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Abstract: Avocado production is mostly confined to tropical and subtropical regions, leading to
lengthy distribution channels that, coupled with their unpredictable post-harvest behavior, render
avocados susceptible to significant loss and waste. To enhance the monitoring of ‘Hass’ avocado
ripening, a data-driven tool was developed using a deep learning approach. This study involved
monitoring 478 avocados stored in three distinct storage environments, using a 5-stage Ripening Index
to classify each fruit’s ripening phase based on their shared characteristics. These categories were
paired with daily photographic records of the avocados, resulting in a database of labeled images.
Two convolutional neural network models, AlexNet and ResNet-18, were trained using transfer
learning techniques to identify distinct ripening indicators, enabling the prediction of ripening stages
and shelf-life estimations for new unseen data. The approach achieved a final prediction accuracy of
88.8% for the ripening assessment, with 96.7% of predictions deviating by no more than half a stage
from their actual classifications when considering the best side of the samples. The average shelf-life
estimates based on the attributed classifications were within 0.92 days of the actual shelf-life, whereas
the predictions made by the models had an average deviation of 0.96 days from the actual shelf-life.

Keywords: convolutional neural network; fruit ripening; shelf-life tracking; post-harvest handling;
supply chain management

1. Introduction

The determination and management of the shelf-life of fruits and vegetables are
affected by multiple factors that are usually hard to track, as most undergo changes that go
beyond spoilage or contamination. Many of these products are sold in bulk and without
any protective packaging, making them even more susceptible to loss and waste. The
final quality of these perishable products depends not only on their pre- and post-harvest
handling but also on the intrinsic biochemical characteristics that directly affect their
ripening process and the organoleptic changes that ensue [1,2].

The traceability of these complex interactions between fruits and vegetables and their
surrounding environment can be highly improved with the implementation of Artificial
Intelligence (AI) systems [3], as they are particularly suited to intersect data from numerous
sources and find relevant connections between them. There are indicators that the resulting
data from these systems, commonly referred to as “smart data”, could be crucial for
an integrated approach that will eventually lead to improvements in quality and waste
prevention [4–6].

Computer vision (CV), which automates visual assessments, has been explored to
enhance quality inspection tasks since the beginning of the century [7] but has only seen
widespread adoption in recent years [3]. Advancements in CV systems for fruit quality
assessments have shown promising results in variety identification and grading [8], defect
detection [9], and even shelf-life estimations [5,10]. Most of them rely on convolutional
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neural network (CNN) models, especially suited for the recognition of patterns in visual
data, that have experienced substantial growth in recent years. Inspired by the mammalian
visual cortex, with different cells arranged in a layered architecture, these models can
construct image segments at different levels of abstraction. This makes them highly effective
in recognizing spatially dependent data, such as images and videos [11,12].

The avocado market has greatly benefited from their increasing association with
a healthy lifestyle [13] and trending social media coverage [14]. It is anticipated that
avocado production will continue to be the fastest-growing among major tropical fruits,
with projections estimating an increase to 12 million tons by 2032—more than triple the
output of 2010. This growth is driven by strong market demand and the fruit’s high export
value, leading to considerable investments in both established and emerging production
regions. Global avocado exports have reached quantities comparable to mangoes and are
expected to surpass pineapple exports between 2028 and 2030, positioning avocados as the
second most traded tropical fruit, only behind bananas. With its high average unit prices,
avocados are projected to become one of the most valuable fruit commodities [15].

Currently, ‘Hass’ stands as the most sought-after avocado cultivar by a significant
margin, with numerous new selections of ‘Hass’-like cultivars forming the foundation
of avocado exports to the United States and the European Union (EU) [16]. In the EU,
Portugal and Spain contribute to approximately 90% of avocado production [17], which,
however, fulfills less than 20% of European consumption [18]. These limitations, common
to most tropical and subtropical fruits, result in avocados passing through lengthy and time-
consuming distribution channels, which complicates the management of their post-harvest
handling. [19].

As a climacteric fruit, avocados do not ripen until after they are harvested, remaining
mature yet unripe until picked [20,21]. The pre-harvest maturity significantly influences
the post-harvest behavior of avocados and is commonly evaluated through dry matter
analysis, which has been recently automated with portable near-infrared spectroscopy
(NIRS) devices [22]. After harvest, pigment changes serve as a crucial indicator of ripeness
for ‘Hass’ and other avocado cultivars, as the fruits transit from a light green when unripe
to a purplish black when completely ripe [23]. These changes only partly stem from a minor
decline in chlorophyll concentration in the fruit’s skin, which stabilizes early in the ripening
process. More significantly, they are driven by external factors enhancing anthocyanin
biosynthesis, notably cyanidin 3-O-glucoside. The synthesis of these pigments, crucial
for developing purple/black pigmentation, is influenced both by growing conditions and
the post-harvest ripening environment. Avocados ripened at higher temperatures tend
to develop this pigmentation earlier and more intensely, whereas those ripened at lower
temperatures may soften with minimal skin darkening [23].

