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Abstract: The effects of subcritical water microenvironment on the physiochemical properties,
antioxidant activity and in vitro digestion of polysaccharides (SWESPs) from squash were inves-
tigated. After single-factor experiments, twenty samples were successfully prepared at different
extraction temperatures (110, 130, 150, 170 and 190 ◦C) and extraction times (4, 8, 12 and 16 min).
Under a low temperature environment, the whole process was mainly based on the extraction of
SWESP. At this time, the color of SWESP was white or light gray and the molecular mass was high.
When the temperature was 150 ◦C, since the extraction and degradation of SWESP reached equi-
librium, the maximum extraction rate (18.67%) was reached at 150 ◦C (12 min). Compared with
traditional methods, the yield of squash SWESP extracted by subcritical water was 3–4 times higher
and less time consuming. Under high temperature conditions, SWESPs were degraded and their
antioxidant capacity and viscosity were reduced. Meanwhile, Maillard and caramelization reactions
turned the SWESPs yellow-brown and produced harmful substances. In addition, different SWESPs
had different effects on in vitro digestion. In brief, SWESPs prepared under different conditions
have different structures and physicochemical properties, allowing the obtainment of the required
polysaccharide. Our results show that squash polysaccharides prepared in different subcritical water
states had good development potential and application in the food industry.

Keywords: squash polysaccharides; subcritical water; physiochemical properties; in vitro digestion

1. Introduction

Squash (Cucurbita moschata) is widely distributed worldwide and a rich source of nutri-
ents and active ingredients. Polysaccharides are an important functional active ingredient
in squash [1]. Multiple research groups have isolated, purified and determined the chemical
structures of squash polysaccharides [2,3]. Meanwhile, the research on squash polysaccha-
rides is mainly to explore their physiological functions and applications in food [4,5]. To the
best of our knowledge, squash polysaccharides have a variety of biological activities, includ-
ing antioxidant, immune regulation, hypoglycemic and anti-inflammatory activities [6–10].
In previous studies, squash polysaccharides have mainly been extracted by hot water, acidic
solution, alkali solution, microwave-assisted, ultrasound-assisted and enzyme-assisted
techniques [3,11–14]. However, these extraction methods exhibit certain drawbacks such
as their low extraction efficiency and time consuming nature and the solvent residue and
environmental pollution produced [15]. Therefore, subcritical water extraction (SWE) has
garnered increasing attention owing to its high efficiency, low consumption of resources,
environmentally friendly nature, etc., [16].
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Subcritical water is water heated above its boiling point (100 ◦C) but below its critical
point (374 ◦C) while controlling the system pressure within the range 1–22.1 MPa in order
to maintain the water in a liquid state [17].

The thermal motion of water molecules intensifies and leads to alterations in their
properties under these circumstances [18]. At this moment, the water changes from strong
polarity to non-polarity and solutes can be extracted from low to high polarity. The po-
larity viscosity and surface tension of water decrease as the temperature and pressure
increase. Meanwhile, the dielectric constant of water is similar to that of organic solvents
and can be controlled by adjusting the temperature [19]. In addition, high temperatures
are more likely to weaken hydrogen bonds, which in turn reduces the energy required
for fragmentation in solute–matrix interactions, increasing extraction efficiency [20]. No
chemicals are used in the entire extraction process; therefore, no waste liquid is gener-
ated and the harm to the environment is minimal. Furthermore, diverse polysaccharide
structures exhibit distinct biological activities and the structure of polysaccharides can
be influenced by the various extraction methods. During polysaccharide extraction, the
subcritical water state can lead to breakage of glycosidic bonds, resulting in the formation
of smaller molecular mass polysaccharides [21,22]. Intriguingly, this phenomenon may
account for the enhanced polysaccharide activity achieved through SWE [23]. Thus, it is
crucial to assess the physicochemical characteristics of squash polysaccharides obtained
through SWE.

In this study, squash polysaccharides were isolated using subcritical water under
different conditions. Furthermore, the yields and physicochemical, rheological, emulsifying
and antioxidant properties of the samples were comprehensive evaluated. The rule for
SWE in the preparation of squash polysaccharide was expounded. The results are expected
to provide reference and commercial applications for the development and utilization
of SWESPs.

2. Materials and Methods
2.1. Materials

Squash (Guangmi No. 1) weighing 4.0–5.0 kg was harvested in July 2022 (Guangdong,
China). To minimize differences, we selected squash that were the same size and had similar
skin and flesh colors for treatment. After the squash was cleaned, the skin and seeds were
removed. Next, the flesh of the squash was freeze-dried and crushed (100 mesh). Glucose,
galactose, mannose, rhamnose, fucose, xylose, arabinose, glucuronic acid, galacturonic acid,
1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2-2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) salt (ABTS) were purchased from Solarbio Technology Co., Ltd. (Beijing,
China). α-Amylase (A-3176-500KU, 10 U/mg), pepsin (P6887-5 G, 3706 U/mg), pancreatin
(P1750-100 G) and amyloglucosidase (A7420, 31.2 U/mg) were obtained from Sigma-
Aldrich Corp. (St. Louis, MO, USA).

