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Abstract: Dendrobium officinale has drawn increasing attention as a dual-use plant with herbal
medicine and food applications. The efficient quality evaluation of D. officinale is essential to ensuring
its nutritional and pharmaceutical value. Given that traditional analytical methods are generally time-
consuming, expensive, and laborious, this study developed a rapid and efficient approach to assess
the quality of D. officinale from different geographical origins by near-infrared (NIR) spectroscopy
and chemometrics. Total saponins, mannitol, and naringenin were utilized as quality indicators.
Two wavelength selection methods, namely, uninformative variable elimination and competitive
adaptive reweighted sampling (CARS), were utilized to enhance the prediction accuracy of the
quantification model. Moreover, multiple spectral pretreatment methods were applied for model
optimization. Results indicated that the partial least squares (PLS) model constructed based on the
wavelengths selected by CARS exhibited superior performance in predicting the contents of the
quality indicators. The coefficient of determination (RP

2) and root mean square error (RMSEP) in the
independent test sets were 0.8949 and 0.1250 g kg−1 for total saponins, 0.9664 and 0.2192 g kg−1 for
mannitol, and 0.8570 and 0.003159 g kg−1 for naringenin, respectively. This study revealed that NIR
spectroscopy and the CARS-PLS model could be used as a rapid and accurate technique to evaluate
the quality of D. officinale.

Keywords: near-infrared spectroscopy; Dendrobium officinale; chemometrics; quality evaluation

1. Introduction

Dendrobium officinale Kimura et Migo, commonly known as Tiepi Shihu, belongs to the
genus Dendrobium in the family Orchidaceae [1]. It is a valuable Chinese herbal medicine
with a long history and is primarily distributed throughout subtropical and tropical regions,
particularly in China, Australia, India, Japan, and other areas [2]. D. officinale possesses a
diverse range of pharmacological properties, including immunomodulatory effects, anti-
fatigue activity, and gastroprotective actions against ulcers; thus, it is called “one of the nine
fairy species” [3]. Numerous studies have confirmed the significance of D. officinale in the
pharmaceutical industry. For instance, Kuang et al. discovered that the polysaccharides in
D. officinale can effectively reduce blood glucose levels and prevent the onset of diabetes [4].
Zhang et al. revealed that D. officinale supplementation can promote alcohol metabolism
and alleviate alcoholic fatty liver disease [5]. An increasing body of studies has demon-
strated that a variety of active compounds, including polysaccharides, flavonoids, mannitol,
naringenin, and total saponins, are closely associated with the antioxidant, anti-cancer, and
anti-inflammatory properties of D. officinale [6–8]. Due to its health benefits and therapeutic
properties, D. officinale has been widely prepared into a variety of health products, such
as oral liquid, lozenges, capsules, and so on. Currently, it is also used as a raw material
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in drugs such as Granules Dendrobii and Shihu Yeguang pills, which have demonstrated
significant therapeutic effects in clinical practice [8]. Wild D. officinale resources cannot
meet the increasing demand, and most D. officinale products available on the market are
artificially cultivated. In China, the population of D. officinale has led to a continuous
increase in its production and turnover, reaching over 27,000 tons and 1.4 billion dollars. In
particular, it is widely cultivated in Anhui and Zhejiang Provinces in China [9,10]. However,
environmental factors differ across varying geographical origins, causing variations in the
content of the active compounds in D. officinale that inevitably influence its nutritional and
medical values. Some merchants often adulterate or sell substandard products at premium
prices, thereby disrupting market integrity and undermining consumer rights. Therefore,
the quality evaluation of D. officinale is essential. Conventional approaches for identifying
D. officinale mainly encompass morphological identification [11], fingerprinting [12], and
chemical analysis [3]. However, character identification and fingerprinting are inclined to
yield insensitive detection results. Moreover, chemical identification, including ultraviolet–
visible spectroscopy (UV-vis), high-performance liquid chromatography (HPLC), and gas
chromatography, is time-consuming, laborious, and expensive; they also require complex
sample pretreatment and skilled operators [13]. Thus, a rapid and efficient method for the
measurement of active components in D. officinale is needed.