Despite the widespread adoption of NIRS devices for assessing fruit maturity at har-
vest, there is a lack of non-destructive methods for accurately assessing the ripeness of
avocados during post-harvest periods. Innovative synthetic sensors, designed to emu-
late the fruit’s morphology, have been developed, and are capable of documenting both
environmental and physical stresses that avocados endure during post-harvest handling.
It is envisaged that as these undergo the same treatment as the fruits themselves, they
can provide real-time insights into their ripening state [24]. Research into hyperspectral
imaging and other technologies as non-invasive means to determine flesh firmness and
dry matter content has been conducted, providing potential insights into the avocado’s
internal state. However, the reliability of these technologies remains incomplete, and their
deployment is associated with significant costs [25,26].

Given the notable visual transformations that ‘Hass’ avocado fruits undergo through
the ripening process, there is growing interest in employing Computer Vision (CV) predic-
tive models. Certain methods focus on training models to predict the number of days until
the fruits reach the end of their shelf-life [27], while other strategies involve categorizing
the ripening process into distinct stages, such as unripe, ripe, and overripe [25,28,29], or even
to predict the firmness of the fruit’s flesh using traditional machine learning algorithms [30].
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The results suggest that the application of image processing and convolutional neural
network (CNN)-based models could provide a cost-effective, non-invasive, high-accuracy
methodology for Ripening Index classification, but it would require large amounts of sam-
ples, from different sources and storage conditions, to be able to create predictive models
of these complex interactions [31].

A significant advantage of this approach is the CNN-based models’ ability to leverage
previously acquired knowledge for easier adaptation to new datasets. This strategy, termed
transfer learning [32], not only simplifies tailoring established models for estimating ripen-
ing and shelf-life but also promises models that progressively improve and broaden their
application scope.

The significant heterogeneity in the avocado ripening process, which is yet not fully
understood, poses a major challenge to developing ripening estimation technology [33].
Holistic approaches capable of tracing and correlating all pre-harvest and post-harvest
factors affecting the fruit’s ripening behavior, employing innovative, non-destructive meth-
ods for on-chain real-time analysis, could lead to more consistent quality tracking, thereby
reducing retail loss and household waste [34].

This study aims to examine the potential of these technologies in enhancing the track-
ing of avocado quality throughout their ripening process. The goal is to not only provide
real-time estimates of their shelf-life in various storage environments but also to expand
upon existing ripening assessments, identifying additional stages beyond the current state
of the art [25,28,29], and offering a more detailed representation of the continuous bio-
chemical transformations that influence their quality and organoleptic properties. The
creation of a labeled image database that pairs avocado photos with quality information
will also enable further research and innovation, potentially transforming the post-harvest
management of this fruit, with a positive impact along the whole supply chain.

2. Materials and Methods

A total of 486 avocados (Persea Americana Mill. cv Hass) were obtained directly from
a supplier based in Tavira, Portugal. All were sourced from a group of local producers
and harvested on the same day in March 2022. The supplier reported that the fruits were
harvested from multiple orchards, from a total of 650 ha, spanning from the east to the west
regions of Algarve, Portugal. Their operations were certified with GlobalG.A.P, GRASP,
and Tesco Nurture. The fruits were transported in a refrigerated truck at 5 ◦C and delivered
to the Research Centre for Biotechnology and Fine Chemistry (CBQF) in Porto, Portugal,
within the third day of post-harvest.

Upon reception, the avocados were thoroughly washed and scrubbed using a water-
based solution containing 190 mg·L−1 of active chlorine from sodium hypochlorite and
then rinsed according to the recommended guidelines [35]. Eight avocados were randomly
selected for the initial dry matter assessment (destructive methodology), and the remaining
478 fruits were labeled, weighted, and sorted between ten boxes so that each box had a
similar number of samples with evenly distributed weights.

2.1. Fruit Maturity at Harvest

An initial dry matter assessment was performed on 8 randomly selected avocados,
according to the official method of analysis for fruit samples, published by AOAC Interna-
tional [36].

Three flesh samples were extracted from each fruit, placed in pre-weighed Petri dishes,
and weighed to ascertain the total mass of each flesh sample. These samples were labeled,
and their raw flesh masses were recorded.

The Petri dishes containing the flesh samples were then placed in a dehydrating oven
and exposed to circulating hot air at 103 ◦C for 24 h. Post-dehydration, the samples were
weighed once more, the weight of the empty Petri dishes was subtracted to determine the
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mass of the dehydrated flesh, and the dry matter content was calculated using the formula
in Equation (1).

DM (%) =
raw f lesh mass (g)

dehidrated f lesh mass (g)
× 100% (1)

The dry matter contents from the flesh samples of each fruit were averaged to obtain
weighted values. The results from the studied fruits were compared with standard values
utilized in the food industry for determining the appropriate harvesting maturity stage.

