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Abstract: An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used
to investigate the diversity of fungi associated with mature strawberries collected from a volcanic
orchard and open-air market stands. Based on the Kruskal–Wallis test, no statistically significant
differences were observed in both non-phylogenetic and phylogenetic alpha diversity indices. Ac-
cording to beta diversity analyses, significant differences in fungal communities were found between
groups (orchard vs. market). Taxonomic assignment of amplicon sequence variables (ASVs) revealed
7 phyla and 31 classes. The prevalent fungal phyla were Basidiomycota (29.59–84.58%), Ascomycota
(15.33–70.40%), and Fungi-phy-Insertae-sedis (0.45–2.89%). The most predominant classes among the
groups were Saccharomycetes in the market group, and Microbotryomycetes and Tremellomycetes in the
orchard group. Based on the analysis of microbiome composition (ANCOM), we found that the most
differentially fungal genera were Hanseniaspora, Kurtzmaniella, and Phyllozyma. Endophytic yeasts
Curvibasidium cygneicollum were prevalent in both groups, while Candida railenensis was detected
in fruits originating only from the market. In addition, Rhodotorula graminis (relative abundance
varying from 1.7% to 21.18%) and Papiliotrema flavescens (relative abundance varying from 1.58% to
16.55%) were detected in all samples regardless of origin, while Debaryomyces prosopidis was detected
in samples from the market only, their relative abundance varying with the sample (from 0.80%
to 19.23%). Their role in fruit quality and safety has not been yet documented. Moreover, several
clinically related yeasts, such as Meyerozyma guilliermondii and Candida parapsilosis, were detected in
samples only from the market. Understanding the variety and makeup of the mycobiome in ripe
fruits during the transition from the orchard to the market is crucial for fruit safety after harvest.

Keywords: strawberries; ITS2 metabarcoding; Kurtzmaniella spp.; Candida parapsilosis; Cryptococcus spp.

1. Introduction

The berries most consumed, strawberries (Fragaria x ananassa Duch.), are non-climatic
and highly perishable fruits, vulnerable to phytopathogen infection and extremely sensitive
to postharvest storage [1]. Strawberries have a very short postharvest self-life (about seven
days at 4 ◦C and three days at room temperature) [2]. The loss of weight and firmness is
the main problem, in addition to the change in its organoleptic characteristics [2]. Healthy
strawberries have a diverse microbiota that includes molds potential plant pathogens,
and human pathogens [3]. The airborne fungus causes the deterioration of fruits and
loses marketability [4]. To reduce fungus infections, fungicides are applied; however, their
overuse and improper application have several drawbacks, such as risks to human health,
adverse effects on nontarget organisms, the environment, and the emergence of resistant
genotypes [5]. Due to their widespread presence in the environment, fungi are crucial parts
of both agricultural and natural ecosystems, where they are essential for the turnover of
nutrients [6]. Fruit-associated fungi can influence the quality of products derived from
horticultural systems and lead to either beneficial or spoiling qualities [7].
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The microorganisms in fresh fruits have been studied mainly to detect pathogenic
bacteria and their possible link to disease outbreaks in humans [8,9]. In addition, fruit dam-
age is likely to occur during handling, uncontrollable harvesting techniques, storage, and
transportation conditions, especially when there are large distances between production
and market areas [10]. According to early reports, 65% of strawberry loss is related to the
transportation from the field to the market [2]. The fungal mycobiome linked to various
strawberry organs (leaves, flowers, immature, and mature fruits), which were grown on a
farm with regular application of chemical pesticides, was previously disclosed [11]. Accord-
ing to this study, the two most prevalent genera were Botrytis and Cladosporium, accounting
for 70–99% of the relative abundance of all sequences. Agriculture practices and continental
location may also influence the global plant microbiome [12]. However, the microbiome
associated with strawberries is variety-specific, influenced by management, and related to
plant-soil feedback in the phyllosphere and rhizosphere [13]. Moreover, the microbiome of
fruits influences the shelf-life [14]. According to early research, fungi belonging to the gen-
era Botrytis, Penicillium, Phytophthora, Verticillium, Alternaria, Cladosporium, Aureobasidium,
Cryptococcus, and Rhizopus are the most prevalent pathogens that affect strawberries [15].
Botrytis cinerea (gray mold) is considered one of the primary causes of post-harvest losses.