2.2. Extraction of Squash Polysaccharides

The method used was similar to that of previous work [24], with slight modifications.
Briefly, a mixture of 7.5 g squash powder and 300 mL distilled water was introduced into a
high-temperature and high-pressure reactor (YZPR-500M, Yanzheng Instrument, Shanghai,
China). The reactor was sealed and a high-purity nitrogen gas (99.99%) was employed to
maintain the desired pressure. Samples were stirred with an equipped metal stirrer [25].
Thereafter, the stainless-steel reactor was heated via a heating mantle. The extraction
process commenced once the temperature reached the designated value. Once the reaction
was over, the reactor system was shut down. The reactor was immediately cooled to 40 ◦C
with running tap water. The supernatant was collected through centrifugation (10,000× g,
15 min) and mixed with anhydrous ethanol (ethanol final concentration: 90%) at 4 ◦C for
12 h. Precipitates were obtained, dialyzed (3500 Da, 3 days) and lyophilized. The obtained
polysaccharides were named SWESPs (subcritical water extraction squash polysaccharides)
and stored at 4 ◦C for further analysis. The SWESPs had a moisture content of 1.25–1.73%.
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First, as the solvent/solid ratio (20, 30, 40, 50, 60 mL/g), extraction time (4, 8, 12, 16,
20 min), pressure (1, 3, 5, 7, 9 MPa) and temperature (110, 130, 150, 170, 190 ◦C) were the
main factors influencing the SWE of the polysaccharides, single-factor experiments were
performed on them. The extraction time and extraction temperature had a great influence
on the yield. After that, the solvent/solid ratio and extraction pressure were controlled at
40 mL/g and 5 MPa, respectively. The extraction temperature (110, 130, 150, 170, 190 ◦C)
and the extraction time (4, 8, 12, 16 min) were set before beginning the process. The impact
of the extraction temperature and duration on the yield of squash polysaccharides was
investigated. The yield was calculated as follows:

Yield (%) =
The weight of squash polysaccharide

The weight of squash powder
× 100%

Note: The extraction temperature ranged from 110 to 190 ◦C and the extraction time
ranged from 4 to 16 min, which led to 20 combinations marked by “number1-number2”.
For example, “110-4” means the sample was extracted at 110 ◦C for 4 min.

2.3. Chemical Composition of the SWESPs

The neutral sugar content was analyzed using the phenol–sulfuric acid method
with D-glucose as the standard [26]. Galacturonic acid (GalA) was tested using the
m-hydroxybiphenyl colorimetric procedure [27]. The content of protein was tested with
a fully automated Kjeldahl analyzer (K1100, Jinan Hanon Instruments Co., Ltd., Jinan,
China) [28]. The total phenolic content was determined via the Folin–Ciocalteu (FC) colori-
metric method described by Chaiklahan et al. [29] with gallic acid as the standard.

2.4. Monosaccharide Composition of the SWESPs

The method of Li et al. [30] was applied in this part of the experiment. SWESPs (5 mg)
were subjected to hydrolysis using trifluoroacetic acid (TFA, 2 mL, 3 M). The hydrolytic
solution was transferred to the tube for nitrogen blow-drying. Deionized water (10 mL)
was added to the tube and mixed. The mixture was diluted 25 times and centrifuged at
10,000× g for 5 min. The sample (5 µL) was evaluated under the following conditions. The
mobile phase was H2O, NaOH (15 mM) and NaOH (15 mM) + NaOAc (100 mM). The
column temperature was 30 ◦C. Glucose, galactose, mannose, rhamnose, fucose, xylose,
arabinose, glucuronic acid and galacturonic acid were used as standards.

2.5. Molecular Mass of the SWESPs

The molecular mass of the SWESPs was determined using high-performance gel
permeation chromatography (LC-10A, Shimadzu Scientific Instruments, Kyoto, Japan) [31].
The dextran standard (5.0, 11.6, 23.8, 48.6, 80.9, 148.0, 273.0, 409.8 and 667.8 KDa) and
SWESP (5 mg/mL) was prepared. The solution was filtered through a 0.22 µm microporous
membrane and transferred to the sample vial (1.8 mL). The sample (20 µL) was injected
with a flow rate of 0.6 mL/min at 40 ◦C and the mobile phase was NaCl (0.05 M).

2.6. Colorimetric Analysis of the SWESPs

The color parameters (L*, a*, b*) of the SWESPs were measured using a colorimeter
(CS-580A, Hangzhou Color Spectrum Technology Co., Ltd., Hangzhou, China) according
to the method from previous studies with some modifications [32].

2.7. Fourier Transform Infrared (FT-IR) Spectroscopy

The FTIR spectra (NICOLET-6700 spectrometer, Thermo, Waltham, MA, USA) were col-
lected for the SWESPs. The spectrum was recorded at a wavenumber range of 400–4000 cm−1

with 16 scans and a resolution of 4 cm−1 [33].
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2.8. Rheological Properties of the SWESPs

The rheological properties of the samples were analyzed using a rheometer (DHR-2,
TA Instruments, New Castle, DE, USA) via a method adapted from Li et al. [34]. The
viscosities of the SWESP samples (20 mg/mL) were measured by steady-rate shear tests in
a shear rate range of 0.01–100 s−1 at 25 ◦C. The angular frequency was 10 rad/s and the
strain was 1%. A diameter parallel plate (40 mm) with a gap size of 0.5 mm was used.

2.9. Emulsifying Properties of the SWESPs

SWESP solutions (0.5%, w/v) were prepared by fully dissolving a certain amount of
the SWESPs in pure water. Then, SWESP solutions (5 mL) were combined with 5 g of
soybean oil. The mixtures were sheared at high speed for 3 min at 12,000 rpm using a
high-speed emulsifier (Ultra-Turrax*T 18, IKA, Staufen, Germany) [35].