2.2. Storage

The samples were distributed into three storage groups. Two groups were subjected
to a controlled environment, with stable temperature and relative humidity (RH), while a
third was left at room temperature conditions to evaluate how fluctuations in the storage
profile would affect the visual accuracy of the predictions. The three groups are detailed as
follows:

• T10—192 samples stored at a controlled temperature of 10 ◦C and 85% RH;
• T20—143 samples stored at a controlled temperature of 20 ◦C and 85% RH;
• Tamb—143 samples stored at room temperature and RH.

The group stored at room temperature was left in a laboratory with natural daily
oscillations in temperature that ranged between 15.8 ◦C and 21.7 ◦C, with an average of
18.7 ◦C and a standard deviation of 1.2 ◦C. Due to technical difficulties, it was not possible
to track the RH of this environment.

These environments were designed to stimulate fruit ripening, rather than to replicate
retail conditions, where fruits are typically stored at temperatures below 5 ◦C to decelerate
the ripening process during transport, and subsequently warmed to 20 ◦C to hasten
ripening [37]. The idea was to introduce sufficient variability in ripening characteristics
into the models, allowing them to account for how they manifest under different storage
conditions.

2.3. Image Collection

The samples were photographed daily in a HAVOX-HPB-40D Photo Studio Light-
box (42 × 42 × 42 cm) (Avolux SAS—Istanbul, Türkiye), with a matte white backdrop,
illuminated by two LED ramps with a luminous flux of 12,000 lm ± 200 lm and a color
temperature of 5500 K, paired with a light diffuser cloth. The distance between the fruits
and the camera was 30 cm. The photos were obtained using a Canon EOS 60D DSLR
camera, equipped with the Canon EF-S 18–55 mm f/3.5–5.6 IS II lens, mounted on top of
the studio box. The following camera settings were used: ISO: 100; Aperture: f/8.0; Shutter
Speed: 1/20 s. The photographs were collected using the EOS Utility 2 Software (Canon
Inc.—Tokyo, Japan) and labeled according to the sample number, front or back position,
storage group, and date.

2.4. Initial Color Analysis

As an additional assessment of the visual state of the avocados upon harvest, color
analysis was performed using the image processing and Computer Vision Toolbox in
MATLAB R2023b (MathWorks Inc.—Natick, MA, USA). All 956 photographs taken on
the first day of the experiment were segmented to remove the background, and their
chromaticity was extracted from the RGB values by applying calibration corrections using
a Konica Minolta CR-400 colorimeter and a calibration kit (Konica Minolta Inc.—Tokyo,
Japan) [38]. For each segmented picture, a k-means clustering technique was applied [39]
that averaged the CIELAB values from 5 clusters, generating a 5-color palette. From the 956
generated palettes, 6 more predominant L* (lightness), a* (red-green component), and b*
(yellow-blue component) values were registered, along with their corresponding average
RGB values. These were then combined in a six-color palette, designed from left to right by
order of predominance.
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2.5. Data Labeling Methodology

Inspired by ripening classification methodologies for shelf-life estimation of ‘Hass’
avocados [25,28,29], a Ripening Index was designed that classified each sample between 1
and 5, corresponding to the following stages of the ripening process:

1. Unripe;
2. Breaking;
3. Ripe (First Phase);
4. Ripe (Second Phase);
5. Overripe.

These were assessed by a team of two trained researchers and were based on a set of
common visual and texture traits for each stage, which are detailed below.

Figure 1 shows five examples of the photographed samples, depicting the visual
changes over the ripening process of Hass avocado fruits. These were chosen to help
characterize the five stages of the Ripening Index.
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Figure 1. Examples of stage 1 (a), stage 2 (b), stage 3 (c), stage 4 (d), and stage 5 (e) samples, classified
according to the 5-stage Ripening Index.

The first stage (a) is characterized by a yellowish-green color and a very firm texture.
The fruits might show signs of sun damage or other marks associated with their pre-harvest
conditions. In the second stage (b), signs of ripening start to manifest in a darkening
pigmentation, which should now be of a greyish olive green with hues of brown. It has a
firm texture, though it should give slightly when pressed. In stage 3 (c), as the avocado
fruit becomes ripe, shades of purple start to appear, scattered along the skin. Its texture is
now less firm to the touch, signs of an easily sliced flesh, which should yet resist mashing.
The fourth stage (d) is considered the last one of the fruit’s shelf-life, where its ripeness is
at the maximum value but with no relevant signs of senescence or degrading quality. The
fruit’s skin should now be of a homogenous purple shade, and its flesh easily displaced
by a slight touch. The stem should appear dry and of a light brown color. In the fifth and
last stage (e), the fruits show clear signs of senescence, with the appearance of mold spots
throughout the skin and around the stem. In terms of texture, a separation between the
exocarp and the mesocarp can be observed.