Near-infrared (NIR) spectroscopy is an ideal choice due to its benefits such as fast
analysis speed, high accuracy, easy operation, absence of additional reagents, and en-
vironmental friendliness [14]. It is now extensively utilized in various fields, including
pharmaceuticals, petrochemicals, textiles, cosmetics, and medical applications [15]. NIR
is a type of light that falls between the visible range and the mid-infrared range. How-
ever, the NIR spectrum is characterized by complex and overlapping peaks and useless
information from background and noise, resulting in difficulty in clearly distinguishing
the specific spectral range corresponding to the biochemical substance. To enhance model
accuracy, researchers commonly employ spectral pretreatment methods such as standard
normal variable (SNV) transformation, Savitzky–Golay (SG) smoothing, first derivative
(1D), second derivative (2D), and multivariate scattering correction (MSC) to remove noise
interference, linearity correction, and spectral fitting [16]. Wavelength selection methods
are crucial for feature extraction. Uninformed variable elimination (UVE) [17], competitive
adaptive reweighted sampling (CARS) [18], and the non-information variable elimina-
tion algorithm are widely accepted methods for wavelength selection, and each possesses
unique strengths in various aspects. The saponins, considered important components of
multiple traditional Chinese medicines, possess numerous medicinal properties such as
immune activity, hemolytic activity, antimicrobial effects, antiviral effects, and anti-cancer
properties [19]. Mannitol is a sugar-free and functional sweetener that can control cell ex-
pansion and scavenge free radicals, making it suitable for use as a food additive to enhance
the nutritional value of food [20]. Naringenin, a commonly consumed flavonoid substance,
has been widely used in clinical practice due to its anti-inflammatory and anti-infective
medicinal properties [21]. Until now, the determination of active components in D. officinale
through NIR spectroscopy has been scarcely studied. Ma et al. used NIR spectroscopy to
predict the total polyphenol content and antioxidant activity in D. officinale [22]. Yun et al.
developed a green method based on NIR spectroscopy to quantify the polysaccharides in
D. officinale [23]. The quantification indicators of the previous studies mainly focused on
polysaccharides and polyphenols. To the extent of our knowledge, the rapid measurement
of total saponins, mannitol, and naringenin in D. officinale via NIR spectroscopy has not
been conducted.

This work aimed to investigate the potential of NIR spectroscopy and chemometrics as
a fast and convenient method for determining the total saponins, naringenin, and mannitol
in D. officinale. To achieve this objective, we investigated the prediction performance of
three NIR quantitative models. Subsequently, multiple spectrum pretreatment techniques
and wavelength selection methods were examined to optimize model performance. Using
NIR spectroscopy to establish a quantitative model can achieve quick detection of total
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saponins, naringenin, and mannitol in D. officinale, thereby reducing the analysis time and
enhancing efficiency.

2. Materials and Methods
2.1. Materials and Reagents

A total of 120 D. officinale samples were purchased from various provinces in China
through online purchasing platforms. After being dried to a consistent weight, the materials
were ground into a fine powder and sifted through an 80-mesh screen. The resulting powder
samples were then stored in sealed and opaque plastic containers until analysis.

Deionized water was generated using a Milli-Q system (Millipore, Burlington, MA,
USA). Analytical-grade sodium periodate, hydrochloric acid, L-rhamnose acetate, acetic
acid, acetylacetone, methanol, perchloric acid, vanillin, and anhydrous ethanol were pro-
cured from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Neutral alumina
was also of analytical grade. High-purity standards of ginsenoside Re (≥98%), mannitol
(≥98%), and naringenin (≥98%) were purchased from Must Biological Technology Co.,
Ltd. (Chengdu, China). HPLC-grade methanol and phosphoric acid were obtained from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. NIR Spectral Acquisition

The Antaris II FT-NIR spectrometer (Thermo Fisher Scientific, St. Louis, MO, USA) was
utilized for NIR spectral acquisition. A quartz sample cup was filled with approximately
2 g of the material prior to acquiring the NIR spectrum. The spectrum was obtained at an in-
terval of 3.854 cm−1 and covered a wavelength range of 1000–2500 nm (10,000–4000 cm−1).
With air serving as the reference, each spectrum was scanned 64 times. Each sample was
scanned three times, and the average spectrum was utilized for subsequent analysis.

2.3. Reference Assays

The contents of total saponins, mannitol, and naringenin in D. officinale were determined
by the macroporous adsorption resin method [24], the sodium periodate–hydrochloric acid
method [25], and the methanol-heated reflux–HPLC method [26], respectively. The corre-
sponding standard reference materials were ginsenoside Re, D-mannitol, and naringenin.