2.10. Antioxidant Activity of SWESP

The DPPH and ABTS radical scavenging capacities were evaluated following the
methods described by Zhang et al. [36], with minor modifications. A series of gradient
concentrations of polysaccharide solutions (0.3125, 0.625, 1.25, 2.5, 5 mg/mL) were con-
figured and analyzed. DPPH solution (0.1 mM) was composed of DPPH (4.0 mg) and
absolute ethanol (100 mL). The polysaccharide solutions were mixed with DPPH solution
in an equal volume and reacted at room temperature under dark conditions (30 min). The
absorbance was measured at 517 nm. ABTS operating solution was prepared for mixing
the ABTS solution (10 mL, 7 mM) with potassium persulfate solution (175 µL, 140 mM) in
the dark for 15 h. The same sample solution was mixed with the ABTS operating solution
at 37 ◦C in dark for 6 min. The absorbance was measured at 405 nm. Ascorbic acid served
as the positive control for both experiments. The percentage of DPPH and ABTS radical
scavenging activities was calculated as follows:

DPPH or ABTS radical scavenging activity (%) =
A0–(As–Ac)

A0

where A0 is the absorbance of DPPH or ABTS solution with distilled water; As is the
absorbance of DPPH or ABTS solution with sample solution; and Ac is the absorbance of
sample solution with absolute ethyl alcohol. The IC50 is recorded as the sample concentra-
tion when the scavenging activity was 50%.

2.11. Congo Red Test of the SWESPs

According to the methods of Liang et al. [35], the SWESPs (1 mL, 2.0 mg/mL) were
mixed with Congo red (1 mL, 80 µmol/L). NaOH (1 mol/L) was added until the final
NaOH concentration reached 0–0.5 mol/L. After the mixture was fully mixed and had
been left standing for 10 min, the absorbance was measured by scanning in the range
400–700 nm.

2.12. Effect of the SWESPs on the Glycemic Index (GI) of Wheat Flour during In Vitro Digestion

The method for in vitro digestion was the same as hat used by Zhang et al. [28]. The
SWESPs (10 mg) and wheat flour (100 mg) were mixed, and the resulting mixture was
thoroughly mixed with 10 mL of distilled water. The sample was heated in a 100 ◦C
thermostatic water bath for 25 min before cooling to 37 ◦C. The gelatinized sample was
vacuum freeze-dried and ground. Samples (100 mg) were used to simulate the digestion
process of the oral, stomach, and gastrointestinal areas using a simulated digestive system
GI20 (NI Ltd., Belfast, UK). During the oral stage (5 min), the sample was blended with
2 mL simulated saliva and added to a rotor to simulate peristaltic digestion. After that, it
went through 1.5 h of stomach digestion and 4 h of intestinal digestion. GI values were
monitored at different time points (10, 60, 120, 180, 240 and 300 min) using a GM9 glucose
analyzer (Analox, Stokesley, UK).
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2.13. Statistical Analysis

SPSS 20.0 was used to process the data using triplicate measurements for each sample.
The figures were printed using Origin 2019b.

3. Results and Discussion
3.1. Yield of the SWESPs

Yield is a pivotal parameter to evaluate the extraction efficiency during SWESP prepa-
ration. Meanwhile, the extraction temperature and time are both crucial parameters in
the process of squash polysaccharide extraction. In this work, the effects of solvent/solid
ratio, extraction time, extraction pressure and extraction temperature on the yield of squash
polysaccharides were studied (Supplementary Figure S1A–D). The results demonstrated
that the extraction temperature and time had a great influence on the yield; however, this
was not true for the extraction pressure. Therefore, the effects of the extraction temper-
ature (110, 130, 150, 170, 190 ◦C) and the extraction time (4, 8, 12, 16 min) of the SWE
on the yield of polysaccharides from squash were further investigated (Supplementary
Figure S1E). Under different extraction conditions, the SWESP yield ranged from 12.43% to
18.67%, indicating that the extraction conditions significantly influenced the yield of SWE-
SPs. Compared with traditional methods (hot water extraction etc.), the yield of squash
polysaccharides extracted via SWE is 3–4 times higher and less time consuming [1,3].
Zhang et al. [4] obtained squash polysaccharides via hot water extraction (80 ◦C, 4 h) and
purified them. The yield of squash polysaccharides before and after purification was 5.46%
and 1.30%, respectively.

As shown in Supplementary Figure S1E, the most suitable extraction temperature and
time for a high yield of SWESPs are 150 ◦C and 12 min, respectively. The yield of SWESPs
initially increased and then decreased with an increase in extraction time at each extraction
temperature. This illustrated that the polysaccharides cannot be fully extracted in a short
time and will be degraded under the conditions of SWE if the time is too long [36]. In
addition, the SWE of SWESPs exhibited a relatively low efficiency at lower temperatures.
However, the degradation of SWESPs by subcritical water became more pronounced than
the extraction effect when the extraction temperature was excessively high, leading to a
significant decreased in the yield of SWESPs. According to the SWESP extraction yield
results, extraction temperature had a greater impact on extraction yield than extraction time.
When the extraction temperature was lower than 150 ◦C, the SWESP extraction efficiency
was higher than the degradation efficiency; therefore, the extraction rate increased as the
temperature increased. At about 150 ◦C, the extraction and degradation of the SWESPs
reached a relative balance; hence, extraction time at this time had no significant effect on
the extraction rate. When the temperature was further increased, the degradation rate
of the SWESPs exceeded the extraction rate, resulting in a decrease in the extraction rate
of the SWESPs. Meanwhile, some undesirable substances were also produced at high
temperatures, such as furfurals and the products of Maillard reactions [36].