A 10-stage Ripening Index was also tested, where each of the original stages was
divided in half, as depicted in Figure 2. As shown in the picture, the end of shelf-life
corresponds to the 9th stage in this 10-stage index, which is considered the point where
the characteristics of the fruit are no longer suitable for commercialization. The 10th and
last stage is the one where evident signs of contamination would make it unsuitable for
consumption.

For simplicity in visualization, each original stage is represented as being of equal size,
although this was not necessarily the case in experimental observations. The stages are
derived from noticeable visual and textural changes that occur during the ripening process
of Hass avocados, rather than from precise divisions of its time frame.
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2.6. Database

When photographing each sample, two researchers—previously trained in evaluating
the Ripening Index of avocado fruits—assigned an index classification to each sample using
both the 5-stage and 10-stage systems. This process contributed to the creation of a labeled
image database. Each entry in the database consisted of an image paired with details about
the sample, including the “sample number”, “storage group”, “side of the fruit”, “Ripening
Index”, and a date stamp.

After the image collection was over, an additional piece of information, designated as
Days Left, was added to each labeled image. This metric consisted of the number of days
passed from the moment each sample was photographed until it would reach either a stage
5 classification of the 5-stage Ripening Index or stage 9 of the 10-stage index, considered as
the endpoints of the avocado’s shelf-life. These data would later be used to estimate the
expected shelf-life for any given classification within a particular storage group.

The database was divided into four distinct datasets. The first, labeled as “general”,
contained images from all storage groups. This dataset was designed to assess the models’
capability to generalize their ripening stage predictions across various storage conditions,
without being influenced by the specific effects of each storage environment on the ripening
process [23,37]. The remaining three datasets were created for each storage group. Sub-
sequently, each of the four datasets was duplicated, with one set labeled according to the
5-stage index and the other according to the 10-stage index, resulting in a total of eight final
datasets.

Each dataset was divided into three subsets. The first subset, the training set, con-
stituted 70% of the dataset and was used for successive iterations of the training process
across the models. The validation set, forming 15% of the dataset, was used for periodic
assessments, enabling consistent evaluation of the model’s generalization capabilities. This
process facilitated the fine-tuning of training hyperparameters to enhance accuracy and
minimize loss, ensuring that the model did not overfit the training data. The remaining 15%
of the dataset constituted the test set, reserved for the ultimate evaluation of each model’s
capability to predict and generalize based on the accuracy metric.

To prevent data leakage and ensure the models’ ability to generalize, each sample
within a given dataset was uniquely assigned to either the training, validation, or test set,
avoiding any overlap within those subsets [40]. Efforts were made to maintain a similar
distribution of classification labels within each set to minimize bias. This was challenging
due to the uneven occurrence of classifications throughout the experiment. Strategies
to address this included employing subtle geometrical data augmentation techniques
and conducting test runs with datasets adjusted for balance. In these adjusted datasets,
samples from underrepresented classifications were randomly duplicated to ensure an
equitable distribution of classifications within the training set, a technique known as
random oversampling [41]. Considering the success of this method in the conducted test
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runs, it was implemented across all training sets but was not extended to the validation
and test sets, which retained their original distribution without any duplication.

The final database comprising all acquired photographs and their respective classifica-
tion labels was published on Mendeley Data, and both the pictures and respective labeling
data can be accessed with the doi reference number 10.17632/3xd9n945v8.1.

2.7. Predictive Model Design and Architecture

Two well-established pre-trained convolutional neural network models were used as a
base for designing the predictive models. The first, AlexNet, comprises five convolutional
layers and three fully connected layers, making it an 8-layer deep model [42]. The second
model, ResNet-18, is more advanced with a deeper architecture that includes 17 convo-
lutional layers and one fully connected layer. ResNet-18 is notable for its use of skip
connections, which enhance its efficiency in balancing depth with resource utilization [43].
These models were chosen for their proven effectiveness in image recognition [44], a critical
factor given the limited computational resources available for training. Additionally, the
choice facilitated an evaluation of how performance varies with the model’s complexity
and depth. AlexNet, featuring an older and simpler architecture, contrasts with ResNet-18,
which embodies a more contemporary design with significantly greater depth. Both the
pre-trained AlexNet and ResNet-18 models have been employed in fruit quality assess-
ments, yielding promising outcomes. Both stood out as the two most effective in recent
investigations into the field [45,46].

The models were developed using the Deep Learning Toolbox in MATLAB R2023b
(MathWorks Inc.—Natick, MA, USA), which features modular editing tools, enabling the
adaptation of the pre-trained model’s base architecture to meet the needs of new datasets.

Modifications were applied to the final fully connected layer of each model to align
its output with the number of classes in the new predictive model—ten classes for the
10-stage index and five for the 5-stage index. Similarly, the output layer, referred to as the
classification layer, was updated to conform to these specifications.

