Genes and Genomes (KEGG) Annotation and Enrichment Analysis

The identified metabolites were annotated using the KEGG Compound database
(http://www.kegg.jp/kegg/compound/, accessed on 1 May 2023) and subsequently mapped
to the KEGG Pathway database (http://www.kegg.jp/kegg/pathway.html, accessed on
1 May 2023). The identified pathways, which exhibited significant regulation of metabolites,
were subsequently subjected to metabolite set enrichment analysis (MSEA) using a hyper-
geometric test to determine their statistical significance. The calculating formula is as follows:

P = 1 −∑m−1
i=0

(
M
i

)(
N −M
n −i

)
(

N
n

)
Among these, N represents the total number of metabolites annotated in the KEGG

database, n represents the count of differential metabolites among all annotated metabolites,
M denotes the overall number of metabolites within a specific KEGG pathway, and m
signifies the count of differential metabolites within the pathway.

3. Results
3.1. Metabolite Profiles of Milk Derived from Goat, Sheep, Cow, and Buffalo Species

To gain deeper insights into the metabolite variations among milk from diverse
species, we conducted the widely targeted UPLC-MS/MS metabolomic analysis on a total
of 24 distinct milk samples. A total of 631 metabolites were identified and classified
into 16 categories (Table S1), including 182 amino acids and their derivatives (28.84%),
91 organic acid and their derivatives (14.42%), 75 nucleotides and derivatives (11.82%),
57 glycerophospholipids (GP, 9.03%), 51 fatty acyls (FA, 8.08%), 48 carbohydrates and
its metabolites (7.61%), 36 heterocyclic compounds (5.71%), 31 benzene and substituted
derivatives (4.91%), 23 alcohol and amines (3.65%), 13 coenzyme and vitamins (2.06%),
10 bile acids (1.58%), 6 hormones and hormone-related compounds (0.95%), 2 sphingolipids
(SL, 0.32%), 2 tryptamines, cholines, and pigments (0.32%), and others (Figure 1).
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 Figure 1. The proportion of different classes of compounds for the metabolites detected in milk samples
obtained from goats, sheep, cows, and buffaloes using a widely targeted metabolomic approach.

The principal component analysis (PCA) [36] was conducted using the prcomp
function in R (www.r-project.org, accessed on 1 May 2023). We observed that the metabolite
compositions of the four types of milk exhibited clear separation, with PC1 and PC2
explaining 25.44% and 19.82% of the total variance, respectively (Figure 2A). The PCA
plot also demonstrated that the quality control (QC) samples, prepared from a mixture
of samples, exhibited clustering within the same region and even some overlap, thereby
indicating their similarity in metabolic profiles and affirming the stability and reproducibility
of our analysis (Figure S1).

http://www.kegg.jp/kegg/compound/
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1 
 

 
Figure 2. Principal component analysis (PCA), correlation analysis, and cluster analysis were
conducted to understand the overall metabolite differences between the groups of milk samples and
the variation between the samples within the groups. (A) PCA plot showing the different metabolic
profiles of milk samples. (B) Clustering heat map showing the Pearson correlation coefficients of
metabolites in 24 milk samples. (C) The cluster heat map displaying the accumulation levels of
each metabolite across four different types of milk. SMM1-6, the samples of sheep milk metabolites.
BMM1-6, the samples of buffalo milk metabolites. GMM1-6, the samples of goat milk metabolites.
CMM1-6, the samples of cow milk metabolites.
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Pearson correlation coefficients between samples were calculated using the cor function
in R. The results depicted in Figure 2B demonstrate a strong correlation coefficient among
the samples, indicating the robust reproducibility of our analysis and providing a high
level of confidence in discerning differences between milk samples from distinct species
(Table S2). A hierarchical cluster analysis was performed after the data was processed by
unit variance scaling. The cluster heat map was drawn by using the R program script. It was
observed that milk samples of the same type exhibited clustering tendencies (Figure 2C).
These findings indicated that there are significant differences in metabolite profiles between
the four types of milk.

