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Abstract: The rapid growth of the global population has led to an unprecedented demand for dietary
protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products
following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost
attention is directed towards summarizing the characteristics of canola seed and canola seed protein.
Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric
field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extrac-
tion method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation,
micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the
structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as
well as the profound impact of various applications of rapeseed proteins, are elaborated. Through
a narrative review of recent research findings, this paper aims to enhance a comprehensive under-
standing of the potential of canola seed protein as a valuable nutritional supplement, highlighting the
pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum
of applications where canola protein demonstrates its versatility and indispensability as a resource.

Keywords: canola seed protein; essential amino acids; pretreatment; extraction; physicochemical
properties

1. Introduction

An increasing global population combined with nutritional demand for protein has
resulted in an upward trend year over year. It is estimated that the investment of protein
globally has increased from USD 25.65 to USD 48.77 billion between 2016 and 2025 [1].
Animal-based sources have been recognized as high in protein content, capable of meeting
or exceeding the protein and amino acid requirements of humans. Nevertheless, animal
protein has some inherent limitations on its broad application such as high economic cost
and voluntary dietary restrictions (vegetarians, vegans, etc.) [2]. More importantly, some
persons are allergic to animal products leading to an inability to consume these protein
sources [3,4]. Additionally, long-term intake of animal protein has been demonstrated to
increase the risk of non-communicable chronic diseases such as cardiovascular disease
and type 2 diabetes [5,6]. One of the reasons for the popularity of plant-based protein is
that consumers are becoming more concerned about consuming a healthy diet as well as
environmental sustainability [7]. Similarly, a concomitant rise in vegetarianism and new
research findings in nutrition focusing on the beneficial attributes of plant-based protein
as related to biodegradability, sustainability, environmental claims, etc., has resulted in an
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increasing push for human consumption of plant-based protein sources rather than animal-
based ones [8]. These factors have resulted in a rapid increase in consumers’ preference for
plant-based protein as an alternative to animal-based protein [9]. Plant-based proteins are
also being investigated as new candidates for synthetic biopolymers, which has generated
significant interest from the global packaging industry in the last decade [10]. Importantly,
the demand for plant-based protein is largely exceeding the current protein production.

Crops such as cereals, legumes, pulses, and nuts are becoming more recognized as
high-quality sources of proteins, and, while they are extensively cultivated all over the
world, they still cannot meet the global demand. Canola seeds (Brassica napus) are one of
the most common plant-based oil sources worldwide, possessing the advantages of easy
cultivation, rich nutritional qualities, and good environmental sustainability. Regretfully,
the canola seed meal after oil extraction is considered a ‘waste product’ and is primarily
discharged into the environment or used as feed for livestock animals. Notably, the canola
seed meal is abundant in multiple biological substances, including protein, minerals,
polyphenols, and cellulose. Currently, reviews in relation to canola seed for the most part
focus on food applications, extraction, and function, while others summarize its nutritional
value. With regard to structure and pretreatment, reviews are few or none. This review
serves as a comprehensive synthesis of recent research, offering insights into the intricacies
of pretreatment, extraction, structure, and physicochemical characteristics. By emphasizing
the various applications of canola seed protein in food products, it contributes to the
potential utilization of this natural resource for enhanced nutritional value and improved
food product development.

2. Canola Seed

Canola, belonging to the Brassicaceae family, is one of the most widely cultivated crops
due to its high yield with high nutritional value and high oil volume [11–13]. The demand
for canola has expanded dramatically since the 1970s because of population growth, food
consumption, and the demand for renewable energy [14]. Globally, the production of canola
seed has risen from 29.7 million tons in 1994 to 72.3 million tons in 2020 (Figure 1). There
are three main varieties of canola grown worldwide, including Brassica rapa, Brassica napus,
and Brassica juncea. Canola seed is a mustard seed and is extremely abundant in oil and
low in glucosinolates and erucic acid. As one of the most important oil crops in the world,
canola seed accounts for 16 percent of vegetable oil production, ranking third only behind
soybean oil and palm oil (Figure 2) [15,16]. Many dietitians believe that canola oil could
be considered as the healthiest edible oil based on its unique characteristics such as fatty
acid composition and levels of tocopherols, phytosterols, and polyphenols. Canola seed oil
contains plenty of unsaturated fatty acids including linoleic (omega-6) and α-linoleic acid
(omega-3) with a ratio of about 2:1, and it also contains a low amount of saturated fatty acids
(<7%) compared to other common vegetable oils [17]. Therefore, canola seed oil is renowned
for its unparalleled nutritional profile, positioning it as one of the most valuable edible oils.
Beyond their richness in oil content, canola seeds boast a significant presence of essential
amino acids, rendering them an exemplary dietary supplement [18,19]. Furthermore, the
versatility of canola seeds extends to their applicability in various industrial domains,
including biofuels, cosmetics, and other related products [20].



Foods 2024, 13, 1357 3 of 19Foods 2024, 13, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Annual production of canola seeds from 1994 to 2020. 

 
Figure 2. Global vegetable oil production structure in 2020. 