2.8. Training, Testing, and Validation of the Predictive Model

The models were trained using a single CPU, an AMD Ryzen™ 7 5800H with 8 cores
and a base clock of 3.2 GHz, with an integrated GPU AMD Radeon™ Graphics with 8 cores
running at 2.0 GHz. Test runs were conducted to fine-tune the hyperparameters of each
model. Following this optimization process, models were trained using datasets balanced
for equitable distribution of classes, including over 30 epochs with a mini-batch size of
128 images. Geometric data augmentation techniques were applied, including random
reflection, rotation (between −10◦ and 10◦), rescaling (from 0.95 to 1.05), and horizontal
and vertical translations (from −10 to 10 pixels). These techniques were selected to en-
hance model generalization [47]. However, considering the images in the database were
already similar in scale and positioning, the adjustments applied were deliberately subtle.
According to MathWorks Inc. Help Center documentation, “one randomly augmented
version of each image is used during each epoch of training, where an epoch is a full pass
of the training algorithm over the entire training data set. Therefore, each epoch uses a
slightly different data set, but the actual number of training images in each epoch does not
change” [48].

Models based on ResNet-18 were trained with an initial learning rate of 0.01, adjusted
down by a factor of 0.1 every 10 epochs. This strategy aimed for rapid early convergence
while minimizing the risk of overfitting in later stages. In contrast, the simpler architecture
and absence of normalization layers in AlexNet-based models necessitated a lower initial
learning rate of 0.001 to prevent overshooting the optimal loss [49]. A similar adjustment
schedule of 0.1 reduction every 10 epochs was also applied. Validation checks were
conducted every 10 iterations, with a validation patience setting of 150 iterations to prevent
prolonged training without improvement. The final model was set to be the one that

10.17632/3xd9n945v8.1
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presented the best validation accuracy/loss. Figure 3 provides a visual representation of
these divisions and the overall process.
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3. Results
3.1. Initial Observations

Table 1 shows the initial dry matter content of the analyzed samples to help character-
ize the initial physiological characteristics of the fruits at their stages of maturity.

Table 1. Initial dry matter (D.M.) of the analyzed avocado samples.

Average D.M. 34%
Std. Deviation 2.8%

Maximum D.M. 39%
Minimum D.M. 31%

As an additional characterization of the fruits upon arrival, Figure 4 shows the six
most predominant colors resulting from the extraction of the CIELAB color values from
the 956 first-day pictures, corrected using the calibration technique. Such a color palette
was found to better describe the chromaticity of the initial samples, as it shows the most
predominant hues without losing too much information from averaging them out in a
single output.
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Figure 4. Color palette of the six most predominant colors of the avocado samples at the start of the
experiment, corresponding RGB values, and corrected CIELAB values.

3.2. Database Descriptive Analysis

Table 2 provides a descriptive analysis of the database, specifically the number of pho-
tographs corresponding to each stage of the Ripening Index. Efforts were made to distribute
these images across the training, validation, and test sets according to the 70%/15%/15%
split specified in the methodology. Python script was used to ensure a randomized al-
location of samples while preventing images from the same sample from being placed
in different groups. This approach aimed for an optimal distribution, and despite minor
deviations, the distribution closely aligns with the intended proportions.

Table 2. Descriptive analysis of the final database.

Ripening Index Training Set Validation Set Test Set Total

1 1402 298 308 2008
2 1100 228 236 1564
3 808 162 180 1150
4 778 154 152 1084
5 688 152 142 982
6 1246 256 274 1776
7 1042 216 198 1456
8 1290 288 260 1838
9 1508 272 392 2172
10 488 98 106 692

Total 10,350 2124 2248 14,722
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3.3. Model Performance

Table 3 shows the overall average accuracy scores across all datasets for each of the
Ripening Index classification systems. Both models achieved very similar performance,
with a slight advantage for the models based on ResNet-18. Given these similarities, and to
avoid redundancy, the detailed performance results shown further in this study will focus
on the best-performing model for each dataset.

Table 3. Average accuracy scores for networks derived from two pre-trained models (AlexNet and
Res-Net-18) across all storage groups.

Pretrained Network Ripening Index Margin of Error Average Score 1

AlexNet

5 Stages None 76.9%
1 Stage 99.4%

10 Stages
None 57.4%

1 Stage 92.6%
2 Stages 98.4%

ResNet-18

5 Stages None 78.4%
1 Stage 99.7%

10 Stages
None 60.8%

1 Stage 93.3%
2 Stages 98.6%

1 Each trained model was considered with an equal weight to the average score, despite having different total
occurrences.