2.3.1. Determination of Total Saponins

An amount of 0.1 g of sample powder was accurately weighed and placed in a
5 mL centrifuge tube. About 2 mL of 70% anhydrous ethanol was added, shaken well,
ultrasonically extracted for 90 min, and cooled overnight to obtain the sample solution.
The chromatographic tube was fixed vertically with a 5 mL syringe. The D101 microporous
resin was packed to a height of 3 cm, followed by the addition of neutral alumina to a
height of 1 cm. The column was washed with 25 mL of 70% ethanol, and the eluent was
discarded. About 1 mL of the treated sample solution was carefully added to the upper
part of the column. The column was washed with 25 mL of deionized water to wash away
water-soluble impurities such as sugar, and the eluent was discarded. Finally, 25 mL of
70% ethanol was used to perform the elution to extract the total saponins. The eluent
was collected in an evaporating dish and dried at 60 ◦C in an oven for subsequent use.
Subsequently, 1 mL of perchloric acid–5% vanillin–glacial acetic acid solution was added
to the dried evaporating dish, which was rotated to dissolve any remaining residue. The
resulting mixture was transferred into a centrifuge tube with a lid (10 mL), and the lid was
placed in a water bath at 60 ◦C for 15 min. After the precise addition of 5 mL of glacial
acetic acid and thorough agitation, the absorbance was measured at 560 nm by using a
UV-vis spectrophotometer (UV-1810, Puxi, Shanghai, China). Each sample was measured
three times, and the average was used for further analysis.
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2.3.2. Determination of Mannitol

An amount of 10 mL of deionized water was mixed with 0.25 g of the sample powder
and extracted for 2 h by continuous reflow at 90 ◦C. The solution underwent filtration, and
the residue was washed with 2 mL of deionized water three times. The replenished filtrate
and lotion were combined in a 25 mL volumetric flask. Deionized water was added to the
scale in a constant volume to obtain the test solution. We accurately pipetted 1 mL of the
aforementioned test solution into a test tube, followed by the addition of 1 mL of sodium
periodate and hydrochloric acid solution. After reacting for 10 min at room temperature,
the solution was then added to 2 mL of 0.1% rhamnose solution and 4 mL of Nash reagent.
Finally, the mixture was heated at 53 ◦C for 15 min. The UV-vis spectrophotometer was
utilized to measure the sample at 413 nm. Each sample was measured in triplicate to
minimize errors. Each sample was measured three times, and the average was used for
further analysis.

2.3.3. Determination of Naringenin

An amount of 0.1 g of sample powder was dissolved in 2 mL of methanol and extracted
for 2 h through heating reflux at 70 ◦C. The solution was dried in a water bath and then
filtered through a 0.45 µm microporous filter membrane. The residue was similarly filtered
with 0.5 mL of methanol. Subsequently, all the filtrates were preserved in a refrigerator
(4 ◦C) until use. Finally, the naringenin content in the filtrate was determined by using an
Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA, USA). The component
separation was achieved using a Waters Xbridge-C18 column (4.6 mm × 250 mm, 5 µm)
(Waters Corporation, Milford, MA, USA). The main methods were as follows: The mobile
phase consisted of 0.2% phosphoric acid (A) and methanol (B). The gradient elution modes
were 25% B at 0–5 min and 25–30% B at 5–10 min. The flow rate was set to 1.0 mL min−1,
and the column temperature was 25 ◦C. Additionally, the injection volume was set to 20 µL,
and the ultraviolet spectrum of the sample was set at 290 nm. Each sample was measured
three times, and the average was used for further analysis.

2.4. Chemometrics
2.4.1. Spectral Data Processing

Various spectral preprocessing algorithms are frequently employed to mitigate ran-
dom noise and disorder variations in the spectral data that stem from factors unrelated to
the characteristics of the sample. The commonly used methods include MSC, SG smooth,
1D + SG, SNV, and 2D + SG. Derivatives are the most frequently used approach to eliminat-
ing overlapping peak effects [27]. SNV and MSC are often applied to remove multiplicative
impacts, which will somewhat weaken the influence of sample particle size or scattering
effect on spectral data [28]. The details of these algorithms are described below. SG smooth-
ing is widely employed as a denoising method, which primarily employs the averaging of
multiple measurements to reduce noise and enhance the signal-to-noise ratio in scenarios
where the spectrum contains zero-mean random white noise. The average value after
smoothing at wavelength k is as follows:

xk,smooth = xk =
1
H ∑+w

i=−w xk+ihi (1)

where hi and H are the smoothing factor and the normalization factor, respectively; w is the
width of the smoothing window; and i = 1, 2, . . ., w.

The first derivative and second derivative are commonly used pretreatment methods
for baseline correction and identification of overlapping spectral differences. For a spectrum
at wavelength k with a gap size g, the first and second derivative spectra can be respectively
calculated as follows:

First derivative:

xk,1st =
xk+g − xk−g

g
(2)
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Second derivative:

xk,2nd =
xk+g − 2xk + xk−g

g2 (3)

MSC is used to eliminate scattering interference caused by particle size and other
factors and has been widely used in NIR analysis. For a spectrum of data X, its algorithm
steps are as follows:

(1) The average spectrum of the calibration sample was calculated.
(2) The linear regression between the spectrum of each calibration sample and the average

spectrum was performed.