3. Canola Seed Protein 
Beyond its oil content, canola seed contains a considerable amount of protein. After 

oil extraction, the resulting meal consists of 36–40% protein on a dry weight basis. Canola 
seed protein is mainly distributed in the seed embryo, which consists of two cotyledons. 
Canola seed protein can be divided into three parts (Figure 3), including the inactive stor-
age protein, membrane protein, and enzyme-active substances [21]. The inactive storage 
protein in canola seed is composed of cruciferin (12S), napin (2S), and oleosin, which ac-
count for 60%, 20%, and 8%, of the total protein content, respectively [22,23]. Cruciferin is 
a neutral protease with a molecular weight of 300–310 kDa and an isoelectric point of 7.2. 
It is made up of six subunits, and each of them has a molecular weight of approximately 

1990 2000 2010 2020

3×107

5×107

7×107

9×107

Year

Ye
ild

(to
n)

Figure 1. Annual production of canola seeds from 1994 to 2020.

Foods 2024, 13, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Annual production of canola seeds from 1994 to 2020. 

 
Figure 2. Global vegetable oil production structure in 2020. 

3. Canola Seed Protein 
Beyond its oil content, canola seed contains a considerable amount of protein. After 

oil extraction, the resulting meal consists of 36–40% protein on a dry weight basis. Canola 
seed protein is mainly distributed in the seed embryo, which consists of two cotyledons. 
Canola seed protein can be divided into three parts (Figure 3), including the inactive stor-
age protein, membrane protein, and enzyme-active substances [21]. The inactive storage 
protein in canola seed is composed of cruciferin (12S), napin (2S), and oleosin, which ac-
count for 60%, 20%, and 8%, of the total protein content, respectively [22,23]. Cruciferin is 
a neutral protease with a molecular weight of 300–310 kDa and an isoelectric point of 7.2. 
It is made up of six subunits, and each of them has a molecular weight of approximately 

1990 2000 2010 2020

3×107

5×107

7×107

9×107

Year

Ye
ild

(to
n)

Figure 2. Global vegetable oil production structure in 2020.

3. Canola Seed Protein

Beyond its oil content, canola seed contains a considerable amount of protein. After
oil extraction, the resulting meal consists of 36–40% protein on a dry weight basis. Canola
seed protein is mainly distributed in the seed embryo, which consists of two cotyledons.
Canola seed protein can be divided into three parts (Figure 3), including the inactive
storage protein, membrane protein, and enzyme-active substances [21]. The inactive
storage protein in canola seed is composed of cruciferin (12S), napin (2S), and oleosin,
which account for 60%, 20%, and 8%, of the total protein content, respectively [22,23].
Cruciferin is a neutral protease with a molecular weight of 300–310 kDa and an isoelectric
point of 7.2. It is made up of six subunits, and each of them has a molecular weight of
approximately 50 kDa [24,25]. Each submit of cruciferin contains two polypeptide chains:
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a 30 kDa acidic chain with 254–296 amino acid residues and a 20 kDa basic chain with
189–191 amino acid residues, with the two polypeptide chains being connected by a single
disulfide bond [26,27]. Napin is a fundamental protein characterized by a molecular weight
distribution spanning 12.5–14.5 kDa, accompanied by an isoelectric point of approximately
11.0. The structural composition of napin reveals an elevated concentration of amidated
amino acids [28]. It is composed of two polypeptide chains; one comprises about 40 amino
acid residues with a molecular weight of 4.5 kDa, and the other comprises about 90 amino
acid residues with a molecular weight of 9.5 kDa. Both the inter and intra chains in napin
are stabilized by disulfide bonds [29]. Oleosin is a predominant lipid transfer protein,
specifically reigning as the principal constituent within the oil body protein profile [24].
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The secondary structure of canola seed protein is more complicated than the primary
structure. In the composition of canola seed protein, a substantial proportion is character-
ized by α-helix formations (~10%) and β-sheet configurations (~50%), accompanied by a
minor presence of random coil and β-turn structures [30,31]. For cruciferin, the hydropho-
bic β-sheet conformation, constituting 50% of the overall secondary structure, is positioned
within the protein’s interior. Conversely, α-helix conformations are situated on the protein’s
surface [32]. Different from cruciferin, napin contains about 40–46% α-helices and about
12% β-sheets [33]. In general, the high proportion of β-sheet in the napin fraction results
in low accessibility to the digestive enzymes during gastrointestinal digestion, thereby
leading to reduced bioavailability. Therefore, the ratio of α-helix to β-sheet is significant
in influencing the nutritive value of canola seed protein [34]. Typically, the assessment
of nutritional protein quality involves a comparison between total protein content and
amino acid composition with established standard reference values [35]. Nevertheless,
the bioavailability of dietary proteins is intricately tied to their hydrolysis by digestive
enzymes in the gastrointestinal tract, a process markedly influenced by the inherent protein
structure, including the secondary structure and nutrient matrix. Therefore, the scrutiny of
protein secondary structure holds utmost importance.
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Protein secondary structure can be characterized using various methods [36]. The first
one used is Fourier-transform infrared spectroscopy (FT-IR). However, this method may in-
troduce inaccuracies in protein secondary structure analyses, as it solely provides structural
features of chemical groups within the spectrum [32]. The second method approach utilizes
standard sphere-source FT-IR spectroscopy for scrutinizing protein secondary structure.
Despite its utility, this method has limitations in elucidating the chemical properties of
microbial materials measuring < 20–100 microns (depending on the type of infrared micro-
spectrum). Additionally, the sphere-source FT-IR spectrum is susceptible to interference
from other biological components, such as carbohydrates with scattering effects [37]. The
third method involves estimating protein secondary structure using FT-IR micro-spectra
with a synchrotron light source. However, it is important to note that this method, like the
other two methods described, is not entirely free from inaccuracies. Theodoridou et al. [38]
conducted an analysis of the structural characteristics of black and yellow canola seed
proteins using synchrotron-based Fourier transform infrared micro-spectroscopy. The
detailed findings from their study are presented in Table 1. The ratio of amide I to amide II
can show the differences in the molecular structure of proteins from different sources. The
protein from black canola seeds had higher amide I and amide II area values compared to
that from yellow canola seeds, while no differences were observed in the height of amide I
to amide II. In terms of the content of β-sheets, the highest level was found in the protein
from black canola seeds (Table 2). The relative composition of the secondary structure
in a protein, such as α-helices and β-sheets, significantly influences the nutritional value,
quality, and digestive ability of the protein. For instance, a high percentage of β-sheets
in the secondary structure may partly lead to lower access for gastrointestinal digestive
enzymes, thus lowering protein bioavailability. If the ratios of α-helix to β-sheet in the
intrinsic secondary structures between the proteins differ, their nutritional values may
therefore also differ [39].