To allow for an overall perspective on the general performance of the trained models,
Figure 5 shows a representation of the eight testing sets, illustrating that a significant
number of incorrect predictions were unique to each model, not shared between them.
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To establish a correlation between each Ripening Index and its inherent predictive
shelf-life, regression models were studied for each storage group, considering the attributed
classifications of each photographed sample, and the registered days it took from that point
until reaching the stage corresponding to the end of its shelf-life. This new classification
was called Days Left and was included in the database. After verifying an apparent linearity
between the evolution of these two variables, and forcing the shelf-life estimations to
be zero for the final stages of the Ripening Index, Equation (2) was used for the linear
regression modeling for the 5-stage Ripening Index.

Days Le f t = α × (Ripening Index − 5) (2)

Table 4 shows the coefficients of the linear regression models based on Equation (2),
using the Ordinary Least Squares method, with a confidence interval of 95% for the
coefficient α.

Table 4. Linear regression model coefficients for each storage group, based on Equation (2), applied
to the 5-stage index classifications for shelf-life estimation.

Storage Group Coefficient (α) R-Squared

T10 −4.390 ± 0.021 0.953
T20 −2.116 ± 0.016 0.963

Tamb −1.929 ± 0.015 0.959

For the 10-stage Ripening Index, the end of shelf-life was defined by the 9th stage, as
already depicted in Figure 2. Following the same rationale, the linear regression model is
derived from Equation (3).

Days Le f t = α × (Ripening Index − 9) (3)

Table 5 shows the coefficients of the linear regression models based on Equation (3),
using the Ordinary Least Squares method, with a confidence interval of 95% for coefficient α.

Table 5. Linear regression model coefficients for each storage group, based on Equation (3), applied
to the 10-stage index classifications for shelf-life estimation.

Storage Group Coefficient (α) R-Squared

T10 −2.392 ± 0.011 0.964
T20 −1.156 ± 0.008 0.966

Tamb −1.045 ± 0.008 0.965

Figure 6 provides a visual representation of the shelf-life estimations’ progression as
predicted by the regression models. Each figure includes a side-by-side comparison of
the 5-stage and 10-stage model estimates, aligned on opposite horizontal axes for a direct
comparison of their timelines. Additionally, the plots feature the average shelf-life values
observed for each Ripening Index, along with their respective standard deviations.

Figures 7 and 8 present the accuracy of the top-performing model across different sub-
sets, delineated by stage, for a detailed analysis of its efficacy. Given that each fruit sample
was photographed from two opposing sides at each time point, there were instances where
the model accurately identified the ripening stage of one image but not its counterpart. This
discrepancy often arose from visual anomalies such as spots or marks on one side of the
fruit, which could confuse the model’s predictions. To address these variations, Figures 7
and 8 also detail the model’s performance on a per-sample basis, specifically highlighting
cases where it successfully predicted the ripening stage of at least one side of a fruit sample.
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Furthermore, the confusion matrices in Figures 9 and 10 offer a detailed examination
of each model’s performance by visualizing not only the correct predictions but also the
incorrect ones. This is achieved by comparing the actual classifications with those predicted
by the models.

Foods 2024, 13, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 9. Confusion Matrix for the best-performing network on the general (a), T10 (b), T20 (c), and 
Tamb (d) datasets, on a 5-stage Ripening Index. 

 
Figure 10. Confusion Matrix for the best-performing network on the general (a), T10 (b), T20 (c), 
and Tamb (d) datasets, on a 10-stage Ripening Index. 

Figure 9. Confusion Matrix for the best-performing network on the general (a), T10 (b), T20 (c), and
Tamb (d) datasets, on a 5-stage Ripening Index.

To assess the performance of the shelf-life estimates, and to compare the ones carried
out by the trained panel while attributing ripening classifications with the ones derived
from the model’s predictions, the shelf-life estimation loss was studied (Equation (4)).

Loss = |Estimated Shel f Li f e − Shel f Li f e| (4)

Following the same rationale of Figures 7 and 8, Table 6 shows the average shelf-life
estimation loss for the attributed classifications and the ones predicted by the models. As
two pictures were taken at each time for every sample, the average shelf-life estimation loss
per sample considers only the best-performing prediction of both sides of the same sample
to account for the model’s potential when more than one side is assessed per sample.
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Table 6. Average shelf-life estimation loss for the attributed classifications and for predicted classifi-
cations, by picture and by sample.

Storage Group

Average Shelf-Life Estimation Loss 2

Attributed
Classifications

Predicted
Classifications

(by Picture)

Predicted
Classifications

(by Sample)

T10 (5 stages) 1.70 days 1.94 days 1.82 days
T20 (5 stages) 0.73 days 0.75 days 0.75 days

Tamb (5 stages) 0.53 days 0.64 days 0.54 days
Overall (5 stages) 0.99 days 1.11 days 1.04 days

T10 (10 stages) 1.40 days 1.74 days 1.50 days
T20 (10 stages) 0.73 days 0.74 days 0.66 days

Tamb (10 stages) 0.46 days 0.59 days 0.49 days
Overall (10 stages) 0.86 days 1.02 days 0.88 days