3.2. Chemical Composition of the SWESPs

The chemical composition of the SWESPs under different extraction conditions is
shown in in Figure 1A. The contents of neutral sugar and GalA were 44.10–90.42% and
3.48–37.72%, respectively. Neutral sugar is the main component of squash polysaccharides
and are derived from the extraction or degradation of the main or side chains of polysac-
charides and lignocellulose (cellulose or hemicellulose) [37]. As the extraction temperature
increased, the content of neutral sugars in the SWESPs gradually increased. Notably, when
the extraction temperature was 190 ◦C, the content of neutral sugars decreased, which
may be the result of partial neutral sugar reactions or the degradation of the SWESPs.
Interestingly, the change in GalA content was the opposite to that of the neutral sugar
content. The GalA content was relatively high and without excessive degradation when
the extraction temperature was lower. However, the GalA content exhibited a significant
decline under high temperature conditions, which may be attributed to the accelerated



Foods 2024, 13, 1211 6 of 17

thermal degradation of the SWESPs by the high temperature and prolonged extraction [38].
In addition, the increase in temperature will also lead to an increased in the ionization
constant of water, thereby enhancing the acidity of the solution and further enhancing
the acidolysis of pectin polysaccharides [39]. At an extraction temperature of 110 ◦C, the
prolongation of extraction time also contributed to the sharp decrease in GalA content.
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Figure 1. The chemical composition (A) and colorimeter analysis (B–D) of SWESPs. The solvent/solid
ratio and extraction pressure were 40 mL/g and 5 MPa, respectively.

As can be seen, each sample contained a small amount of protein and total phenol.
With an increased in extraction temperature and extraction time, the total phenol content in
the system decreased due to the unstable structure. In addition, the unknown parts of the
SWESPs may consist of ash, pigments, etc. Simultaneously, at 190 ◦C, the proportion of
unknown components increased significantly, which may have been caused by the reaction
of the components in the system to produce new substances under the high-temperature
and high-pressure environment.

3.3. Monosaccharide Composition of the SWESPs

Based on the high-performance ion chromatography (HPIC), the SWESPs were mainly
composed of glucose (Glu, 62.58–101.22 mg/g), galactose (Gal, 9.27–16.31 mg/g), rham-
nose (Rha, 0.00–1.59 mg/g), arabinose (Ara, 0.10–3.08 mg/g) and galacturonic acid (GalA,
2.97–55.28 mg/g) (Table 1), which determined the physicochemical and structural prop-
erties of the SWESPs. Glucose and galacturonic acid were the main monosaccharide
components of the SWESPs, followed by arabinose, galactose and rhamnose. This result
was consistent with Section 3.2 and with previous studies regarding the types of squash
monosaccharides, but the quantities were slightly different [1,30].
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Table 1. The monosaccharide composition and molecular mass of SWESPs.

SWESP
Mw
(104 Da)

Monosaccharide Composition (mg/g)

Temperature
(◦C)

Time
(min) Glucose Galactose Rhamnose Arabinose Galacturonic

Acid

110

4 47.84 ± 3.56 a 65.32 ± 0.44 i 10.38 ± 0.56 hi 1.34 ± 0.04 c 3.08 ± 0.17 a 55.28 ± 0.10 a

8 39.77 ± 3.02 b 66.43 ± 0.08 i 9.64 ± 0.33 ij 1.27 ± 0.01 d 2.95 ± 0.14 b 53.71 ± 0.08 bc

12 34.58 ± 2.58 d 62.58 ± 0.71 j 10.56 ± 0.45 ghi 1.45 ± 0.02 b 3.01 ± 0.05 ab 54.09 ± 1.21 b

16 25.93 ± 1.34 g 63.47 ± 0.56 j 10.03 ± 0.71 ij 1.03 ± 0.06 fg 2.82 ± 0.08 c 52.98 ± 0.87 c

130

4 38.90 ± 0.93 c 69.51 ± 1.01 gh 9.27 ± 0.16 j 1.59 ± 0.09 a 2.54 ± 0.06 de 50.25 ± 0.55 e

8 29.33 ± 2.01e 70.44 ± 0.92 g 11.54 ± 0.51 efg 1.24 ± 0.04 d 2.60 ± 0.07 d 53.09 ± 0.37 c

12 27.47 ± 1.26 f 68.39 ± 1.45 h 10.39 ± 0.28 hi 1.35 ± 0.04 c 2.47 ± 0.10 e 51.38 ± 0.29 d

16 10.24 ± 1.35 j 65.27 ± 0.88 i 11.92 ± 0.09 ef 1.17 ± 0.05 e 2.03 ± 0.04 f 47.05 ± 0.14 f

150

4 12.77 ± 0.61 h 86.32 ± 1.21 e 12.37 ± 0.34 de 1.08 ± 0.04 f 1.96 ± 0.06 f 37.92 ± 0.43 h

8 9.86 ± 0.93 k 85.49 ± 0.63 e 10.55 ± 0.25 ghi 0.95 ± 0.08 h 2.08 ± 0.05 f 40.51 ± 0.79 g