Table 1. The molecular structure spectrum profile of canola seed protein (Unit: Absorbance) [38].

Item Yellow Canola Seed Protein Black Canola Seed Protein

Amide I area 14.675 b 17.775 a

Amide II area 6.176 b 7.549 a

Ratio of amide I to amide II area 2.380 a 2.356 a

Amide I height 0.204 a 0.247 a

Amide II height 0.104 a 0.125 a

Ratio of amide I to amide II height 1.965 a 1.989 a

Means with different superscript lowercase letters within the same line are significantly different (p < 0.05).

Table 2. Protein secondary structure profile [38].

Item Yellow Canola Seed Protein Black Canola Seed Protein

α-helix (height) 0.202 a 0.246 a

β-sheet (height) 0.170 b 0.206 a

Ratio of α-helix to β-sheet 1.184 a 1.194 a

Means with different superscript lowercase letters within the same line are significantly different (p < 0.05).

Canola seed protein is rich in glutamic acid, aspartic acid, and leucine [40,41]. Though
the composition and content of amino acids in canola seed protein are similar to those
in soybean protein, the protein efficiency ratio (PER), an indication of the efficiency of a
protein source for mammalian growth, of canola seed protein, 2.64, was higher than the
one of soybean protein with the value of 2.19 [42]. Based on the PER value alone, canola
seed protein can be considered beneficial for human consumption [43,44]. Nevertheless,
the existence of glucuronic acid, phytic acid, and other anti-nutritional factors can reduce
the digestibility of canola seed protein in the gastrointestinal tract, which can subsequently
impact the utilization of canola seed protein [45,46].
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More efforts have been dedicated to addressing the limitations associated with canola
seed protein. Firstly, novel canola varieties have been developed using modern breed-
ing technology, such as the international backcrossing program, to reduce the levels of
glucuronic acid in canola seeds [47,48]. Secondly, nitrogen fertilizer often induces the
accumulation and concentration of protein in canola seeds [49]. Thirdly, the application of
pretreatments and fungal fermentation post-harvest can enhance the nutritional quality
of canola seed protein [50]. Furthermore, the environment in which canola is cultivated
can significantly impact its protein fraction. Gunasekera et al. [51] investigated the effects
of environmental factors on the protein content of canola seeds under field conditions in
the Mediterranean region and the southwest of Australia. Their findings indicate that both
high temperature and drought can increase the concentration of canola seed protein.

4. Pretreatment and Its Impact

Canola seed protein, derived as a by-product from canola seeds (canola meal) post
oil extraction, exhibits commendable nutritional attributes. In the area of natural product
processing, the optimization of extraction efficiency and duration for the protein fraction
necessitates the application of effective pretreatment methodologies. Indeed, several
pretreatment techniques have been systematically employed to promote both the extraction
yield and physicochemical characteristics of canola seed protein. In this context, the
following three pretreatment techniques will be discussed: pulsed electric field, microwave
irradiation, and ultrasound.