The strawberry growing farms in Northern Ecuador are located at an elevation of
2300 to 2500 m, with primarily volcanic soil. Daytime temperatures range from 18 to
25 degrees Celsius, while nighttime lows are between 8 and 13 degrees Celsius with a
relative humidity of 60%. Additionally, farmers are not trained in the use of agrochemicals;
this contributes to the empiricism of the region in managing strawberry production [16].
Recently, using 16S DNA metabarcoding analysis, we investigated the bacterial diversity
in strawberry fruits from a farm producer and fruits purchased form the market and
detected several pathogenic bacteria in the fruit exocarp [17]. However, information on
the fungal makeup of strawberry fruits originating from orchards and open-air market
sites is scarce. To our knowledge, no research has thoroughly compared the fungal and
yeast communities linked to Fragaria x ananassa variety ‘Monterey’ fruits collected from a
volcanic orchard and commercial stands at ready-to-eat maturity stage. We hypnotized
that the fruits at the same maturity stage share similar mycobiome community. Therefore,
using an ITS2-based metagenomic approach, we examined the general fungal and budding
yeast communities in the exocarp of strawberries harvested from a volcanic orchard (ripe
phase four) and different open-air market stands. The mycobiome provide a means of
improving fruit safety and aids in the development of additional preventive measures
against postharvest contamination.

2. Materials and Methods
2.1. Fruit Sampling and Processing

Strawberry (Fragaria x ananassa variety ‘Monterey’) fruits were collected from a local
orchard and different commercial stands of Imbabura Province, Northern Ecuador (geo-
graphical coordinates 0◦14′00′′ N 78◦16′00′′ O). Fruits in the maturity stage (ready to eat,
stage four) with no visible damage and uniform size were harvested from the orchard
as follows: 15 fruits per row × 6 field rows × 3 repetitions (total of 270 fruits) during
February–October 2023. Commercial fruits were purchased from 6 distinct open-air market
stands: 15 fruits × 6 stands × 3 repetitions (total 270 fruits). After being transported to the
lab, the fruits were placed in Ziplock bags with 150 mL of sterile peptone water (0.1%). The
bags were then incubated for 1.30 h at 37 ◦C, being gently mixed manually every 30 min.
Before DNA extraction, cells surrounding the skin of the fruit (exocarp) were collected by
centrifugation at 8000× g for 5 min, recovered in 1× PBS, and stored at 4 ◦C. Genomic
DNA was isolated using a commercial column-based ZymoBIOMICS DNA miniprep kit
(# D4304, Ecogen Barcelona, Spain) [18].
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2.2. Library Construction, Sequencing, Data Processing, and Analysis

Illumina Novaseq platform (paired-end 150-bp reads, Illumina, San Diego, CA, USA)
was used for metagenomic sequencing [18]. The ITS2 region was amplified using universal
fungal primers ITS 86F (5′-GTGAATCATCGAATCTTTGAA-3′) and ITS 4 (5′-TCCTCCGCT
TATTGATATGC-3′) [19]. All polymerase chain reaction (PCR) reactions involved the KAPA
HiFi HotStart ReadyMix (# 2GFHSRMKB, Sigma Aldrich, St. Louis, MI, USA). A washing
step with magnetic beads was used to remove free primers and primer dimers from the
amplicons. For sequencing, up to 96 libraries were pooled using all Nextera XT indices.
The process of preparing the library, purification, and sequencing was carried out as
described [18]. To ensure taxonomic classification, a quality and filtering procedure was
applied to the FASTq files. The QIIME v.2 pipeline (Quantitative Insights into Microbial
Ecology) [20] was used for the analysis of marker gene-based microbiome sequencing
data. The ITS2 region was extracted after the sequences were denoised using the denoise
wrapper [21]. Denoising and clustering were performed with DADA2 [22,23]. Chimeric
sequences were identified and filtered using USEARCH 6.1 [24]. In addition, a taxonomy is
assigned to the sequences. Furthermore, the query ASV sequences were compared with a
reference database UNITE Fungal ITS Database v7.2 (https://doi.org/10.15156/BIO/5874
75, accessed on 14 February 2024). Sequences belonging to chloroplasts, mitochondria, and
eukaryotes were removed.