12 6.24 ± 1.08 m 79.27 ± 0.79 f 11.22 ± 0.73 fgh 0.99 ± 0.03 gh 1.74 ± 0.04 g 38.47 ± 0.58 h

16 4.80 ± 0.54 n 80.35 ± 0.32 f 12.89 ± 0.12 d 0.73 ± 0.04 i 1.59 ± 0.09 h 35.00 ± 0.94 i

170

4 10.85 ± 2.10 i 91.27 ± 0.77 c 14.88 ± 0.36 c 0.51 ± 0.00 j 0.87 ± 0.02 i 12.85 ± 0.15 k

8 6.34 ± 1.21 m 90.35 ± 1.00 cd 15.41 ± 0.90 abc 0.37 ± 0.01 k 0.92 ± 0.02 i 16.27 ± 0.33 j

12 4.80 ± 0.45 n 91.01 ± 1.31 c 16.01 ± 0.77 ab 0.26 ± 0.02 lm 0.89 ± 0.05 i 13.58 ± 0.27 k

16 3.91 ± 0.84 p 89.20 ± 1.04 d 15.20 ± 0.35 bc 0.30 ± 0.01 l 0.67 ± 0.01 j 10.03 ± 0.19 m

190

4 7.53 ± 0.92 l 101.22 ± 0.49 a 16.31 ± 0.94 a 0.21 ± 0.01 mn 0.44 ± 0.03 k 11.38 ± 0.58 l

8 4.53 ± 0.37 o 100.37 ± 0.56 ab 15.29 ± 0.58 bc 0.15 ± 0.02 n 0.53 ± 0.04 k 7.56 ± 0.24 n

12 3.92 ± 0.44 p 99.25 ± 0.20 b 13.05 ± 0.64 d - 0.29 ± 0.01 l 4.29 ± 0.17 o

16 3.08 ± 0.28 q 100.02 ± 0.38 ab 15.86 ± 0.83 abc - 0.10 ± 0.00 m 2.97 ± 0.09 p

Values in the same column with different letters are significantly different at p < 0.05.

For all SWESP samples, it was observed that the contents of Glu and Gal increased
significantly with higher extraction temperatures and longer extraction times, particularly
when the temperature exceeded 150 ◦C. Subcritical water degraded more cellulose and
hemicellulose in squash pulp at relatively high temperature and pressure, resulting in
an increase in the content of Glu. The increase in Gal may be due to the breakage of
SWESP side chains, leading to the formation of new polysaccharides. This is consistent
with the aforementioned extraction and degradation of polysaccharides using subcritical
water. Inversely, the content of Rha, Ara and GalA in the SWESP samples declined with
an increase in extraction temperature. Since GalA and Rha were the main components
of homogalacturonic acid (HG) and rhamnogalacturonic acid (RG) frameworks, it was
inferred that their frameworks were destroyed under high-temperature and high-pressure
conditions in subcritical water [36,40,41]. Intriguingly, Rha was not detected in 190-12
and 190-16. Moreover, the ratio of the sum of Ara and Gal to Rha can be used to analyze
the structure and side chain ingredients of pectin polysaccharides [40,42]. The increase
in temperature led to a significant rise in the ratio, indicating an augmented presence
of hairy regions and side chains in the SWESP samples. Hence, it could play a guiding
role in the monosaccharide composition, monosaccharide content and molecular mass of
extracted polysaccharides.

3.4. Molecular Mass of the SWESPs

The standard curve was derived from different molecular mass dextrans (5.0, 11.6, 23.8,
48.6, 80.9, 148.0, 273.0, 409.8, 667.8 KDa). According to the standard curve equation (log
Mw = −0.1939X + 12.27, R2 = 0.9924, where Mw is the molecular mass and X is the retention
time), the molecular masses of the SWESPs were calculated and are shown in Table 1. The
Mws of the SWESPs were in the range 30.826–478.411 KDa, indicating a relatively broad
range and a higher molecular mass at low temperature. With an increased in temperature
and time, the molecular mass of the SWESPs showed a significant decreasing trend. This
result was mainly attributable to two aspects: (1) the state of high temperature and high
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pressure led to the breaking of the glycosidic bonds of macromolecular polysaccharides,
forming more low-molecular-mass polysaccharides [43] and (2) the increased in extraction
time prolonged the time the SWESPs were in a serious environment, which in turn led
to the degradation of the polysaccharides [41]. When the temperature was higher than
150 ◦C, the degradation rate of the polysaccharides increased significantly, indicating that
temperature had a great influence on the molecular mass of polysaccharides in water in
the subcritical state. It is noticeable that the ideal molecular mass polysaccharide can be
obtained by changing the temperature of the subcritical water and the extraction time
during the extraction process. Polysaccharides with different molecular masses have
different roles in food processing. For example, polysaccharides with molecular masses of
600–700 kDa were more suitable as gelling or thickening agents and high-molecular-mass
polysaccharides were more suitable for making food preservation films; however, low-
molecular-mass polysaccharides may be more biologically active [1,44]. Therefore, a series
of polysaccharides with different molecular masses prepared in different subcritical water
states have good development potential in the food industry field. Through the analysis
of extraction conditions and the properties of the SWESPs, the industrial production and
application of SWESPs can be further realized.

3.5. Colorimetric Analysis of the SWESPs

Color is one of the most important organoleptic properties of polysaccharides and
is affected by components such as pigments. Meanwhile, some physical and chemical
reactions can also lead to color changes in polysaccharides, such as Maillard reactions,
caramelization and so on [45]. The principle of color analysis is to apply the Hunter Lab
system, where L* represents brightness, a* represents red (+) and green (−) chromaticity
and b* represents yellow (+) and blue (−) chromaticity [46].