4.1. Pulsed Electric Field (PEF)

As an energy-efficient and economically viable non-thermal technology, pulsed electric
field (PEF) treatment has garnered significant attention in both comprehensive studies and
practical applications within the broader food processing industry [52,53]. This sophisti-
cated procedure encompasses the application of a high-intensity electric field to the target
sample, which is positioned between two electrodes. The electric field is delivered in the
form of precisely controlled pulses, with each sample being treated over an exceptionally
brief duration [54]. PEF is performed by the combination of a high electric field intensity
(10–50 kV/cm), short pulse width (0–100 µs), and high pulse frequency (0–2000 Hz) to treat
liquid and semi-solid materials, which favorably forms a production line of continuous
sterilization and aseptic filling. When compared to traditional treatment technology, PEF
possesses the advantages of environmental protection, low energy consumption, and ad-
justability depending on the sample being treated [55]. Zhang et al. [56] studied the effect
of PEF pretreatment on the structure of canola protein. The results indicated that the param-
eters of PEF including voltage and treatment time had important impacts on the secondary
structure of canola seed protein (Table 3). In the amide I region of canola protein, the higher
proportions of α-helices and β-sheets and the lower proportions of β-turns and random
coils showed that the secondary structure of canola protein was significantly influenced
by PEF treatment [56]. The voltage increase could decrease the proportions of α-helices
and β-turns and increase the proportion of random coils. This study demonstrated that
PEF pretreatment significantly enhanced the functional properties of canola protein and its
fractions, including its solubility, water-holding capacity, emulsifiability, emulsion stabil-
ity, oil-holding capacity, foamability, and foam stability. Infrared spectrometry indicated
alterations in the protein’s secondary structure post-PEF with shifts in the proportions of
α-helices, β-sheets, and β-turns within the amide I region. However, it was observed that
voltage alteration had a lesser impact on the amount of β-sheets. Consistent with voltage,
treatment time followed similar patterns. In another study, it was observed that an increase
in voltage and extension in treatment time led to a simultaneous decrease in the proportion
of α-helices and an increase in the proportion of β-sheets within egg protein [57].
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Table 3. Effect of voltage and residence time on secondary structure of canola protein (portion, %) [56].

PEF Parameter α-Helix β-Sheet β-Turn Random Coil

Voltage Control/kV 26.52 41.10 6.92 25.45
10 23.96 42.77 6.26 27.01
15 24.19 43.50 6.56 25.75
20 22.60 43.94 5.56 27.90
25 22.78 43.53 5.60 28.10
30 28.53 44.15 5.38 21.94

Residence time Control/s 26.51 41.10 6.92 25.45
60 26.61 43.05 4.18 26.16
90 28.15 35.18 3.92 32.76
120 23.96 42.77 6.26 27.01
150 23.06 42.13 6.77 28.04
180 23.11 43.10 6.04 27.75

PEF: pulsed electric field.

4.2. Microwave Treatment (MC)

The term “microwave” pertains to electromagnetic waves with frequencies rang-
ing from 300 MHz to 300 GHz. These waves find extensive applications in various
sectors, including food industries, chemical industries, pharmaceutical industries, and
more [58–61]. Microwave exposure can induce molecular vibrations through both long
and short wavelengths and high frequencies, resulting in the fragmentation of plant cell
walls [62]. Consequently, microwave exposure has been employed to enhance the separa-
tion of proteins through electromagnetic effects [63]. Li et al. [64] investigated the impact
of microwave pretreatment on proteins isolated from canola meals following supercritical
carbon dioxide extraction of oil. Surprisingly, the secondary structures of canola seed pro-
tein remained unchanged, including α-helices and β-sheets, after microwave pretreatment.
However, there were variations in the amino acid compositions of canola seed protein, as
detailed in Table 4. The significant thermal energy derived from the conversion of elec-
tromagnetic energy in microwaves has the capacity to induce the denaturation of specific
proteins, leading to a subsequent reduction in the quantities of amino acids. In the context
of canola seed protein, microwave treatment not only affects their structural integrity but
also exerts a discernible influence on various physicochemical properties. These properties
encompass solubility, foaming capability, water/oil holding capacity, emulsion surfactant
capacity, and stability, among other factors [64].

Table 4. Amino acid composition of canola seed protein after oil extraction under microwave
pretreatment [64].

Amino Acid (g/100 g Protein) CSP Non-Pretreatment CSP MV-CSP

Essential amino acid
His 1.11 1.07 1.12
Ile 1.87 1.65 1.32

Leu 3.29 2.91 2.46
Lys 1.35 1.94 1.36
Phe 1.87 1.62 1.25
Thr 1.55 1.73 1.43
Val 2.24 2.09 1.78

Non-Essential amino acid
Ala 2.48 2.31 2.01
Asn 3.43 2.66 2.18
Gly 2.28 1.85 1.66
Glu 7.26 4.38 4.26
Arg 3.00 2.35 2.12
Pro 1.55 1.13 1.05
Ser 1.59 2.09 1.51
Tyr 1.09 1.39 1.05

CSP: canola seed protein; MV-CSP: microwave-pretreated canola seed protein.
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4.3. Ultrasound Treatment (UL)

Ultrasound, classified as an environmentally friendly physical technology, constitutes
an acoustic wave with a frequency exceeding 20 kHz [65]. The utilization of ultrasound
technology has garnered increasing interest in the field of food industries [66]. Ultrasound
induces cavitation, a dynamic process that disrupts cell walls and facilitates the release of
trapped compounds from cells into the extraction medium, thereby significantly enhancing
the extraction rate [67–70]. It has been reported that ultrasound induces the unfolding of
protein structure that influences the function of a protein [71,72]. In the initial stage of
their study, Li et al. [64] subjected canola seeds to ultrasound pretreatment, subsequently
proceeding to isolate and characterize the proteins from the seeds post oil extraction.
Similarly, Flores-Jiménez et al. employed ultrasound for the pretreatment of canola seeds.
Following ultrasound pretreatment, a higher quantity of associated proteins was liberated,
attributed to the disruption of chemical bonds. Consequently, the resulting protein fraction
exhibited an elevated content of branched-chain amino acids, as outlined in Table 5 [73].
Essential amino acids characterized by more rigid structures exhibit close associations with
other substances within plant tissues, resulting in higher contents in ultrasound-treated
canola seed protein (UL-CSP) compared to untreated CSP [74]. Additionally, similar to
microwave processing, ultrasound pretreatment did not alter the secondary structure of
canola seed protein [64].