X = miX + bi (4)

where mi and bi are the regression coefficients and X is the mean of the spectrum.

(3) MSC transforms the spectrum as follows:

X(MSC) =
x − bi

mi
(5)

The SNV method is probably the second most commonly applied approach for scatter
correction in spectrum analysis. Its primary purpose is to mitigate the multiplicative effects
caused by scattering and solid particle size. Each spectrum is centered, then scaled by
dividing by its standard deviation.

XSNV
i,j =

xi,j − x√
∑m

k=1 (xk−x)2

(m−1)

(6)

where x is the mean of the spectrum; xi,j is the corresponding original element of the
spectrum i at variable j; m is the number of wavelengths in the spectrum; and k = 1, 2, . . . , m.

2.4.2. Wavelength Selection Methods

In the original data, redundancy information exists between adjacent wavelengths,
which has a negative effect on the accuracy and stability of calibration models. As such, ap-
propriate methods must be employed to extract the useful wavelengths in spectral analysis.

The UVE method is a commonly employed technique for ranking the importance of
variables based on their regression coefficients [29]. UVE first introduces a set of random
noise matrices and then constructs a partial least squares (PLS) model through cross-
validation. The ratio between the mean regression coefficient and its standard deviation for
each variable in the coefficient matrix is calculated. Subsequently, the maximum ratio of
noise matrices is used as a threshold to eliminate irrelevant information with ratios below
this threshold from spectral lines. The relationship can be expressed as follows:

hi =
mean(βi)

std(βi)
(7)

where hi is the ratio of the mean(βi) and std(βi); mean(βi) is the mean value of the regression
coefficient of variable i; and std(βi) is the standard deviation of the regression coefficient of
variable i.

CARS is a feature variable selection method combining Monte Carlo sampling and
regression coefficients of the PLS model, which imitates the “survival of the fittest” concept
of Darwin’s theory [30]. Figure 1 presents the scheme of the CARS algorithm. Initially,
a part of the sample was randomly selected from the correction set for PLS modeling,
and random modeling was repeated several times. The exponential attenuation function
(EDF) was used to remove wavelengths with a small weight of regression coefficient. After
multiple modeling, the wavelengths with a large absolute weight of regression coefficient
were screened by adaptive weighted sampling (ARS), and the subset of the generated new
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variables was used for PLS modeling analysis. For mannitol and naringenin, the PLS model
inputs were a data matrix with dimensions of 120 × 1557. As for total saponins, three
samples were excluded due to the abnormal concentrations; thus, the PLS model input
matrix size was 117 × 1557. Finally, cross-validation was performed to select the subset
with the lowest root mean square error of cross-validation (RMSECV) value, which was the
best combination of wavelength variables [31].
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2.5. Model Performance Evaluation

In terms of quantitative analysis, the performance evaluation of the calibration model
depends on several indicators, including the coefficient of determination of prediction
(Rp

2), the root mean square error of prediction (RMSEP), the coefficient of determination of
calibration (Rc

2), and the root mean square error of calibration (RMSEC) [32]. In general, a
calibration model is considered satisfactory if Rc

2 and Rp
2 are close to 1 and RMSEC and

RMSEP are small [33].
These parameters were calculated as follows:

R2
C = 1 −

Σ
(
Ci − Ĉi

)2

Σ(Ci − Cn)
2 (8)

R2
P = 1 −

Σ
(
Ci − Ĉi

)2

Σ(Ci − Cm)
2 (9)

RMSEC =

√
Σ
(
Ĉi − Ci

)2

n
(10)



Foods 2024, 13, 1199 7 of 17

RMSEP =

√
Σ
(
Ĉi − Ci

)2

m
(11)

where Ci is the i-th measured value of the reference method; Ĉi is the i-th predicted value
of the model; Cn is the mean value of the measured values of n samples; Cm is the mean of
the predicted values of m samples; m is the number of samples in the prediction sets; and n
is the number of samples in the calibration sets.

In this work, all data analyses, including spectral pretreatment, wavelength selection,
and PLS modeling, were performed in the MATLAB software (2014a, Mathworks Inc.,
Natick, MA, USA).