To investigate the trend of relative abundance changes in metabolites from BMM,
CMM, and SMM to GMM, we conducted a K-Means cluster analysis on the standardized
data of all metabolites. The result showed that the metabolites were classified into nine
subclasses based on the trend of relative abundance changes (Figure 3 and Table S3). The
number of metabolites in subclasses 3 and 9 reached the highest count, totaling 89 for both
subclasses, while subclass 2 exhibited the lowest enrichment of metabolites, with a total of
only 38. In subclasses 1 and 4, the GMM group showed higher metabolite abundance levels
compared to the other three groups. In subclass 3, the CMM group exhibited elevated
metabolite abundance levels in comparison to the other three groups. In subclass 8, the
SMM group displayed higher relative abundance levels of metabolites when compared to
the remaining three groups. In subclasses 6 and 9, the BMM group demonstrated higher
relative abundance levels of metabolites than the other three groups. These up-regulated
metabolites may play a role in determining the distinct flavor profiles of the various types
of milk (Figure 3).
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3.2. Differential Metabolite Screening

An OPLS-DA [37] analysis was employed to accurately identify the differential
metabolites in the comparison groups. The Q2 values of all comparison groups exceeded
0.9, indicating the robustness and reliability of these models for further screening of
differential metabolites (Figure S2). Then, we integrated the fold change with VIP values
derived from the OPLS-DA model for the identification of differentially expressed
metabolites (DEMs). The DEMs were identified based on a threshold of VIP ≥ 1.0,
with fold changes ≥2 and ≤0.5. We obtained six DEM sets, including GMM vs. CMM,
GMM vs. SMM, GMM vs. BMM, CMM vs. SMM, CMM vs. BMM, and SMM vs.
BMM. There were 256 DEMs (109 up-regulated and 147 down-regulated) in the GMM
vs. CMM, 170 DEMs (109 up-regulated and 61 down-regulated) in the GMM vs. SMM,
265 DEMs (140 up-regulated and 125 down-regulated) in GMM vs. BMM, 257 DEMs
(145 up-regulated and 112 down-regulated) in CMM vs. BMM, 275 DEMs (173 up-regulated
and 102 down-regulated) in CMM vs. SMM, and 259 DEMs (126 up-regulated and
133 down-regulated) in SMM vs. BMM (Figure 4 and Tables S4–S9). The results revealed
that the dissimilarities in the number of differential metabolites between goat milk and
sheep milk were comparatively less than those observed between goat milk and cow
milk, as well as buffalo milk.
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3.3. KEGG Enrichment Analysis of Differential Metabolites

To obtain comprehensive insights into the metabolic pathways of differential metabolites,
we performed KEGG enrichment analysis on 460 differential metabolites among four
species (Figure 5A–F). The enrichment analysis revealed that the differential metabolites
in the GMM/CMM and GMM/BMM groups were primarily associated with purine
metabolism and nucleotide metabolism (Figure 5C,E). Moreover, these two metabolic
pathways also showed up in the SMM/CMM and SMM/BMM groups (Figure 5B,F).
The differential metabolites in the GMM/SMM set were mainly involved in fatty acid
biosynthesis, one carbon pool by folate, and linoleic acid metabolism (Figure 5A). The
differential metabolites in the CMM/BMM set showed significant enrichment in bile
secretion, salivary secretion, and riboflavin metabolism (Figure 5D). The findings suggest
that these pathways may play a critical role in modulating flavor characteristics and have
significant biological implications.
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1 
 

 