Table 5. Amino acid composition of canola seed protein after oil extraction under ultrasound
pretreatment [64].

Amino Acid (g/100 g Protein) CSP Non-Pretreatment CSP UL-CSP

Essential amino acid
His 1.11 1.07 1.33
Ile 1.87 1.65 1.82

Leu 3.29 2.91 3.23
Lys 1.35 1.94 2.03
Phe 1.87 1.62 1.71
Thr 1.55 1.73 1.92
Val 2.24 2.09 2.40

Non-Essential amino acid
Ala 2.48 2.31 2.51
Asn 3.43 2.66 2.98
Gly 2.28 1.85 2.04
Glu 7.26 4.38 5.34
Arg 3.00 2.35 2.38
Pro 1.55 1.13 1.38
Ser 1.59 2.09 1.73
Tyr 1.09 1.39 1.47

CSP: canola seed protein; UL-CSP: ultrasound-pretreated canola seed protein.

5. Extraction Method

The extraction and isolation of canola protein constitute a methodical procedure
designed to procure purified protein fractions from canola seed meal. The significance
of canola seed protein as a by-product emerges subsequent to the extraction of oil from
canola seeds. The comprehensive process involves separating the protein-rich canola seed
meal from the residual components following oil extraction. This by-product, abundant in
protein, becomes the focus of extraction and isolation processes, yielding a valuable canola
protein isolate with various applications in food and industrial applications.

Common canola protein extraction methods include aqueous extraction, where water
is used as a solvent, or alkaline extraction, involving the use of alkaline solutions. These
methods aim to solubilize proteins and separate them from other components in the
canola meal. While the physicochemical properties of canola seeds have some similarities
to those of soybeans, employing the conventional wet processing method applied to
soybeans for canola seeds yields a lower output. This discrepancy is attributed to the broad
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isoelectric point range of canola seed protein, the presence of anti-nutritional compounds,
and the harsh conditions encountered during the degreasing process of canola seeds [75].
The canola meal is usually processed by a pressing treatment to remove the residual oil.
Compared with hot pressing (26%), cold pressing (temperature < 40 ◦C) has a higher
protein recovery (45%). Östbring et al. [76] reported that protein isolated from cold-pressed
materials had better emulsifying properties. Therefore, the meal derived from the cold-
pressed canola seeds is used for protein extraction.

The extraction of protein from canola seeds typically involves several distinct cate-
gories, including alkaline extraction, isoelectric precipitation, acid precipitation, micelliza-
tion (salt extraction), and dry fractionation and tribo-electrostatic separation. A commonly
employed approach is the combination of alkaline extraction with isoelectric precipitation
for the isolation of canola seed protein [77]. In this process, a solution of high alkalinity is
utilized to dissolve the protein, followed by adjustment to the isoelectric point. Dissolv-
ing the protein in an alkaline environment induces strong repulsion due to the negative
charge on the protein, resulting in its solubilization in the extraction solvent [78]. Alkaline
extraction is frequently coupled with isoelectric precipitation to enhance protein extraction
efficiency. Isoelectric precipitation, as an extraction method, operates by adjusting the pH
of the protein solution to match its isoelectric point [79]. This adjustment renders the net
charge of the protein nearly zero, minimizing its solubility and facilitating efficient protein
separation [80].

Micellization serves as a crucial process involving the dissolution of protein in a
nearly neutral salt solution, subsequently followed by recovery achieved through the
reduction of ionic strength in the salt solution. This reduction can be accomplished through
membrane separation or by diluting the precipitate at a lower temperature [81]. The
employment of a salt solution as the extraction solvent proves instrumental, as it enables
the complete dissolution of the protein, thereby elevating the overall extraction efficiency
with a distinctive characteristic of micellization precipitation [82]. The utilization of a salt
solution not only facilitates the full dissolution of the protein but also contributes to an
enhanced extraction capability, further emphasizing the unique and advantageous features
associated with micellization precipitation in protein extraction processes.