As illustrated in Figure 1B–D, the ranges of the L*, a* and b* values were 66.39–93.58,
0.16–3.84 and 4.64–15.46, respectively. As the extraction temperature increased, the L*
value gradually decreased. In contrast, the a* and b* values gradually increased. In
low-temperature areas, the color of the SWESPs was snow white. With an increase in
extraction temperature and time, the SWESPs first changed from white to dark gray. The
results from this investigation were inconsistent with the findings from the previous
investigation performed by Zhang et al. [36], which may be attributed to the structure
of the polysaccharides, the raw material pigments and the composition of ingredients.
When the temperature was higher than 170 ◦C, the SWESPs turned yellow-brown, which
was consistent with the experimental results. In addition, in the low-temperature region,
the color change range of the SWESPs was small, while at high temperatures, the color
of the SWESPs changed sharply. That is to say, high temperatures had a great effect on
the color of the SWESPs and was also a major factor in the formation of red and yellow
colors. The values of a* and b* showed the same trend as in Figure 1, and the ratio of b*
to a* was always greater than 1, which meant that yellow was more dominant than red
in the color change process [47]. After the polysaccharides underwent degradation and a
series of reactions at high extraction temperatures, new substances such as furfurals and
5-hydroxymethylfurfural appeared, resulting in the color of the SWESPs changing from
white to yellow-brown [36]. Moreover, Maillard and caramelization reactions also affected
the color of the SWESPs [32,48]. The specific change mechanism of the polysaccharide color
change needs to be further studied. In addition to this, the influence of polysaccharide
color in the food industry should also be considered, so that the corresponding extraction
conditions can be controlled to meet any requirements when preparing polysaccharides
with SWE.

3.6. Fourier-Transform Infrared (FT-IR) Spectroscopy

The changes in the functional groups of all the samples were studied via FT-IR spec-
troscopy. A high similarity in FT-IR absorption patterns was found in all SWESP samples
(Figure 2). The broad band between 3000 and 3700 cm−1 corresponds to the O-H bond
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stretching vibration [49]. Bands near 2940 cm−1 are associated with the stretching vibra-
tion of the C-H bond [50]. The weak absorption band at the 2330 and 2370 cm−1 regions
indicates some amidated components with N-H stretching. Additionally, the peak oc-
curring at 1640 cm−1 correspond to the asymmetric stretching vibrations of the carboxyl
group, confirming the presence of uronic acid in the SWESPs [51]. The signals in the
ranges 800–1200 cm−1 and 1000–1200 cm−1 result from the fingerprint regions of pectic
polysaccharides and the sugar ring backbones of C-O and C-C, respectively. The absorption
peak at 850 cm−1 indicated the existence of α-configuration pyranose, and the absorption
vibrations at 2940, 1370 and 1235 cm−1 were the main peaks assigned to the asymmetric
and symmetric stretching vibration of the CH2 of the pyranose ring for the SWESP sam-
ples [52,53]. The peaks occurring at 1080, 1030 and 928 cm−1 corresponded to Gal and
Glu [25,54]. The strength of these characteristic peaks was also related to the change in
their contents during the extraction process. It is worth noting that the infrared spectral
transmittance and the peak size under different extraction conditions were different. This
might be explained by research showing that the extraction, degradation and interaction of
polysaccharides in different SWE states.
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Figure 2. FT−IR spectrum analysis of SWESPs. (A) Extraction at 110 ◦C for different times (4, 8,
12, 16 min). (B) Extraction at 130 ◦C for different times (4, 8, 12, 16 min). (C) Extraction at 150 ◦C
for different times (4, 8, 12, 16 min). (D) Extraction at 170 ◦C for different times (4, 8, 12, 16 min).
(E) Extraction at 190 ◦C for different times (4, 8, 12, 16 min). The solvent/solid ratio and extraction
pressure were 40 mL/g and 5 MPa, respectively.

3.7. Rheological and Emulsifying Properties of the SWESPs

The apparent viscosities of the SWESP solutions were assessed using steady-state flow
measurements. As can be seen from Figure 3A–E, the flow curves trended similarly for
all SWESP samples; they decreased with increasing shear rate, dropping sharply and then
flattening out. Interestingly, the apparent viscosity of the SWESPs was decreased with
increasing extraction temperature and time. All solutions exhibited pronounced shear-
thinning pseudoplastic behavior. It is known that the rheological behavior of SWESPs is
closely related to monosaccharide composition, molecular mass and GalA content [55].
Hence, the results were consistent with the findings from the aforementioned investigation.
High temperatures led to a decrease in the molecular weight of the SWESPs and thus a
decrease in the apparent viscosity. Moreover, the long extraction process made the flow
curve relatively flat. These results demonstrate that the apparent viscosity of the SWESPs
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was significantly influenced by both the extraction temperature and duration. The different
rheological properties of the SWESPs affected their biological functions, processing and
transport modes [23,36]. Therefore, predicting and explaining the rheological properties of
the SWESPs plays an important role in food processing, manufacturing and development.
According to the results of this research, different extraction conditions can be utilized to
prepare SWESPs with desirable rheological properties.
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16 min). (C) Extraction at 150 ◦C for different times (4, 8, 12, 16 min). (D) Extraction at 170 ◦C for
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solvent/solid ratio and extraction pressure were 40 mL/g and 5 MPa, respectively.