Figure 5. KEGG enrichment analysis of the differential metabolites. (A) The top 20 metabolic
pathways with the lowest q-values in the GMM/SMM set. (B) The top 20 metabolic pathways with
the lowest q-values in the CMM/SMM set. (C) The top 20 metabolic pathways with the lowest
q-values in the GMM/CMM set. (D) The top 20 metabolic pathways with the lowest q-values in the
CMM/BMM set. (E) The top 20 metabolic pathways with the lowest q-values in the GMM/BMM set.
(F) The top 20 metabolic pathways with the lowest q-values in the SMM/BMM set.
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3.4. Identification of Characteristic Metabolites of Each Type of Milk

We conducted a comparative analysis of the DEMs in six DEM sets and screened
five core differential metabolites, namely 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid,
inosine 5′-triphosphate, methylcysteine, N-cinnamylglycine, and Tyr-Asn (Figure 6). The
findings imply that these compounds could potentially account for the variations in milk
flavor observed among the species.
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To identify the characteristic metabolites of goat milk, we performed multiple comparisons
of up-regulated DEMs among the GMM/CMM, GMM/SMM, and GMM/BMM sets. A total
of seven characteristic metabolites were identified in goat milk, including N-(3-indolylacetyl)-
L-alanine, pyridoxine 5′-phosphate, ADP-ribose, N-acetytryptophan, 3-methylcrotonyl
glycine, dihydro-D-sphingosine, and N-cinnamylglycine (Figure 7A). These compounds
were enriched in goat milk compared to other types of milk, suggesting their potential as
biomarkers for screening goat milk.

Based on the multiple comparisons of up-regulated DEMs among the SMM/CMM,
SMM/GMM, and SMM/BMM sets, a total of 18 characteristic metabolites were identified
(Figure 7B). These included eight small peptides, five nucleotides and their metabolites, one
amino acid, one amino derivative, one amine, one organic acid derivative, and one heterocyclic
compound. The relatively elevated levels of methylcysteine, adenine, 5′-deoxy-5′-(methylthio)
adenosine, N-alpha-acetyl-L-asparagine, cytidine 2′, 3′-cyclomonophosphate, oxypurinol,
8-Azaguanine, 1,4-Dihydro-1-Methyl-4-Oxo-3-Pyridinecarboxamide, 3-(3-Hydroxyphenyl)-
3-hydroxypropanoic acid, and N(alpha)-acetyl-epsilon-(2-propenal) lysine, in comparison
to other metabolites, can serve as potential biomarkers of sheep milk.

By conducting multiple comparisons of up-regulated DEMs among the CMM/GMM,
CMM/SMM, and CMM/BMM sets, we observed 14 characteristic metabolites in cow
milk. These included five carbohydrates and their metabolites, three nucleotides and their
metabolites, two amino acids and their derivatives, two organic acid and their derivatives,
one coenzyme and vitamin, and one fatty acyl (Figure 7C). The levels of these 14 metabolites
were found to be significantly elevated in cow milk, indicating their potential as biomarkers
for the screening of cow milk.
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Figure 7. Network Venn diagram showing the characteristic metabolites of each type of milk. (A) The
characteristic metabolites of goats. (B) The characteristic metabolites of sheep. (C) The characteristic
metabolites of cows. (D) The characteristic metabolites of buffaloes.

A total of 38 metabolites were identified as characteristic metabolites in buffalo milk
through multiple comparisons of up-regulated DEMs among the BMM/GMM, BMM/SMM,
and BMM/CMM sets. These included thirty glycerophospholipids, three amino acids and
their metabolites, two fatty acyls, one hormone, one carbohydrate and its metabolite,
and one organic acid (Figure 7D). We found that glycerophospholipids are the most
important characteristic metabolites in buffalo milk, especially the relatively high levels
of lysophosphatidylcholine (LPC), including PC (O-16:0/O-1:0), LPC (16:0/0:0), LPC
(0:0/16:0), LPC (O-16:0/2:0), LPC (18:0/0:0), and LPC (0:0/18:0).
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4. Discussion

The milk derived from goats, sheep, cows, and buffaloes serves as a significant protein
source for human consumption. Previous research has primarily focused on conducting
comparative analyses of the nutrient composition between goat milk and cow milk [6], as
well as identifying individual or multiple compounds that contribute to their flavors [10,38].
The current knowledge regarding the global metabolic profiles among different dairy
animals is limited. In this study, we focused on the overall differences in metabolic profiles
among different milk types obtained from distinct species. Furthermore, we conducted
a comprehensive and in-depth analysis of the flavor profiles and metabolic characteristics
of four milk types while also screening their metabolic markers specific to each type.