Dry fractionation and tribo-electrostatic separation are physical methods and can
also be used to extract canola seed protein. Dry-fractionation technology, as a sustainable
process, has been well developed due to its various advantages such as excluding water,
excluding chemicals, no drying measures required, and low consumption [83]. Not only
that, but the method can also maintain the natural characteristics of proteins while main-
taining low energy and water consumption [84]. Yet, due to the fact that dry fractionation
only allows a relatively small increase in protein content but is effective in removing fiber
content, it is clearly more suitable for reducing fiber content rather than increasing pro-
tein content [85]. The obstruction of strong electrostatic interactions can also affect the
separation of dry fractionation. Therefore, some researchers combined dry fractionation
with another physical method called tribo-electrostatic separation to extract canola seed
protein [86]. As a technique for separating particles based on the size and type of particle
charge, tribo-electrostatic separation isolates finely ground plant materials into parts rich
in protein, starch, or fiber, and has the same advantages as dry fractionation [87]. By
adjusting parameters such as particle collision frequency, wall material, and charge mass
of particle charging time, the protein content in the tribo-electrostatic separation can be
maximized [88].

6. Techno-Functional Characteristics

Canola seed protein stands out as a nutritionally advantageous component, offering a
notable array of benefits. Abundant in essential amino acids, with a particular emphasis on
lysine, and featuring a well-balanced amino acid profile, it plays a pivotal role in facilitating
protein synthesis and maintenance within the body. Beyond its nutritional prowess, canola
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seed protein serves as a valuable source of plant-based protein, rendering it an excellent
choice for individuals adhering to vegetarian or vegan diets.

The solubility characteristics of canola seed protein add to its versatility in various
applications within the food industry. This solubility is intricately influenced by factors
such as pH, temperature, and ionic strength. In general, canola protein isolates exhibit
commendable solubility under neutral to slightly alkaline conditions, broadening their
applicability across a diverse range of food formulations.

6.1. Solubility

Protein solubility is related to the interactions between protein and solvent, such as
the hydrophobic effect, electrostatic interactions, and hydrogen bonding [89,90]. In general,
proteins are hydrophilic, and their solubility is always influenced by the pH of the solvent,
especially in terms of their isoelectric point. Unlike soybean protein, the solubility of canola
seed protein changes little in its isoelectric point range; only 40~50% of canola seed protein
can be precipitated at its isoelectric point. In the nitrogen solubility curve of canola seed
protein, there are two lowest solubility points at pH 4 and pH 7, which is an important
physicochemical feature of canola seed protein that is different from other plant proteins.
At higher pH, proteins with more net negative charges would contribute to the dissociation
of protein aggregates, leading to improved solubility of the protein. Similarly, at lower pH,
the increased net positive charge also facilitates the solubility of proteins [91]. Extensive
studies have found that different pretreatment techniques including PEF, microwave, and
ultrasound treatments would induce cell disruption and thus improve the solubility of the
protein, consequently promoting an increase in protein yield and access to proteins with
low molecular weights [64].

Following PEF treatment, the solubility of canola seed protein exhibits an increase from
43.25 to 50.07%, correlating with the rise in voltage (as illustrated in Figure 4). However,
surpassing a residence time of 180 s leads to a subsequent decrease in solubility. Microwave
treatment serves to augment the solubility of canola seed protein significantly, elevating it
from 18.73 ± 1.83% to 36.70 ± 1.98% (as detailed in Table 6) [64]. Notably, the microwave-
treated canola seed protein demonstrates a heightened concentration of histidine residues
compared to non-pretreated counterparts, suggesting a potential association with the
observed increase in solubility.

Table 6. Physicochemical parameters of CSP obtained from canola seeds after oil extraction with
different pretreatments [64].

CSP Non-Pretreated
CSP MV-CSP UL-CSP

Solubility (%) 16.04 ± 0.71 a 18.73 ± 1.83 b 36.70 ± 1.98 b 23.63 ± 0.86 a

Water holding capacity (%) 293.3 ± 15.3 a 366.7 ± 30.6 ab 416.7 ± 96.1 b 416.7 ± 66.6 b

Oil holding capacity (%) 366.7 ± 20.8 a 263.3 ± 45.1 b 456.7 ± 40.4 c 466.7 ± 45.1 c

Emulsion capacity (%) 100.02 ± 0.2 100.12 ± 0.22 100.00 ± 0.2 100.10 ± 0.19
Emulsion stability (%) 84.03 ± 0.50 a 89.17 ± 1.04 b 94.17 ± 1.04 c 92.33 ± 2.0 c

Means with different superscript lowercase letters within the same line are significantly different (p < 0.05). CSP:
canola seed protein; MV-CSP: microwave-pretreated canola seed protein; UL-CSP: ultrasound-pretreated canola
seed protein.

In contrast, ultrasound treatment induces the production of proteins characterized by
a greater abundance of branched chains, resulting in an augmented branching degree [89].
The ultrasonic effect, leading to partial unfolding of protein molecules, is identified as the
underlying mechanism responsible for the observed increase in protein solubility [92,93].

Furthermore, the study by Flores-Jiménez et al. [73] reveals variations in the solubility
of canola seed protein isolates under different pH conditions and ultrasound exposure
times (as depicted in Figure 5). It can clearly be seen from Figure 5 that it is a typical
bell-shaped curve, with the lowest solubility at pH 4. And it can be found that, compared
with the control treatment, the protein solubility significantly increased in the pH range of
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6–8 for 30 min of ultrasound. This underscores the multifaceted influence of processing
parameters on the solubility dynamics of canola seed protein.
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6.2. Water/Oil Holding Capacity

Water-holding capacity (WHC) stands out as a paramount physicochemical attribute of
proteins, defining their ability to retain water. This property plays a pivotal role in shaping
the softness, tenderness, and other textural characteristics of protein-incorporated food
products. Consequently, the interaction between proteins and water molecules significantly
influences the flavor and texture of food items [94].