The emulsifying properties of all 20 SWESP samples are shown in Figure 3F. The
molecular mass, composition of monosaccharides, content of hydrophobic functional
groups and the degree of branching of the SWESPs are all key factors that determine
their emulsifying capacity [56]. The emulsifying capacity of the SWESPs ranges from
4.55 to 40.30% and increased with an increase in extraction temperature and extraction
time; however, it is more affected by temperature. According to the results in Section 3.4,
under high extraction temperatures, the SWESPs were degraded easily, resulting in SWESP
sample with low molecular mass, thus improving the emulsifying capacity. In addition,
GalA content and a small amount of protein were also factors that affected the emulsifying
capacity of the SWESPs [57]. The ideal polysaccharide emulsifying capacity can also be
controlled by controlling the SWE extraction conditions, which provides a theoretical basis
for precise polysaccharide preparation and industrial application.

3.8. Antioxidant Activity of SWESP

In this study, the antioxidant activity (DPPH and ABTS radical scavenging capacities)
of SWESPs and a positive control (Vc) were investigated. The results are shown in Figure 4.
DPPH is a stable nitrogen-centered free radical. In the presence of free radical scavengers,
the single electron of DPPH is captured and the color becomes lighter. The process is widely
used in the determination of the antioxidant capacity of natural products in vitro due to
its simple operation and good repeatability. As can be seen from Figure 4A, in the range
0.3125–10 mg/mL, the antioxidant activities of all SWESP samples showed an obvious
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concentration dependence. In addition, it was evident that the effect of the extraction
temperature and time on the free radical scavenging ability of DPPH played an important
role. The DPPH radical scavenging capacity of the SWESPs was 0.65–60.38%. The samples
obtained at 150-08 and 150-12 showed the best free radical scavenging ability during the
assay. At low temperatures, prolonging the extraction time can improve the yield of SWESPs
and effectively improve the antioxidant capacity. The opposite result was obtained at high
temperatures, a result which may be related to the degradation and reaction of SWESPs [58].
Moreover, as illustrated in Figure 4B, the IC50 values of the SWESP samples showed a
similar trend to the free radical scavenging activity. The samples of 150-10, 150-15 and
170-08 had relatively low IC50 values. The results from the investigation were inconsistent
with the findings from the previous investigation performed by Zhang et al. [36]. This
result may be related to the type of polysaccharides, monosaccharide composition and
molecular mass, among other reasons [59]. Since the antioxidant capacities of the SWESP
samples were numerous and complex, further research was needed, especially regarding
the degradation and interaction of polysaccharides. The ABTS radical cation is formed by
the oxidation of ABTS with potassium persulfate. The color of the stock solution is blue-
green, and after adding the polysaccharide solution, the antioxidant components contained
in the substance react with the ABTS radical cation, causing the reaction system to fade. This
is a model for evaluating the antioxidant activity of polysaccharides. It can be seen from
Figure 4A that within the measurement range (0.3125–10 mg/mL), the scavenging ability of
ABTS gradually enhanced with an increased SWESP concentration, which was consistent
with the results of the DPPH radical scavenging capacity test. The data distribution of
the ABTS radical scavenging capacity of SWESPs at different extraction temperatures and
extraction times was also similar to the previous results. The ABTS radical scavenging
capacity of the SWESPs was 0.25–93.00%. The difference was that the scavenging capacity
of the SWESPs for ABTS was stronger than that for DPPH. Therefore, the red area was
smaller than the blue area (Figure 4B). Furthermore, compared with VC, SWESPs had
slightly weaker scavenging capacity for DPPH and ABTS radicals. Compared with the
traditional hot water extraction method, the DPPH and ABTS radical scavenging capacity
of SWESPs extracted via the subcritical water method was significantly improved [60].
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Figure 4. DPPH and ABTS radical scavenging activities (A) and in vitro IC50 value (B) of SWESPs.
The extraction temperature ranged from 110 to 190 ◦C and the extraction time ranged from 4 to
16 min, which led to 20 combinations marked by “number1–number2”. The solvent/solid ratio and
extraction pressure were 40 mL/g and 5 MPa, respectively.

Polysaccharide is a natural biological macromolecule, and its activity is closely related
to its structure, composition, interaction and state, among other things [61]. However,
the study of a single polysaccharide is not enough to clarify the relationship between its
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structural composition, physicochemical properties and biological activity. Therefore, a
series of polysaccharides were prepared and analyzed from the same raw material using
different extraction states, which can help to distinguish the differences in the physicochem-
ical properties and bioactivities of polysaccharides. It is hoped that the relevant properties
and activities of SWESPs can be elucidated from the extraction conditions of different
temperatures and times.