3. Results and Discussion
3.1. Spectral Feature Analysis

The NIR absorption spectra of all D. officinale samples within 1000–2500 nm are shown
in Figure 2. The absorption peaks near 1500, 1940, 2150, and 2315 nm were relatively
strong. The intense absorption peak near 1500 nm was attributed to the first –OH overtone
and the first –NH overtone [34]. Additionally, the absorption peak at about 1940 nm was
associated with the stretching vibration of the –OH group [35]. The peaks observed at 2150
and 2315 nm mainly came from the –CH stretching vibrations in the benzene ring and –CH
bending vibrations, respectively [36].
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Figure 2. Raw near-infrared spectra of all 120 Dendrobium officinale samples. Each line represents the
near-infrared spectrum of each sample.

3.2. Outlier Detection and Sample Partition

Mahalanobis distance aims to calculate the distance between the average spectrum
of the sample sets and each sample spectrum, and it is commonly used for identifying
outliers [37]. The results showed that no spectra errors were found for mannitol and
naringenin, but three samples for total saponins were identified as spectra errors and
removed. Thus, for total saponins, mannitol, and naringenin, a total of 117, 120, and
120 samples were used for subsequent model development. Moreover, the calibration and
prediction sets must be appropriately divided. The calibration set serves as the foundation
for model establishment, and the prediction set is used to evaluate model performance.
In this study, the Kennard and Stone (KS) algorithm was used for sample partition. The
principle of the KS algorithm is to calculate the Euclidean distance between the remaining
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and selected samples. The two samples with the maximum and minimum distances
were found and included in the calibration set. This process was then repeated until the
desired number was reached [38,39]. The calibration and prediction sets consisted of 96 and
24 samples for mannitol, 96 and 24 samples for naringenin, and 94 and 23 samples for total
saponins, respectively. Thus, for mannitol and naringenin, a data matrix with dimensions of
96 × 1557 was used for model calibration, while a matrix of 24 × 1557 was used for model
validation. As for total saponins, a data matrix with dimensions of 94 × 1557 was used for
model calibration and 23 × 1557 for model validation. The statistical results of samples
in the calibration and prediction sets are presented in Table 1, including minimum values,
maximum values, and means. In the calibration set samples, the range of reference values
for these three quality parameters almost covered the reference ranges of the prediction set.
Thus, the sample partition was reasonable, contributing to a high-precision model.

Table 1. Statistical results of all samples in the sample sets.

Parameter
Calibration (g kg−1) Prediction (g kg−1)

Minimum Maximum Average Minimum Maximum Average

Total saponins (117) 0.79 5.79 1.81 1.13 3.07 1.79
Naringenin (120) 0.0038 0.0366 0.0130 0.0041 0.0369 0.0129

Mannitol (120) 1.65 5.91 3.24 1.57 5.69 3.09

3.3. PLS Models Based on Various Wavelength Selection Methods

After appropriate segmentation, a PLS regression model was established using NIR
spectral data and the corresponding output targets. In this study, three different PLS
models, namely, full-PLS, UVE-PLS, and CARS-PLS, were developed and compared to
evaluate the model performance for total saponins, mannitol, and naringenin. Among
them, the full-PLS model was developed based on the full spectrum data, whereas the
UVE-PLS and CARS-PLS models were established using wavelength variables selected by
the UVE and CARS algorithms, respectively.

3.3.1. Results of the Full-PLS Model

The full-PLS model is a PLS regression model developed using the full spectrum
(1000–2500 nm), and it is commonly adopted as a benchmark to evaluate the accuracy
of chemometrics. Given that the data were measured at an interval of 0.8 nm over the
full spectral range, the full-PLS model contained 1557 data points. The PLS model was
constructed with a 120 × 1557 matrix as input, and the corresponding component of
interest was utilized as output. However, the prediction ability of the PLS model is nega-
tively impacted by significant scatter in the raw spectra, which may be caused by varying
sample sizes and the noise of the instrument. Therefore, in this study, five different spec-
tral pretreatment methods were used to improve the performance of the model, namely,
smooth, MSC, 1D + SG, SNV, and 2D + SG. The optimal results of different spectral pre-
treatment methods on the full-PLS model are listed in Table 2. The results indicated that
the NIR spectra data processed by smooth MSC and SNV exhibited good performance
for total saponins, mannitol, and naringenin, respectively. Based on the preprocessed
spectra, the different PLS models were constructed, and their results are listed in Table 3.
For mannitol, the full-PLS model yielded satisfactory outcomes with RC

2 and RP
2 values

exceeding 0.9. As for total saponins and naringenin, the full-PLS model performed on
the full spectrum resulted in calibrations of RC

2 = 0.9494 with RMSEC = 0.1421 g kg−1

and RC
2 = 0.8589 with RMSEC = 0.002715 g kg−1, respectively. The prediction set for total

saponins and naringenin led to RP
2 = 0.8506 with RMSEP = 0.1439 g kg−1 and RP

2 = 0.8432
with RMSEP = 0.003195 g kg−1, respectively. For both quality parameters, a RP

2 of 0.8 was
obtained, which was lower than 0.9, indicating that the prediction performance of the
full-PLS model was not good. The full-range spectrum contained a significant number
of irrelevant spectral wavelength variables, which possibly weakened the model’s perfor-
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mance. Therefore, in this study, UVE and CARS wavelength selection methods were used
to enhance model prediction accuracy.