Several factors, including amino acid composition, molecular weight distribution,
and advanced structural conformation, collectively contribute to determining the WHC of
proteins. In general, proteins enriched with hydrophilic groups exhibit stronger WHC, as
these groups can establish a greater number of hydrogen bonds with water molecules [95].
This interplay between protein characteristics and water-binding capabilities underscores
the intricate nature of WHC.

Another critical property of proteins is their oil-holding capacity (OHC), a factor that
profoundly influences the quality of food products containing proteins. OHC denotes
the protein’s ability to retain oil, directly impacting its emulsification capacity. With an
increase in protein concentration within a certain range, the hydrophobic groups of the
protein intensify, resulting in enhanced OHC. This phenomenon occurs as the non-polar
side chains of proteins intricately bind with the hydrocarbon chains of aliphatic compounds.
The maintenance of food flavor, in general, is intricately linked to the OHC, emphasizing
its significance in preserving the sensory aspects of food products [96].

Li et al. [64] found that canola seed protein possessed both good water and oil retention
properties, with a water-holding rate of 293.3% and oil-holding capacity rate of 366.7%.
Because of its excellent water and oil retention, canola seed protein can be used in meat
products to reduce the overflow of water and fat during processing and ensure their
taste and quality. Nevertheless, after pretreatment, the water/oil retention properties of
canola seed protein are changed. Compared with the control untreated group, the WHC
of canola seed protein was stronger at lower PEF parameter levels and shorter residence
times, while the WHC of PEF-treated canola seed protein was weaker at higher levels
of these parameters and longer residence times (Figure 4) [56]. However, in contrast to
the WHC of treated canola seed protein, the OHC of canola seed protein was increased
significantly with increasing pulse frequency and residence time of PEF treatment [56].
When the pulse frequency and residence time, respectively, increase to 800 Hz and 150 s, the
OHC remains stable. Although canola seed protein possesses excellent water/oil retention
capacities, the microwave and ultrasound pretreatments further improved on the water/oil
retention performances significantly compared with non-pretreatment control samples
(p < 0.05) as shown in Table 7. The increase in WHC is related to microwave and ultrasound
pretreatments increasing the exposure of hydrophilic amino acids, expanding the structural
conformation, and promoting the interaction between protein and water molecules, thus
improving the water retention capacity of protein [97]. Similar to the WHC, the good OHC
of the MV-treated and UL-treated canola seed protein may be attributed to those treated
proteins having more hydrophobic and non-polar side chains, which can interact with more
oil molecules. Both microwave and ultrasound pretreatments can induce the production
of canola seed protein with side chains of non-polar residues that will interact with the
hydrocarbon chains in fat molecules [98].

Table 7. Effect of ultrasound exposure time at different pH values on the foaming capacity (FC) and
foaming stability (FS) of canola protein isolates [73].

Ultrasound Exposure Time (min) pH FC (%) FS (%)

0 2 220.1 ± 1.2 a 68.1 ± 0.5 a

15 2 220.17 ± 2.7 a 68.7 ± 0.7 a

30 2 219.7 ± 1.3 a 67.9 ± 0.6 a

0 4 173.1 ± 1.1 b 84.8 ± 0.5 a

15 4 175.4 ± 1.8 ab 84.9 ± 0.1 a
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Table 7. Cont.

Ultrasound Exposure Time (min) pH FC (%) FS (%)

30 4 177.5 ± 1.2 a 85.3 ± 0.1 a

0 6 190.3 ± 2.7 b 64.3 ± 0.7 b

15 6 192.6 ± 0.8 b 65.2 ± 0.6 b

30 6 198.4 ± 1.4 a 68.2 ± 0.6 a

0 8 234.7 ± 2.4 b 59.9 ± 0.5 b

15 8 235.8 ± 2.5 b 60.2 ± 0.6 a

30 8 239.2 ± 1.1 a 63.6 ± 0.4 a

0 10 244.3 ± 0.9 a 74.0 ± 0.5 a

15 10 245.7 ± 1.1 a 74.5 ± 0.5 a

30 10 246.4 ± 1.3 a 74.4 ± 0.7 a

Means with different superscript lowercase letters within the same line are significantly different (p < 0.05).
FC: foaming capacity; FS: foaming stability.

6.3. Emulsifying Properties

Proteins exhibit amphiphilic characteristics, with hydrophilic residues predominantly
concentrated on the surface and hydrophobic residues primarily embedded within the
protein structure. This amphiphilicity imparts proteins with notable interfacial activity.
The evaluation of emulsification performance and characteristics of proteins often relies on
two crucial indicators: emulsification activity and emulsion stability [99].