3.9. Triple Helix of SWESP

Congo red can combine with some polysaccharides to form a complex, resulting in
an increase in their maximum absorption wavelength (λmax). The maximum absorption
wavelength of the complex is red shifted compared to Congo red. Within a certain concen-
tration range, the characteristic change manifested as the maximum absorption wavelength
becomes purplish red. Then, the NaOH degree is greater than a certain value, the inter-
molecular hydrogen bond breaks down, the spiral structure dissolves and the complex
cannot be formed. The maximum absorption wavelength drops sharply. The results are
illustrated in Figure 5. Except for those extracted at 190 ◦C, all polysaccharides had triple
helix structures, suggesting that a high-temperature environment could damage the triple
helix structure of polysaccharides. Under 170 ◦C, only polysaccharides extracted for 4 min
contained trihelix structure, which proved that the longer extraction time, the more easily
the trihelix structure of polysaccharides was destroyed. In addition, with the increase in
temperature, the maximum wavelength increased first and then decreased, while with the
increase in extraction time, the maximum wavelength decreased gradually. The maximum
wavelength increases at low concentrations of NaOH, while high concentrations of NaOH
can make the conformational structure of the polysaccharide gradually become unstable
and even fracture, which may be caused by severe β-elimination fracture [62]. What is
more, the regular helical structure of pectin in alkaline solution is related to its special
regional structure [63]. Therefore, SWESPs with good triple helix structures can be obtained
by extracting at relatively low temperatures and with short extraction times.
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Figure 5. Maximum absorption λmax of SWESP–Congo red complexes at different concentrations
of NaOH. (A) Extraction at 110 ◦C for different times (4, 8, 12, 16 min). (B) Extraction at 130°C for
different times (4, 8, 12, 16 min). (C) Extraction at 150 ◦C for different times (4, 8, 12, 16 min). (D)
Extraction at 170 ◦C for different times (4, 8, 12, 16 min). (E) Extraction at 190 ◦C for different times (4,
8, 12, 16 min). The solvent/solid ratio and extraction pressure were 40 mL/g and 5 MPa, respectively.
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3.10. In Vitro Digestibility of Gelatinized Wheat Flour Mixed with SWESPs

It can be seen from Figure 6A that from 10 to 300 min of digestion, the GI value
increases gradually, especially for 10–60 min. The GI value of wheat flour increased from
56.64 to 82.03. After the addition of SWESPs, the GI values of all samples decreased to
different degrees, except for 190-12 and 190-16. At extraction temperatures of 110–150 ◦C,
SWESPs were able to significantly reduce GI values, especially for 110-04, 150-04 and
150-08 samples. At an extraction temperature of 170 ◦C, SWESPs had only a weak effect
on lowering GI values. In addition, the higher the extraction temperature and the longer
the extraction time, the weaker the effect of polysaccharides in reducing the GI value.
Figure 6B shows the predicted GI values of 78.62 and 60.03–76.84 for gelatinized wheat
flour and wheat flour/SWESP mixtures, respectively. Their trends were similar to the
trend of GI value changes throughout the in vitro simulated digestion. The addition of
SWESPs can protect the starch from being partially broken during the pasting process.
The unbroken starch was difficult to digest, resulting in a low rapidly digestible starch
content [64,65]. In addition, there was an electrostatic interaction between SWESPs and
starch granules and the SWESPs were surrounded by the surface of the starch granule via
hydrogen bonding between the SWESPs and the leached starch. The process hindered
the enzymatic hydrolysis of starch and promoted the increase in slowly digestible starch
and resistant starch content [66]. Moreover, these inhibitory effects were enhanced with
increasing pectin content and molecular weight [67]. The triple helix structure of SWESPs
may also be responsible for the lower GI values.
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Figure 6. The GI at different times (A) and the predicted GI (B) of gelatinized wheat flour and gela-
tinized wheat flour/SWESP mixtures. The extraction temperature ranged from 110 to 190 ◦C and the
extraction time ranged from 4 to 16 min, which led to 20 combinations marked by “number1–number2”.
The solvent/solid ratio and extraction pressure were 40 mL/g and 5 MPa, respectively.

4. Conclusions

SWE is an environmentally friendly technique that has been demonstrated to be an
excellent method for squash polysaccharide extraction. In the present study, single-factor
experiments were first conducted. The results showed that the extraction temperature and
time had a great influence on the yield. After that, the properties of a total of 20 samples
were investigated at different extraction temperatures (110, 130, 150, 170 and 190 ◦C) and
extraction times (4, 8, 12 and 16 min). The results showed that the extraction temperature
played a more important role than the extraction time. Changing the extraction temperature
and time has a great influence on the extraction rate, molecular mass, monosaccharide
composition, color, viscosity properties, emulsifying properties, antioxidant capacity, triple
helix structure and in vitro digestibility of SWESPs. Therefore, the correlation between
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them was comprehensively evaluated and a database of SWESPs prepared from subcritical
water was initially established. According to the needs of the food industry, different
extraction methods are adopted to produce the corresponding SWESPs. Specifically, at low
temperatures, due to the high molecular mass and viscosity characteristics, SWESPs can be
used as gels or thickeners. The SWESPs obtained at about 150 ◦C have good potential as a
kind of antioxidant and can be obtained in large quantities. High-temperature-extracted
SWESPs were suitable for related food processing applications due to their unique color,
low molecular weight and low viscosity. The triple helix structure of SWESPs occurred
at low temperatures and with short extraction times. In addition, the 110-04, 150-04 and
150-08 SWESP samples had a good ability to lower GI values. Meanwhile, the pectin
content, molecular weight and triple helix structure of SWESPs significantly affected the GI
value. Hence, according to the law that SWESPs prepared under different conditions have
different structures and physicochemical properties and actual demand, SWESPs can be
extracted for use as gels, thickeners and antioxidant supplements. In summary, the SWE
method is expected to important for obtaining squash polysaccharides that can be used in
the food industry.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods13081211/s1, Figure S1: Influence of different ex-
traction factors on polysaccharide yield (A) solvent/solid ratio; (B) extraction time; (C) extraction
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