Table 2. Effects of different spectra of pretreatments on full-partial least squares (PLS) models.

Parameter Raw Smooth 1D + SG 2D + SG MSC SNV

Total
saponins

RC
2 0.9480 0.9494 0.9246 0.9082 0.9513 0.9401

RP
2 0.8421 0.8506 0.2626 0.0704 0.7343 0.7205

RMSEC (g kg−1) 0.1441 0.1421 0.1739 0.1978 0.1414 0.1567
RMSEP (g kg−1) 0.1464 0.1439 0.2272 0.2056 0.1441 0.1446

Mannitol

RC
2 0.8960 0.9444 0.9282 0.9579 0.9716 0.9517

RP
2 0.8682 0.9233 0.7984 0.5476 0.9385 0.9303

RMSEC (g kg−1) 0.3509 0.2565 0.3073 0.2402 0.1914 0.2495
RMSEP (g kg−1) 0.4822 0.3704 0.5303 0.7035 0.2876 0.3073

Naringenin

RC
2 0.8053 0.8012 0.9236 0.8828 0.8581 0.8589

RP
2 0.8298 0.8313 0.2245 0.1377 0.8415 0.8432

RMSEC (g kg−1) 0.003117 0.003150 0.002149 0.002679 0.002723 0.002715
RMSEP (g kg−1) 0.003529 0.003515 0.003839 0.003938 0.003202 0.003195

Table 3. Results of the PLS models based on different wavelength selection methods.

Parameter Model PCs Variables
Calibration Prediction

Rc
2 RMSECV

(g kg−1)
RMSEC
(g kg−1) Rp

2 RMSEP
(g kg−1) RPD

Total
saponins

Full-PLS 18 1577 0.9494 0.2340 0.1421 0.8506 0.1439 2.54
CARS-PLS 16 66 0.9626 0.1691 0.1221 0.8949 0.1250 2.92
UVE-PLS 17 872 0.9404 0.2622 0.1541 0.8210 0.1623 2.25

Mannitol
Full-PLS 18 1557 0.9716 0.3901 0.1914 0.9385 0.2876 4.01

CARS-PLS 17 39 0.9868 0.1799 0.1307 0.9664 0.2192 5.26
UVE-PLS 18 767 0.9722 0.3907 0.1894 0.9437 0.2795 4.13

Naringenin
Full-PLS 16 1557 0.8589 0.0041 0.002715 0.8432 0.003195 2.48

CARS-PLS 17 28 0.8888 0.0031 0.002411 0.8570 0.003159 2.51
UVE-PLS 18 256 0.8623 0.0040 0.002682 0.8326 0.003390 2.34

3.3.2. Results of the UVE-PLS Model

UVE was used for variable screening to eliminate non-measured sample information in
the NIR spectrum. Only specific band spectral variables were collected, thereby simplifying
overlapping peaks and complex spectra and shortening the detection time [40]. Figure 3B,D,F
show the stability coefficients of the total saponins, mannitol, and naringin in D. officinale at
each wavelength point, respectively. The longitudinal straight line precisely delineated the
boundary between wavelength variability and noise variability at 1557 nm. The region to
the left of this boundary represented true variations in wavelength, whereas the region to its
right comprised added random noise. The horizontal dashed lines in the graph determined
the threshold based on the random number added. The variable between the two lines
was considered an uninformative variable and needed to be removed. Ultimately, a total
of 872, 767, and 256 variables were selected for total saponins, mannitol, and naringin,
respectively. In UVE-PLS, the original spectral data were compressed by principal component
analysis (PCA), and a large amount of sample information can be interpreted by a new
set called principal components (PCs). More PCs tend to cause “overfitting” problems,
leading to good predictions for calibration samples but poor predictions for prediction
samples [41]. A few PCs often produce an “underfitting” model, which has poor predictions
for both calibration and prediction samples. As such, finding the appropriate number
of PCs is crucial for constructing a PLS model with high prediction accuracy. Herein, a
cross-validation procedure was used to determine the optimal number, and the changes
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in RMSECV values with the number of PCs are described in Figure 3A,C,E. Finally, 9, 7,
and 5, which yielded the lowest RMSECV values, were identified as the optimal numbers
of PCs for total saponins, mannitol, and naringenin, respectively. Table 3 presents the
results of UVE-PLS. Compared with the full-PLS model, the UVE-PLS model showed better
performance for mannitol because RP