By conducting a principal component analysis (PCA) and a cluster analysis on the
population sample, we found that the metabolite profiles of milk from goats and sheep
were more similar than those of milk from cows and buffaloes. The different metabolites
between goat milk and milk from cow and buffalo are mainly concentrated in amino acids
and their derivatives, nucleotides, and their metabolites, as well as organic acids and their
derivatives. This difference also exists in sheep milk. The difference in metabolites between
goat milk and sheep milk is mainly reflected in the components of amino acids and their
derivatives. KEGG pathway enrichment analysis showed that the differential metabolites
of goat milk were significantly enriched into two pathways, namely purine metabolism
and nucleotide metabolism, compared with cow milk and buffalo milk. Compared with
cow milk and buffalo milk, the differential metabolites of sheep milk were significantly
enriched in three pathways, namely purine metabolism, nucleotide metabolism, amino
sugar metabolism, and nucleotide sugar metabolism. The shared pathways of goat and
sheep milk mainly include purine metabolism and nucleotide metabolism. The findings
provide novel perspectives for comprehending the variations in metabolic profiles among
diverse milk types derived from distinct species.

The presence of organic acids, amino acids, and nucleotides plays an important role in
determining the flavor characteristics [10,39,40]. In this study, our results identified five core
differential metabolites in four types of milk, including 3-(3-hydroxyphenyl)-3-hydroxy-
propanoic acid, inosine 5′-triphosphate, methylcysteine, N-cinnamylglycine, and small
peptide (Tyr-Asn). Previous studies have revealed that the abnormal 3-(3-hydroxyphenyl)-
3-hydroxypropanoic acid concentrations in the body are correlated with dysregulation of
the intestinal microbiota and a variety of neurological diseases [41]. Inosine 5′-triphosphate
(ITP) can support the initiation of effector systems [42]. In addition, the interaction of
proteins and fats with volatile flavor compounds also affects humans’ perception of
flavor [43,44]. Our metabolomic analysis revealed distinct profiles of lipids, as well as
organic acids and their derivatives in goat milk compared to that of cows and buffaloes.
Specifically, the levels of FAs (carnitine C6:0, carnitine C8:0, carnitine C7:0, and carnitine
C4: DC) and short-chain fatty acids and their derivatives (methylmalonic acid, tricarballylic
acid, 5-hydroxyhexanoic acid, 2-hydroxyisocaproic acid, and 8-aminooctanoic acid) in goat
milk were significantly higher than those found in other species. Sheep milk exhibited
significantly higher levels of FAs (carnitine C6:0, carnitine C16:0, carnitine C7:0), as well
as short-chain fatty acids and their derivatives (3-(3-hydroxyphenyl)-3-hydroxypropanoic
acid, tricarballylic acid, and glycerophosphoric acid) than other type milk. We also found
variations in the composition and concentration of sugars and organic acids in four types
of milk, which may be another factor in the distinctive flavor profiles [45]. Taken together,
the differential profiles of organic acids, amino acids, and nucleotides across the four types
of milk could potentially contribute to their flavor variations.