Overall 0.92 days 1.07 days 0.96 days
2 Each storage group was considered with an equal weight to the overall average score, despite having different
total occurrences.
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Figures 11–13 feature 2D Kernel Density Estimation plots that represent the likelihood
of the difference in days between the estimated and the observed shelf-life of the avocado
samples, with a bandwidth setting of one day. By increasing the kernel bandwidth, these
plots facilitate an easier examination of the error distribution and enable direct comparisons
between attributed classifications (red) and model predictions (blue), and also between the
5-stage and 10-stage models [50]. Additionally, the average loss for each Ripening Index is
depicted above the corresponding stage.
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4. Discussion

The winter of 2021/2022 was the fourth warmest in Portugal since 1931, marking it
with the highest average maximum temperature observed in the last 90 years. Additionally,
it was recorded as the fifth driest winter during the same timeframe, receiving only 33%
of the typical rainfall for that season [51]. The severe to extreme drought conditions that
affected the Algarve region during that season were identified by the avocado fruit supplier
as a significant factor accelerating the maturation of the fruits, reporting that the avocados
were already at or beyond their optimal marketable levels of dry matter content at the
outset of the experiment.

The analyzed samples demonstrated an initial dry matter content between 31% and
39%, surpassing the typically recommended harvest range of 25% to 30% [52]. This rein-
forces the fact that the avocados were harvested at a stage of maturity beyond the norm for
suppliers, which is likely a consequence of the aforementioned atypical weather conditions.
The observed high dry matter content indicates a potential for accelerated ripening, along-
side a heightened susceptibility to physiological disorders and mechanical damage [53].
Notably, a considerable number of avocado samples exhibited wind rub damage, caused by
the abrasion of the fruit’s skin against branches or leaves, alongside instances of sunburn
damage. These factors introduced a level of visual variability in the damaged fruits that is
atypical in market conditions, posing challenges to the generalization of the models.

As anticipated [23,37], the storage conditions significantly influenced the ripening
process of the avocados. The fruits stored at 20 ◦C and at room temperature ripened
approximately twice as fast as those kept at 10 ◦C. Moreover, the visual changes observed
in the fruits varied with temperature, as fruits at higher temperatures developed their
characteristic purplish pigmentation before any signs of senescence were noticed, which
was not always the case for the fruits that had a longer ripening time frame. As a result of
this, both Figures 7b and 8b show a decrease in accuracy during the final stages of ripening
for predictive models trained solely on samples stored at 10 ◦C.
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Although the stages of the Ripening Index were defined considering variations in
quality and organoleptic features of Hass avocados, the conversion of these stages into
a shelf-life estimation demonstrated a clear linear progression, as evidenced by both
the 5-stage and 10-stage models depicted in Figure 6. Nevertheless, the high degree of
heterogeneity in the ripening of avocado fruits posed a constraint to the precise modeling of
this progression, underscoring the necessity and potential for exploring smart tools capable
of improving the traceability of quality in avocados.

The use of transfer learning [32], a key principle in this project, showed promising
results, with both pre-trained models achieving comparable accuracy despite their archi-
tectural and complexity differences [42,43], with a slight advantage to ResNet-18. This
observation suggests that using deeper and more complex models may offer limited scope
for improvement in this context, which partially stems from not only the obvious limitations
in ripening assessment based solely on visual information but also from the associated
human error involved in hundreds of classifications every day; this could be reduced with
improved systems but is hardly eliminated.

Nevertheless, a comparative analysis of both models’ performance, shown in Figure 5,
revealed that the overlapping errors accounted for less than half of the total errors. This
suggests that combining different models in an ensemble approach could potentially reduce
the error rate. To achieve this, more in-depth studies of the strengths and weaknesses of
each model would have to be carried out, so that these could be compensated by the
consideration of different models or even different smart tools.

Examining the performance of the models across different ripening stages, as illus-
trated in Figures 7 and 8, it is evident that the first stage consistently achieves the highest
scores in almost every model, which could be attributed to two main factors. Firstly, the
visual characteristics of the unripe stage appear to exhibit lower variance compared to
other stages, making it more distinct and easier to identify. This distinctiveness is further
enhanced as the unripe stage is less influenced by the storage environment due to the
minimal accumulated storage time. Second, despite employing a random oversampling
technique to balance the data and prevent the models from being biased towards the most
frequently observed stage, this approach might still not adequately enhance the models’
ability to generalize across the less common stages of ripening [41].

The disparity in accuracy between per-picture and per-sample assessments, as shown
in Figures 7 and 8, underscores the impact of marks and spots on the model’s predictions.
This distinction is crucial, especially considering the weather conditions affecting most
samples, as previously discussed. An outlier removal system that averages the predictions
across several images of the same fruit could help diminish this discrepancy, enhancing the
overall prediction accuracy.