2 increased from 0.9385 to 0.9437 and RMSEP decreased
from 0.2876 kg−1 to 0.2795 kg−1. However, for total saponins and naringenin, the UVE-PLS
model performed poorly in the prediction set (RP

2 = 0.8210, RMSEP = 0.1623 g kg−1 for total
saponins; RP

2 = 0.8326, RMSEP = 0.003390 g kg−1 for naringenin).
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Figure 3. Root mean square error of cross-validation (RMSECV) versus partial least squares (PLS) factors
for total saponins (A), mannitol (C), and naringenin (E). Stability distribution curve of the uninformed
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variable elimination (UVE) method for total saponins (B), mannitol (D), and naringenin (F). The red
boxes represent the optimal number of PLS components corresponding to the lowest RMSECV values.
The blue longitudinal straight line indicates the boundary between wavelength variability and noise
variability at 1557 nm. The yellow line represents true variations in wavelength, whereas the red line
comprises added random noise. The blue horizontal dashed lines are the thresholds based on the
random number added.

3.3.3. Results of the CARS-PLS Model

The CARS algorithm is often used in conjunction with PLS models to identify in-
formative wavelengths, thereby reducing computational complexity and creating high-
performance calibration models. It employs EDF and ARS to identify the wavelengths with
the highest absolute regression coefficients. During the execution of CARS, 100 iterations of
Monte Carlo sampling were performed, resulting in 100 subsets with different wavelengths.
A cross-validation procedure was used to evaluate the subsets, and the key wavelengths
were identified as those present in the subset with the lowest RMSECV value. The process
of wavelength selection by CARS is illustrated in Figure 4A,C,E. As shown in Figure 4E
(using naringenin as an instance), the changes in the number of sampled wavelengths (a),
RMSECV values (b), and regression coefficient paths for each wavelength (c) were obvious
as the sampling runs increased. In Figure 4E(a), there was a significant decrease in the
number of sampled wavelengths as the number of sampling runs increased from 0 to 10,
followed by a gradual change. This suggests that the CARS selection process included
both initial screening and subsequent refinement stages. RMSECV showed a gradual
decrease due to the elimination of irrelevant wavelength variables, reaching its minimum
value at sampling run 61, as indicated by the blue asterisk line in Figure 4E(c). Combined
with Figure 4E(c), the significance of key wavelengths could be illustrated. Specifically, a
key wavelength denoted as P1 was obtained with a regression coefficient equal to zero,
indicating that this key wavelength was eliminated. As shown in Figure 4E(b) (marked
by the dotted line L1), RMSECV immediately increased, indicating that the performance
of the model decreased. Finally, CARS selected 66, 39, and 28 key wavelengths for total
saponins, mannitol, and naringenin, respectively. The distribution of wavelength variables
on the full range of the spectrum is presented in Figure 4B,D,F. The results of the CARS-
PLS model are listed in Table 3. The optimal numbers of PCs for the CARS-PLS model
were determined to be 16, 17, and 17 for total saponins, mannitol, and naringenin, respec-
tively. As shown in Table 3, the CARS-PLS results for total saponins were RC

2 = 0.9626
and RP

2 = 0.8949, RMSEC = 0.1221 g kg−1, and RMSEP = 0.1250 g kg−1; the CARS-PLS
results for mannitol were RC

2 = 0.9868 and RP
2 = 0.9664, RMSEC = 0.1307 g kg−1, and

RMSEP = 0.2192 g kg−1; and the CARS-PLS results for naringenin were RC
2 = 0.8888 and

RP
2 = 0.8570, RMSEC = 0.002411 g kg−1, and RMSEP = 0.003159 g kg−1.
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Figure 4. Plot of CRAS wavelength selection and distribution on spectra data for total saponins (A,B),
mannitol (C,D), and naringenin (E,F).