2.3. Rarefaction Curves

Rarefaction curves were used to assess how species diversity varied according to the
number of sequences (reads) examined in a sample [25].

2.4. Analysis of Diversity

Alpha and beta diversity metrics were analyzed as previously described [17]. Briefly,
for alpha diversity, the metrics listed below were calculated: (a) Faith’s phylogenetic diver-
sity, a qualitative measure of community richness that considers phylogenetic relationships
between traits; (b) Evenness/Pielou uniformity, an index that measures diversity in addi-
tion to species richness; (c) Shannon’s diversity index, to estimate species diversity within
groups [26]; (d) observed characteristics, a qualitative measure of community wealth. Box
plot figures were used to display the results. The alpha diversity data were compared using
either a one-way analysis of variance in rank or a nonparametric Kruskal–Wallis test to see
if the samples came from the same distribution. Both phylogenetic (UniFrac distance) and
non-phylogenetic (Bray–Curtis dissimilarity and Jaccard distance) techniques were applied
to measure beta diversity [27]. The statistical significance of the observed differences was
assessed using weighted and unweighted UniFrac distance matrices and 999 Monte Carlo
permutations. The composition of the fungal community was correlated with the sample
group using principal coordinates analysis (PCoA) using QIIME v.2 [20]. Scatter diagrams,
either two- or three-dimensional, can be used to visualize the summary of beta diversity
relationships. For all statistical procedures, a significance level of 0.05 was considered.

2.5. Statistical Significance Tests

The analysis of similarities (ANOSIM) was used to test the hypothesis that there is
no difference between the two groups of samples. The R test was employed to deter-
mine whether there are differences between the groups under the null hypothesis [28].
Additionally, to infer absolute microbial abundances, the taxa with significantly differen-
tial abundances were identified using ANCOM analysis [29]. A centered log ratio (CLR)
transformation was applied to account for the compositionality of the microbiome data.
The output W statistic indicates how many CLR-transformed models exist for a particu-
lar taxon in which the taxon is differentially abundant with the variable of interest. As
the W value increases, the probability of a taxa being differentially abundant increases.
To ascertain the similarities between the groups at the genus level, hierarchical cluster-
ing was carried out using the unweighted pair group method (UPGMA with Euclidean

https://doi.org/10.15156/BIO/587475
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distance). In addition, Venn diagrams were drawn to investigate the intersection of the
fungal genera and species between groups (orchard vs. market). A bioinformatic plat-
form (https://www.bioinformatics.com.cn/en, accessed on 14 February 2024) was used to
conduct these analyses.