The present study reveals a wider range of metabolites in milk compared to the previous
investigation and encompasses a higher multitude of metabolites. A total of 631 distinct
metabolites were detected across various milk varieties. Our metabolomic data have
revealed significant inter-breed variations in the compositions and concentrations of organic
acids, amino acids, sugars, and nucleotides, which potentially contribute to the overall
flavor attributes of milk samples. We observed that methylmalonic acid was relatively more
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abundant in goat milk compared to sheep milk, cow milk, and dairy milk. The activation
of methylmalonic acid by gene ACSF3 (Acyl-CoA synthetase family member 3) leads to
the production of methyl malonyl-CoA, which serves as a precursor for the synthesis
of methyl-branched fatty acids [46]. Some studies have identified branched-chain fatty
acids as the primary compounds responsible for the characteristic “goaty” flavor of goat
milk [10]. The main source of methylmalonic acid is the metabolism of propionic acid and
the catabolism of branched-chain amino acids, indicating that these pathways may play
a significant role in the development of characteristic flavor in goat milk. Additionally,
the main sugar in milk is lactose, which is slightly lower in goat milk than in cow milk.
However, goat milk contains high levels of oligosaccharides and sugar complexes [47],
aligning with our findings. These compounds play important roles in various biological
processes, such as cell signaling and energy metabolism [48]. The high concentration of these
sugars in goat milk may have implications for human health. The levels of UDP-sugars,
such as UDP-glucose, UDP-galactose, and UDP-xylose, were found to be higher in goat
milk compared to other types of milk in this study.

Despite being an emerging omics technique with the ability to qualitatively and
quantitatively analyze a wide range of low molecular weight metabolites in biological
samples, widely targeted metabolomics is still in its nascent stage and encounters several
challenges. For example, there is no single technique that can analyze all the compounds in
the metabolome at the same time. In this study, we exclusively identified one ester (ethyl
hydrogen malonate), while no aldehydes and ketones were detected, despite their known
association with flavor [49]. In future studies, this can be solved using selective extraction
techniques combined with parallel analysis of various analysis techniques. In addition,
milk proteins are also important factors influencing flavor production and release [50,51],
and we will further integrate metabolomics and proteomics to systemically reveal flavor
markers in four types of milk.

5. Conclusions

Using widely targeted metabolomic technology, the metabolic profiles of goat milk, sheep
milk, cow milk, and buffalo milk were systematically compared. A total of 631 metabolites
were identified and classified into 16 categories. Among these, amino acids and their
derivatives accounted for the highest proportion (28.84%), followed by organic acids
and their derivatives (14.42%). Principal component analysis and hierarchical cluster
analysis revealed that the metabolites of goat milk and sheep milk exhibited similar
characteristics. Five metabolites, including 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid,
inosine 5′-triphosphate, methylcysteine, N-cinnamylglycine, and small peptide (Tyr-Asn),
were core differential metabolites in four types of milk. The biomarkers for each type of
milk were obtained through a systematic comparison of the metabolic profiles derived
from goats, sheep, cows, and buffaloes. Our metabolomic data have revealed significant
inter-breed variations in the compositions and concentrations of organic acids, amino acids,
sugars, and nucleotides. These differences could potentially contribute to the overall flavor
attributes of milk samples. The present findings are expected to contribute to a more
comprehensive understanding of the regulation of milk flavor and to support further
research on manipulating the flavor of milk products.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods13091365/s1, Figure S1: Principal component analysis of the
metabolites of four type milk samples; Figure S2: PLS-DA plots exhibiting discernible metabolic
disparities among milk samples; Table S1: A total of 631 metabolites were identified and annotated;
Table S2: Correlation coefficient between samples; Table S3: The results of K-Means cluster analysis;
Table S4: The results of differential metabolite screening between GMMs and SMMs; Table S5: The results
of differential metabolite screening between GMMs and CMMs; Table S6: The results of differential
metabolite screening between GMMs and BMMs; Table S7: The results of differential metabolite
screening between CMMs and BMMs; Table S8: The results of differential metabolite screening between
CMMs and SMMs; Table S9: The results of differential metabolite screening between SMMs and BMMs.
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