Emulsification activity and stability serve as key metrics to assess the protein’s ability
to stabilize oil–water interfaces, quantified as the interfacial area stabilized per unit weight
of protein. Canola seed protein, displaying an outstanding emulsification ability approach-
ing 100%, emerges as a natural emulsifier suitable for preparing oil/water emulsions and
enhancing emulsion stability. In a study conducted by Alashi et al. [100], the oil/water
emulsion stabilized by a canola seed protein isolate demonstrated impeccable stability
throughout storage.

The remarkable emulsification properties of canola seed protein can be attributed to
various factors, including its solubility, hydrophobicity, and structural characteristics. In
particular, the solubility of the protein exhibits a positive correlation with its emulsification
properties. This interplay between protein solubility and emulsification underscores the
multifaceted nature of protein functionality in emulsion systems.

In a study conducted by Wang et al. [101], it was observed that higher protein solu-
bility contributes to a greater distribution of protein molecules at the oil–water interface,
forming a thicker interfacial layer and thereby enhancing emulsification. Consequently,
elevating protein solubility and regulating amphiphilicity emerges as a strategy to enhance
protein emulsification ability. The heightened hydrophobicity of canola seed protein en-
hances interactions between protein molecules at the oil–water interface, resulting in the
formation of a robust and thick interfacial layer that stabilizes the emulsion through spatial
repulsion [77]. Canola seed protein, with its surface-rich hydrophobic groups, strengthens
the binding capacity of the protein with oil droplets in emulsions, facilitating enhanced
protein adsorption at the oil–water interface and, consequently, a more stable interfacial
layer [102].

Beyond solubility and hydrophobicity, the inherent structure of the protein plays a piv-
otal role in influencing its interface properties. For instance, a higher sulfhydryl content and
a greater proportion of β-sheet structures improve protein flexibility, facilitating stronger
protein/lipid interactions and promoting protein rearrangement at the oil–water inter-
face [103]. Similarly, a lower proportion of α-helix structures enhances protein flexibility,
contributing to favorable emulsification properties [104]. Additionally, partial denaturation
and the formation of disordered structures can further enhance protein adsorption at the
oil–water interface [105]. The turbulent behavior and integration of oil vesicles create a
more favorable orientation for protein distribution at the oil–water interface.

Recent studies indicate that the emulsification ability of canola seed protein is pro-
foundly influenced by pretreatment. After PEF, microwave, and ultrasound pretreatments,
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both the emulsifying property (EC) and emulsifying stability (ES) of canola seed protein
exhibit significant improvement, as illustrated in Table 7.

6.4. Foaming Properties

The phenomenon of foaming occurs at the interface between liquid and air, with a
close relationship with the interfacial tension that exists between these two phases. The
stability of foams is significantly influenced by key factors such as drainage, coalescence,
and mismatch (coarsening). Furthermore, the protein’s capability to reduce interface
tension and adsorb at the air–water interface assumes a critical role in the formation of
stable foams [106].

The unfolding of the protein’s structure holds sway over its diffusion capacity at the
air–water interface, thereby decisively shaping its foaming performance. Foaming stability
is intricately connected to the presence of a mucilage layer that envelops bubbles [107]. The
establishment of a resilient foam structural network is influenced by the water solubility of
protein, an aptitude to readily concentrate at the liquid/gas interface, and the ability to form
an adhesive layer characterized by sufficient viscosity and strength [108]. These attributes
collectively contribute to the successful formation and maintenance of stable foams.

Canola seed protein, distinguished by its favorable physicochemical and structural
attributes, exhibits outstanding foaming ability, reaching an optimal value of 102%. This
achievement surpasses the foaming capability of soybean protein by a substantial margin [109].
Notably, the foams generated from canola seed protein maintain commendable stability
even after extended storage periods. The exceptional foaming attributes of canola seed
protein can be attributed to a combination of its physicochemical properties, primary and
advanced structural features, and intricate electric interactions.

Research findings explored the influential role of pretreatments, such as pulsed electric
filed (PEF) and ultrasound, in modulating the foaming capacity of canola seed protein.
Significant variations in foaming performance were observed under different voltage and
residence time conditions of PEF. In a study by Flores-Jiménez et al. [73], the pronounced
impact of pH on the foaming capacity and stability of canola seed protein during various
ultrasound exposure times was highlighted, as illustrated in Table 7. Ultrasound, through
the induction of partial protein denaturation and the promotion of a more flexible structure
in aqueous solutions, enhances the interaction between air and water interfaces, thereby
amplifying the foam properties.

7. Conclusions

The global concern surrounding the scarcity of protein has intensified, prompting an
urgent need for solutions. The large-scale cultivation of canola, while extracting oil, leaves
behind a substantial amount of meal—a by-product abundantly rich in protein.

Through thorough investigations into canola seed protein, there is a noticeable trend
towards utilizing post-oil extraction meals to produce canola seed protein, thereby elevating
this economical source to value-added canola products. This transition not only enhances
feasibility but also expands the applications of canola seed protein across various industrial
sectors. This comprehensive review delves into the intricacies of the structure, pretreatment,
extraction, and functional attributes of canola seed protein. However, future research
endeavors should aim to unravel the biological and pharmacological activities inherent in
canola seed protein. This deeper understanding will undoubtedly contribute to positioning
canola seed protein as a valuable dietary supplement within the realm of functional foods.
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