3. Results and Discussion
3.1. Fungal Communities in Ripe Strawberry Fruits: Alpha-Diversity Analysis

Amplicon sequencing was produced from 158,184 to 401,669 high-quality reads per
sample (Table S1). Following filtration to eliminate non-target reads (such as mitochon-
dria or chloroplasts), the sequences were attributed to ASVs (Table 1). According to the
rarefaction analysis, most of the taxa included in the samples were adequately captured
at a sequencing depth of 150,000 (Figure S1). The alpha diversity analysis indicated that
strawberry fruits from the market and the orchard share similar fungi diversity (Table 1).
Based on the Kruskal–Wallis test, no statistically significant differences were noted in
the non-phylogenetic and phylogenetic alpha diversity indices, such as observed ASVs
(H = 0.0064; p = 0.93), Faith’s PD (H = 0.4102; p = 0.52), and Shannon’s index (H = 0.6410;
p = 0.42) (Figure 1A–D). However, based on Pielou’s evenness index, the samples from
the market sites showed a more abundant fungi community than the samples from the
orchard (H = 2.5641; p = 0.10). In previous research, we showed a significant difference in
bacterial alpha diversity in strawberry samples collected from the market at the same ripe
stage [17]. Furthermore, according to conventional bacteriological methods conducted in
strawberry fruits purchased from the market and orchard at the same ripe stage, a high
number of molds and yeasts were detected in the fruit samples from the market [30]. Previ-
ously, a metagenomic survey on fungal diversity conducted on different strawberry organs
showed high fungal diversity in plant organs (leaves and flowers) rather than immature
and mature fruits [11]. Furthermore, the fungal diversity in ripe and stored strawberry
fruits was higher than in diseased fruits [31]. Based on 26S ribosomal DNA analysis in ripe
greenhouse strawberries, it has been shown that microorganism concentration increased
with mechanical damage to the fruit, and its firmness is negatively correlated with the
increase of the microorganism in the skin of the fruit [2].

Table 1. Shannon species diversity in strawberry fruits.

Sample Origin Sample ID
Number Reads

Passing
Quality Filtering

% Reads
Classified
to Genus

Shannon Species
Diversity

Number of Species
Identified

Orchard

F4FL1-ITS 402,166 88.15% 2.47 582

F4FL2-ITS 413,205 83.63% 2.47 563

F4FL3-ITS 362,685 85.13% 2.38 567

F4FL4-ITS 374,315 86.46% 2.56 598

F4FL5-ITS 473,020 82.99% 2.61 628

F4FL6-ITS 330,732 84.94% 2.60 783

Market

FP1-ITS 536,563 96.52% 3.05 848

FP2-ITS 457,487 92.27% 2.78 699

FP3-ITS 479,798 97.05% 2.54 644

FP4-ITS 546,063 96.72% 2.26 737

FP5-ITS 395,658 89.55% 2.85 587

FP6-ITS 241,369 92.60% 2.45 684

https://www.bioinformatics.com.cn/en
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Figure 1. Alpha diversity among groups. Boxplots visualizing results of the nonparametric Kruskal–
Wallis to compare the Observed features (A); Faith’s PD (B); Shannon diversity index (C); Pielou’s
evenness (D). Legend: four: fruits collected from the orchard phase four; market: fruits purchased
from the market stands.

3.2. Differential Fungal Community of Ripe Strawberry Fruits: Beta-Diversity Analysis

According to the non-phylogenetic distance analyses Jaccard (PERMANOVA, pseudo-
F = 3.119, p = 0.003) (Figure 2A) and Bray–Curtis (PERMANOVA, pseudo-F = 8.192,
p = 0.006), we found significant differences between the groups (orchard vs. market)
(Figure 2B). The diversity of the fungi between groups based on unweighted and weighted
UniFrac metrics revealed significant differences (p = 0.03) between the orchard and the
market (Table 2). When calculating the unweighted UniFrac distance as a phylogenetic
index (PERMANOVA, pseudo-F = 3.994, p = 0.003), significant differences were found
(Figure 2C). The market group samples formed a distinct cluster from the orchard samples,
according to the PCoA map for the abundance of unweighted UniFrac distance. Further-
more, significant differences in beta diversity were detected when the weighted UniFrac
distance was measured (PERMANOVA, pseudo-F = 22.2981, p = 0.003) (Figure 2D). Vari-
able F1 (Axis 1) explained 78.43% of the total variance by loading the market samples,
whereas variable F2 (Axis 2) explained 11.88% of the variance by loading the orchard
samples. In addition, R values near 1.0 (0.99 and 0.93, respectively) suggest that there
is a dissimilarity between groups based on ANOSIM and the unweighted and weighted
UniFrac distance results. Similarly, the Bray–Curtis and Jaccard similarity results indicate
dissimilarity between the groups (R values: 1.00 and 0.59, respectively). These results were
in concordance with our previous DNA barcoding study on strawberry fruits, showing
that the bacterial community of market group was divergent from the field group [17]. Like
these findings, early metagenome surveys in strawberry showed a high beta-diversity of
fungi in plant organs, but not in unripe and ripe fruits; the differences were related to the
cultivar rather than the maturity stage [11,31]. It should be noted that the fruits used in this
study were obtained from a conventional orchard (fungicidal treatments). However, there
were significant differences in fungal diversity between the market and orchard groups,
which means that upon harvest the fruits are more susceptible to contamination.
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Figure 2. Principal Coordinate Analysis (PCoA) plots of fungal beta diversity. (A) Bray–Curtis
dissimilarity indices; (B) Jaccard distance; (C) unweighted UniFrac distance, (D) weighted UniFrac
distance. Statistics were calculated using pairwise PERMANOVA with 999 permutations.