The confusion matrices depicted in Figures 9 and 10 provide a more in-depth visu-
alization of each model’s performance. The 5-stage models show higher accuracy on the
extremes of the Ripening Index (with the discussed exception of the T10 dataset), whereas
the performance of the 10-stage models fluctuates more throughout the ripening stages.
This indicates that expanding the classification system to a 10-stage index, as anticipated,
introduced greater complexity in both assigning and predicting the ripening stages. How-
ever, upon examining the distribution of the predictions, it becomes apparent that allowing
for a 1-stage margin of error could be a decisive factor in favoring the 10-stage system.
This is because over 93% of the 10-stage models’ predictions were within one stage of the
attributed classifications, which demonstrates the benefit of the 10-stage system’s finer
granularity, where each stage denotes a more specific phase of ripeness. Such precision
ensures that a one-stage margin of error in the 10-stage system still offers a relevant pre-
dictive accuracy and practical utility—a level of usefulness not paralleled by the broader
categories of the 5-stage system.

Developing a Ripening Index was a key strategy to translate the continuity of the
ripening process in a sequential numerical index, a requirement of these smart systems.
Determining the optimal number of stages for this index posed a significant challenge.
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While a 10-stage index appeared to offer precise ripening stage predictions for avocado
samples, when given an error margin that could not be applied to the 5-stage index, analysis
of the loss function for shelf-life estimations revealed similar average losses between the
10-stage and 5-stage models, as shown in Figures 11–13. It is important to note that shelf-
life estimation, although vital, is just one of the objectives of these smart tools. Defining
a ripening stage provides immediate insight into the fruit’s condition at the time of the
prediction, whereas shelf-life estimation only predicts the duration before spoilage signs
emerge.

The experiment also highlighted the inherent unpredictability in the ripening process
of avocado fruits, which posed challenges in generating accurate shelf-life estimations
based on ripening classifications, particularly for samples stored at lower temperatures.
Analysis of the discrepancy between the estimated and actual values showed that the
loss distribution for both human-attributed classifications and model predictions was
similar. This similarity suggests that the models performed on par with the trained panel
in predicting the shelf-life of avocados.

As all the avocados used in this study were sourced from the same region and har-
vested at the same time, there was a small degree of variation in what concerns the pre-
harvest conditions that could impact their ripening process. Although this allowed for a
better comparison of the post-harvest handling factors, as any behavioral differences be-
tween sample groups could be attributed to their storage environment, conducting further
research is essential to develop models that can be generalized to scalable applications.

The decision to select only two pre-trained CNN models as the foundation for the
predictive model was primarily driven by the limited computational resources available
for training 16 different models. Exploring other configurations through feature extraction
assessments could lead to the development of more robust models. Furthermore, creat-
ing ensembles that leverage synergies from recent advancements in deep learning could
significantly enhance the accuracy of ripening predictions and shelf-life estimations.

Additionally, considering the exploration of two classification indexes, each with
its respective benefits and drawbacks, employing both simultaneously for assessment
consistency and outlier detection could enhance the efficacy of this methodology. In the
long term, diversifying the approach by training other models to predict various metrics
might further minimize estimation errors and contribute to the development of a more
comprehensive smart tool.

5. Conclusions

The application of pre-trained CNN models in predicting quality and shelf-life was
explored using ‘Hass’ avocados by monitoring their ripening process throughout the entire
post-harvest period. This involved daily photography of the fruits, coupled with quality
information assessments. Improvements in the application of smart-data tools in the food
industry require large amounts of data that can be channeled into their development. The
creation of a labeled photographic database laid the groundwork for this project and, more
importantly, opened the door for further exploratory studies that can leverage the collected
data to develop new and enhanced tools.

Significant variation in the progression of Ripening Index classifications was observed
within each storage group. This variability may partly stem from human error in the visual
assessment. However, it was primarily attributed to the well-documented heterogeneity
in the ripening of avocado fruits. While this variability challenges the development of
smart-data tools for accurate monitoring, it also highlights the value of using machine
learning and other computational methods that could provide a more effective way to
understand and manage the complexities of avocado ripening.

The use of open access and highly efficient pre-trained CNN models was significant,
as it demonstrated the feasibility of replicating these methodologies without the need for
extensive computing resources. Furthermore, the potential for model ensembles to enhance
performance suggests substantial opportunities for further improvement.
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The findings from the implemented methodology underscore the potential to increase
the robustness of the models by training them to identify additional quality features. These
features can complement the existing assessments, aiming for a more holistic, real-time
monitoring of avocado ripening and quality throughout post-harvest handling.

The potential applications of smart-data tools, designed to predict the shelf-life and
assess quality-related factors of perishable products, are vast and will benefit from fur-
ther research, which will only enhance their utility and effectiveness. The outcomes of
this project underscore this trajectory, highlighting the transformative impact these tools
could have on the food industry. Integrating such tools with real-time data analytics and
other machine learning algorithms could further refine predictions, with the potential to
transform the food supply chain and significantly reduce its associated loss and waste.
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