3.3.4. Discussion of Results

Different PLS models exhibited varying predictive capabilities for the three quality
indicators. For total saponins and naringenin, the prediction accuracy of the three PLS
models could be arranged in the following order: UVE-PLS < full-PLS < CARS-PLS. For
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mannitol, the performance of the PLS models was in the following order: full-PLS < UVE-
PLS < CARS-PLS. CARS-PLS was superior to the two other PLS models in predicting total
saponins, mannitol, and naringenin, with the highest RP

2 and lowest RMSEP values. The
CARS method can select wavelength variables with high weights and remove wavelength
variables with low weights to improve model performance [42]. Although the UVE method
is effective in eliminating irrelevant variables and preventing the model from overfitting, it
retains too many variables, which might lead to poor model prediction performance [43].
In addition, for total saponins and naringenin, the performance of the model was degraded
after the UVE method was processed. This result suggested that some key wavelengths
may have been eliminated by UVE during variable selection. The scatter plots of full-PLS
models (A, D, and G), UVE-PLS models (B, E, and H), and CARS-PLS models (C, F, and
I) for total saponins (A, B, and C), mannitol (D, E, and F), and naringenin (G, H, and I)
are presented in Figure 5. It illustrates the correlation between NIR prediction values
and reference measured values, and the red dashed line (1:1) represents the ideal results.
Overall, the CARS-PLS models demonstrated satisfactory performance in predicting total
saponins, mannitol, and naringenin. The good potential of the CARS wavelength selection
method for model improvement has been demonstrated in numerous studies. For example,
Cao et al. employed NIR spectroscopy and three wavelength selection methods, including
synergy interval (SI), genetic algorithm (GA), and CARS, to quantify the polyphenol content
of Sargassum fusiforme. The results showed that CARS-PLS achieved more satisfactory
outcomes with a RMSEP of 3.23 g kg−1 and a RP

2 of 0.99 in an independent prediction
set, respectively [44]. Guo et al. used successive projection algorithms (SI, GA, and
CARS) to optimize the prediction models of soluble solid content. It was found that
CARS-PLS achieved the highest prediction accuracy, with RP and RMSEP values of 0.9808
and 0.327 ◦Bx, respectively [45]. Guo et al. utilized SI, GA, and CARS to select feature
variables and constructed PLS models for predicting the plaque area of apples. The
results indicated that the PLS model, based on the wavelengths selected by the CARS
algorithm, obtained the best performance [46]. Jiang et al. confirmed that combinations
of NIR spectroscopy with three distinct wavelength selection methods, namely variable
combination population analysis, variable iterative space shrinkage approach, and CARS,
could effectively predict aflatoxin B1 levels in wheat. It was found that the CARS exhibited
superior overall prediction performance, yielding an RMSEP value of 2.0965 ug kg−1 and
an RP

2 value of 0.9935 [47]. The superior predictive performance of the CARS-PLS model
can also be demonstrated by the lower RMSECV values and higher residual predictive
deviation (RPD) values (Table 3). Herein, the RMSECV values were obtained by using
the leave-one-out cross validation (LOOCV) method. In LOOCV, the samples in the
calibration set are selected one by one, with the others used to construct the model and
the selected sample employed for validation. Therefore, all the calibration samples can
be predicted once. The CARS-PLS model achieved RMSECV of 0.1799, 0.0031, and 0.1691
for mannitol, naringin, and total saponins, respectively, which was lower than other PLS
models. RPD, which is defined as the ratio of the standard deviation of the reference
values to the RMSEP, was also used to assess the model’s performance. The higher the
RPD, the better the model’s performance. Specifically, RPD > 2 indicates exceptional
performance; 1.4 < RPD < 2 represents general performance; and RPD < 1.4 represents poor
performance [48]. CARS-PLS got the best performance with the highest RPD, which were
5.26 for mannitol, 2.51 for naringin, and 2.92 for total saponins, respectively, indicating that
the CARS-PLS model performed well in the prediction of mannitol, naringin, and total
saponins in D. officinale.
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Figure 5. Reference values versus predicted values for total saponins (A–C), mannitol (D–F),
and naringenin (G–I) using full-PLS models (A,D,G), UVE-PLS models (B,E,H), and CARS-PLS
models (C,F,I).

4. Conclusions

In this study, a promising CARS-PLS model was established and compared with
full-PLS and UVE-PLS for its predictive performance and model robustness. Among the
three PLS models, the CARS-PLS model exhibited the most satisfactory performance for
the three quality indicators in D. officinale. Compared with the full-PLS model, RMSEP of
the CARS-PLS model decreased by 13.13%, 23.78%, and 1.12% for total saponins, mannitol,
and naringenin, respectively. These results demonstrated that the wavelength selection
procedure could effectively enhance the prediction performance of the model. Overall, the
results confirmed the feasibility of rapid measurement of total saponins, mannitol, and
naringenin in D. officinale via NIR spectroscopy.
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