Table 2. Beta-diversity metrics in strawberry fruits. The significance was determined through
999 Monte Carlo permutations; the values were considered significant when p < 0.05.

Metrics Pseudo-F * p-Value q-Value

Bray–Curtis dissimilarity 8.19245731 0.006 0.006

Jaccard distance 3.11991142 0.003 0.003

Unweighted_unifrac distance 3.94475851 0.003 0.003

Weighted_unifrac distance 22.2981783 0.004 0.004
* Pseudo-F value [32].

3.3. Taxonomic Assignment of Fungi

The taxonomic assignment of ASVs in fruits revealed 7 phyla and 31 classes. The
fungal phyla were predominantly Basidiomycota (varies from 29.59 to 84.58%), Ascomycota
(varies from 15.33 to 70.40%), Fungi-phy-Insertae-sedis (varies from 0.45 to 2.89%), as well
as in lower abundance Chytridiomycota, Mucoromycota, Mortierellomycota and Olpidiomycota
(Figure 3A). The most predominant classes were Microbotryomycetes, Tremellomycetes, and
Dothideomycetes in the samples collected from the orchard, while Saccharomycetes and Mi-
crobotryomycetes were the most predominant in the market (Figure 3B). Between the groups,
Basidiomycota was predominant in the orchard group, while Ascomycota was predominant
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in the market group (Figure 3C). Likewise, the most predominant classes among the groups
were Saccharomycetes in the market group and Microbotryomycetes and Tremellomycetes in the
orchard group (Figure 3D). In previous metagenomic analyses in different compartments
of strawberry plants and ripe fruits, the fungal phyla were predominantly Ascomycota,
Mortierellomycota, and Basidiomycota, and their prevalence was related to the cultivar and
plant compartments [31]. Similarly, in the study of Jones et al. [33], Ascomycota followed by
Basidiomycota and Zygomycota were the most abundant in strawberry fruits collected during
the ripening stage from an orchard in the United Kingdom. However, no information was
provided about the cultivar used. At the genus level, Curvibasidium, Cladosporium, and Papil-
liotrema were the most predominant in the orchard sample, while Candida, Rhodotorula, and
Debaryomyces were the most prevalent in the market samples (Figure 4A,B). A recent study
showed that endophytic yeasts such as Curvibasidium were detected in several fresh leafy
vegetables and berry fruits [34]. Nonetheless, its role in the safety and quality of strawberry
fruits was not investigated. Early research showed that Cladosporium spp. Are pathogens
causing blossom blight in strawberries [35]. This pathogen causes green-gray sporulation
on dead tissue and misshaped fruits [36]. A very recent study associated that some fungal
species of the genera Papiliotrema, Vishniacozyma, and Filobasidium are responsible for the
flavor formation of strawberries [37]. Microbiome surveys in strawberry plants and fruits
showed that Botrytis and Cladosporium represented 70–99% of the relative abundance of
all sequences [11]. The phyllosphere compartments contained the predominant fungal
genera Mycosphaerella, unidentified Capnodiales, Alternaria, and unidentified Helotiales. The
abundance of these genera varies depending on the strawberry cultivar. Botrytis was found
in ripe fruits and had a similar distribution between the strawberry cultivars ‘Mara des Bois’
and ‘White annanas’ [31]. In the 26S ribosomal DNA study of Satitmunnaithum et al. [2]
performed in ‘Tochiotome’ variety fruits obtained from a greenhouse field, the most abun-
dant fungi were Altenaria spp., Aspergillius spp., Cryptococcus spp., and Ustilago spp. In
another study, several fungal pathogens including Alternaria alternata (black leaf spot),
Botrytis caroliniana (gray mold), and Plectosphaerella cucumerina (fruit root and collar rot)
colonize healthy strawberry plants [38,39]. In the current investigation, the genus Botrytis
and Altenaria were less prevalent (<0.2%) in the samples. Since the plants in previous
studies were grown above 360 m and 877 m elevation [2,11], respectively, we speculate
that the relative abundance of some species may be related to the growing conditions,
above 2300 m elevation, where the soil is primarily volcanic and the storage conditions
and to a lesser extent the variety. In addition, the difference in microbiome might be
related to the differences on sampling seasonality. Furthermore, our metagenomic study
indicates that there is no presence of B. cinerea, which is the causing agent of gray mold
disease in almost all vegetable and fruit crops, including strawberry plants and post-harvest
fruits [40]. We found B. caroliniana in all samples regardless of their origin. The lower
abundance of these species could be explained by the fact that we selected intact fruits,
with no visible spoilage at stage four. Based on ANCOM analysis, we found that the most
differentially abundant fungal genera were Hanseniaspora, Kurtzmaniella, and Phyllozyma
(Table 3). A volcano plot showing the ANCOM model W statistic is shown in Figure S2.
Hanseniaspora uvarum (relative abundance of 0.33%) and Kurtzmaniella cleridarum (relative
abundance of 0.23%) were the most common taxa in the samples from the market, while
Phyllozyma copromiscola (relative abundance of 0.5%) was prevalent in the samples from
the orchard. In both immature and ripe strawberries, taxa belonging to the Hanseniaspora,
but not Kurtzmaniella, were previously found in lower abundance (0.1–0.13%) [31]. The
Kurtzmaniella genus was described with a novel species K. cleridarum isolated from rotting
wood, mushrooms, and fruits [41]. In a recent study, mature raspberry and strawberry
fruits were shown to have a greater prevalence of Saccharomycetales, including H. uvarum,
being among the fruits with the highest susceptibility to Drosophila suzukii [33]. Phyllozyma
is a relatively new genus according to a recent taxonomy study [42]. Previous metagenomic
surveys of strawberry plants and ripe fruits showed that the fungal microbiome varies
with the strawberry cultivar and ripe stage [31]. However, the impact of Phyllozyma in fruit
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quality is not yet documented. Thus, we suggest that the mycobiome differences could be
related to the cultivar, harvest season, geographic origin, and agriculture system.
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Figure 3. Relative abundance (%) of different fungal phyla and classes detected in strawberry fruits
across the samples (A,B) and among the groups (C,D). Legend: F4L1-ITS: F4L6-ITS: fruits collected
from the orchard; FP1-ITS:FP6-ITS: fruits purchased from the market. The “Other” category in this
sum of all classifications with less than 0.50% abundance.

Table 3. Abundance (%) features by group.

Taxon W
Reject Null
Hypothesis

% of Abundance

0 25 50 75 100 0 25 50 75 100

Orchard Market

Phyllozyma spp. 369 TRUE 264 533.25 671 732.25 1057 1 1 1 1 1

Kurtzmaniella spp. 367 TRUE 1 1 1 1 1 219 261.75 1128 2154.75 7074

Hanseniaspora spp. 348 TRUE 1 1 1 1 1 119 134 387.5 652.25 2136
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Figure 4. Relative abundance (%) of different fungal genera identified in strawberry fruits across
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3.4. Taxonomic Assignment Suggests Both Beneficial and Harmful Yeasts in Strawberry Fruits

Fruits can be more storable and less susceptible to disease if their microbiomes are
healthier and diverse. Early research indicates that during developmental stages, significant
microbial fractions are transferred between different plant compartments [31]. Furthermore,
as documented by Yan et al. [43], yeasts can colonize fruit surfaces for a prolonged duration;
they can also inhibit the germination of pathogen spores and the length of the germ tube [44],
induce a variety of defense-related enzyme activities that trigger host defense mechanisms,
and assist in the biosynthesis of antimicrobial compounds [45]. Based on the abundance
information of the main genera/species of all samples, a heatmap was drawn and the
similarity and difference were shown (Figure 5). Similarly, the groups shared 91 (22.8%)
genera and 128 (26.4%) species (Figure S3). Endophytic yeasts such as Curvibasidium
cygneicollum were prevalent in strawberry samples regardless of the origin, except the
market samples FP3-ITS and FP4-ITS (Figure 6A,B). C. cygneicollum was among the most
common Basidiomycetes yeasts detected in stored fruits [46]. Interestingly, the predominant
yeast species, such as Candida railenensis, was detected in fruits only from the market. Their
relative abundance varies with the sample from 1.3% to 61.42%. C. railenensis was detected
in grape berries and was the weakly ascomycetes associated with the fermentation to be
used in the production of ice wine [47]. Likewise, Debaryomyces prosopidis was detected in
samples from the market. From early analyses of fungal diversity in strawberries, these
yeast species were not documented in ripe strawberry [11,31]. Thus, we suggest that might
have something to do with the geographical origin, season, and the cultivar. Rhodotorula
graminis (relative abundance varying from 1.7% to 21.18%) and Papiliotrema flavescens
(relative abundance varying from 1.58% to 16.55%) were detected in all samples regardless
of the origin, while Debaryomyces prosopidis was detected in samples from the market only,
their relative abundance varying with the sample (0.80–19.23%) (Figure 6A,B). Previous
studies indicate that R. graminis produces beta-carotene, torulene, and torularhodin to
counteract ROS-induced cellular damage [48]. Additionally, Filobasidium globosporum was
predominant in the samples from the orchard. Furthermore, although in lower abundance
(0.9%) species of Colletotrichum were predicted in market-derived samples. Among them,
C. acutatum, known as the leading cause of anthracnosis [49,50] in strawberries, was
not detected in this study. Finally, a phylogenetic tree was built to reveal evolutionary
relationships and biological diversity in a sequence data set (Figure S4).
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Figure 5. Heatmap and hierarchical clustering of the most abundant fungi at the genus level. X-axis
contains the microbial genus that have been identified in the samples; on the Y axis are the different
samples and experimental conditions that are being compared (groups); blue intense color: high
abundance, pink color: low abundance.

3.5. Clinically Related Yeasts Were Detected in Strawberries Fruits from Market

The widespread presence of yeasts in natura, including soil, plant substrates, the
atmosphere, and geographic zones, as well as humans’ close association with specific yeast
taxa, are the primary causes of the emergence of mycoses and allergic diseases [51]. There
are nine genera of clinically significant yeasts that are regularly isolated from naturally
occurring soil-plant substrates: Saccharomyces, Rhodotorula, Geotrichum, Meyerozyma, Pichia,
Candida, Trichosporon, Mallasezia, and Cryptococcus [51]. The most common mycological
conditions related to yeast are dermatitis, alveolitis, rhinitis, allergic bronchopulmonary
mycosis, and bronchial asthma [52]. Cryptococcus albidus was previously detected in straw-
berry fruits stored at 15 ◦C with impact on the fruit quality [2]. Interestingly, in the current
study, we detected Cryptococcus frias in both orchard and market fruits with a relative
abundance of 0.5% in the market samples and 8.89% in the samples from the orchard. No
studies mention the detection of these species in fruits. Early research associate C. frias
with the glacial biomes of Patagonia [53]. Members of the Candida pathogenic clade, such
as C. albicans, C. parapsilosis, C. tropicalis, and recently C. auris, were found in commensal
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environments including fruits [54]. C. albicans is known as an opportunistic yeast pathogen
that causes infections in immunosuppressed patients, including skin infections in diabetic
patients and thrush in infants [55]. In this metagenomic analysis, several clinically asso-
ciated Candida yeasts, but not C. albicans and C. auris, were detected in the samples from
the market (Figure 7). Among yeasts, the most common were Meyerozyma guilliermondii,
C. parapsilosis, and C. santamariae, their abundance varied by sample stand. We suggested
that the absence of these species in the orchard samples could indicate environmental
contamination; however, more research is required to fully understand these concerns.
The study by Abdelfattah and colleagues [11] did not report any species of Candida in
strawberries. This may be connected to the fact that no fruit samples from the market
were considered for the study. In addition, the geographical location and the plant variety
might influence the fungal diversity. Nonetheless, C. parapsilosis was detected on the skin of
fresh fruits and showed antibiotic resistance [56]. Whether these cultures have evolved to
survive as endophytes remain unknown. It is crucial to recognize that the surfaces of fruits
can harbor pathogenic yeasts, particularly drug-resistant strains that could potentially
spread to humans [54]. Previously, M. guilliermondii and C. parapsilosis were detected in
commercial fruits and vegetables in Russia [46]. All fruit samples have been shown to
contain a high number of yeasts, although no indicator of these microorganisms is specified
in the hygienic requirements legislation for the safety of fruit products [47]. However,
our findings did highlight the need for further microbiological crop control, as well as the
creation of new criteria to determine the presence of yeast that are clinically relevant in
fresh products.
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Figure 6. Relative abundance (%) of fungi species identified in strawberry fruits across the samples
(A) and among the groups (B). Legend: F4L1-ITS: F4L6-ITS: fruits collected from the orchard; FP1-
ITS:FP6-ITS: fruits purchased from the market. The “Other” category in this sum of all classifications
with less than 0.50% abundance.
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Figure 7. Clinical related yeasts species detected in samples purchased from the market (expressed
as number of reads). Legend: FP1-ITS: FP6-ITS: fruits purchased from the market.

4. Conclusions

Taken together, this is the first study comparing the diversity and structure of fungal
communities associated with strawberries obtained from a volcanic orchard and commer-
cial market. The fungal communities vary amongst the groups, as in the market group,
along with several beneficial taxa that might improve the fruit quality, an increase in po-
tentially pathogenic taxa was observed. Based on the microbiome composition analysis,
Hanseniaspora, Kurtzmaniella, and Phyllozyma were the most differentially abundant fungal
genera. Curvibasidium cygneicollum, an endophytic yeast, was found in both groups, while
Candida railenensis and Debaryomyces prosopidis were found only in fruits obtained from
the market; their relative abundance varies with the sample. Additionally, an unexpected
presence of multiple clinically related yeasts, including Meyerozyma guilliermondii and Can-
dida parapsilosis, were detected in the market samples. More research should examine the
relationship between the mycobiome and bacteriome in ready-to-eat fruits in the context
of safety and quality. Further work implies the need to develop strategies to identify
the presence of clinically significant yeasts in fresh products before sale, in addition to
measurements to increase the safety.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods13081175/s1, Figure S1: Illustration of rarefaction curves.
Figure S2: A volcano plot showing the ANCOM model W statistic in strawberries. Figure S3: Venn
diagram showing the number and percentage of shared fungi (A) genus and (B) species level.
Figure S4: Phylogenetic tree derived from ITS2 sequence data showing the position of the most
abundant fungal taxon. Table S1. DADA2 statistics of input and filtered reads.
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