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Abstract: Panax notoginseng (P. notoginseng) is a valuable herbal medicine, as well as a dietary food
supplement known for its satisfactory clinical efficacy in alleviating blood stasis, reducing swelling,
and relieving pain. However, the ability of P. notoginseng to absorb and accumulate cadmium (Cd)
poses a significant environmental pollution risk and potential health hazards to humans. In this
study, we employed laser-induced breakdown spectroscopy (LIBS) for the rapid detection of Cd.
It is important to note that signal uncertainty can impact the quantification performance of LIBS.
Hence, we proposed the crater–spectrum feature fusion method, which comprises ablation crater
morphology compensation and characteristic peak ratio correction (CPRC), to explore the feasibility
of signal uncertainty reduction. The crater morphology compensation method, namely, adding
variables using multiple linear regression (MLR) analysis, decreased the root-mean-square error of
the prediction set (RMSEP) from 7.0233 µg/g to 5.4043 µg/g. The prediction results were achieved
after CPRC pretreatment using the calibration curve model with an RMSEP of 3.4980 µg/g, a limit
of detection of 1.92 µg/g, and a limit of quantification of 6.41 µg/g. The crater–spectrum feature
fusion method reached the lowest RMSEP of 2.8556 µg/g, based on a least-squares support vector
machine (LSSVM) model. The preliminary results suggest the effectiveness of the crater–spectrum
feature fusion method for detecting Cd. Furthermore, this method has the potential to be extended to
detect other toxic metals in addition to Cd, which significantly contributes to ensuring the quality
and safety of agricultural production.

Keywords: signal uncertainty; crater morphology compensation; characteristic peak ratio correction;
rapid detection; toxic metal pollution

1. Introduction

Panax notoginseng (P. notoginseng) is a valuable medicinal plant in great demand. Its
root, acknowledged as a medicinal part, is beneficial for blood circulation, blood stasis
alleviation, detumescence, and pain alleviation in clinical practice [1]. Modern pharma-
ceutical research hypothesizes that P. notoginseng can also be used for the treatment of
cardiovascular diseases, hypertension, and hyperlipidemia. P. notoginseng is available as
a dietary food supplement and healthcare product due to its bioactive compounds, such
as saponins and flavonoids [2]. The efficacy of P. notoginseng is affected by toxic metal
contamination, a topic of increasing interest because of the abundance of mineral resources
in P. notoginseng-cultivated soil. Cadmium (Cd) absorption and enrichment in P. notoginseng
is relatively strong, and Cd is more easily transferred to the ground [3]. Cd contamination
not only reduces the yield of P. notoginseng and diminishes the accumulation of bioactive
compounds [4], but it also poses risks to environmental pollution and human health [5].
Consequently, excessive Cd pollution has emerged as a major concern, highlighting the
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critical importance of Cd detection for ensuring the quality and safety of P. notoginseng [6,7].
The regulated detection methods include atomic absorption spectrometry (AAS) [8,9] and
inductively coupled plasma–mass spectrometry (ICP-MS) [10–12]. These methods are
widely recognized due to their good repeatability, low detection limit, and high accuracy.
However, samples need to undergo processes such as digestion and dilution to meet the
requirements of these instruments. Their shortcomings are also apparent, with complex
pretreatments, high time costs, and the requirement of professional operators, meaning
they cannot ensure intelligent and rapid detection with a short response time.

Laser-induced breakdown spectroscopy (LIBS), an atomic emission spectroscopy
depending on plasma formation, has the advantages of no or minimal pretreatment, a rapid
detection process, and a wide analytical range, and it can be used in multiple elements, long-
distance transmission, and online detection. The emission lines of LIBS that characterize
the substance’s features can be applied for qualitative and quantitative analysis in coal
production [13], agriculture [14,15], soil [16], and so on. Cd detection using LIBS has
been researched for use in lots of plants, such as cabbage [17], herbs [18,19], lettuce [20],
and rice [21]. The bottleneck that causes a relatively lower measurement precision and
accuracy of LIBS toxic metal quantification is signal uncertainty, which hinders further
development [22]. The factors influencing uncertainty come from various aspects, including
the matrix effect, the LIBS system, and the surrounding environment.

Research on reducing signal uncertainty comprises sample preparation, system setting,
and data processing. Yang et al. [23] proposed a solid–liquid–solid transformation method,
with rice samples prepared by means of ultrasound-assisted extraction for Cd and Pb
determination using LIBS. Wang et al. [24] optimized the laser energy and delay time to
obtain spectra and then built a multiple linear regression model for Pb and Cu detection
in Ligusticum wallichii with limits of detection of 15.7 and 6.3 µg/g, respectively. From the
point of view of data processing, normalization [25,26] (based on the specific element [27],
background [28], and peak area [29], etc.), calibration-free LIBS (CF-LIBS) [30,31], and mul-
tivariate analysis [32] have been used and have obtained improved results. Zhao et al. [33]
detected five metal elements in lily bulbs using partial least squares regression (PLSR) by
combining various data preprocessing and selection methods to build the best-fitting model.
In comparison, Su et al. [34] adopted a framework that removed noise and low-intensity
variables and then combined it with PLSR to simultaneously and quantitatively measure
several toxic metals in Sargassum fusiforme. Nonetheless, the preparation-modified method
requires more operations, and the data-driven model, based on multiple spectra informa-
tion, fails to achieve a reduction in signal uncertainty, because the multivariate model is only
partially able to compensate for signal uncertainty. Matrix effects refer to differences in the
physical (particle size and distribution) and chemical (composition of elements) properties
of the samples, which affect the generation and evolution of plasma [35]. Borduchi [36] and
Lei [37] tried to reduce the matrix effects for soybean leaf and milk powder, respectively.
CF-LIBS was employed in their studies, and this approach did not require the building of
models when needed to meet specific conditions. The ablated crater can also reflect the laser
ablation status and help researchers to understand the ablation process, so it is regarded
as a plasma parameter, besides the line intensity and temperature [38]. Regarding the
research on the relationship between signal intensity and crater morphology [39], energy
optimization based on craters [40] and LIBS signal enhancement interpretation [41] has
been carried out. Sun et al. [42] corrected the LIBS signal with the ablation crater volume to
improve the signal’s repeatability. The above attempts demonstrate the vital roles craters
play in LIBS analysis. However, existing studies on crater analysis have typically been
carried out under different system parameters or utilized standard metal samples, which
enlarge crater discrepancies and minimize sample variance.

In our study, P. notoginseng, sourced from various origins with diverse compositions,
was used as the experimental material. The differences observed in the ablation craters
prompted us to investigate the potential of combining LIBS raw signals and crater mor-
phology to predict Cd concentrations. Following this, a simple framework known as the
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characteristic peak ratio correction (CPRC) method was proposed to refine the LIBS signals.
Additionally, the crater–spectrum feature fusion method was employed to further enhance
the analysis. As depicted in Figure 1, we aimed to develop a more robust model by address-
ing signal uncertainties from two perspectives: ablation crater morphology compensation
and signal ratio correction.
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2. Materials and Methods
2.1. Sample Preparation

Six brands of P. notoginseng powders were purchased from different sources at markets.
Detailed information is shown in Table 1. Implementation standards reflect the difference
in processing methods before the products entered the markets for sale. The quality of P.
notoginseng powders varies due to differences in habitat, maturity, and processing methods,
even though they are all derived from P. notoginseng. This variation results in a matrix effect
during analysis. We first prepared a 0.01 mol/L cadmium nitrate solution by dissolving
cadmium nitrate tetrahydrate (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China),
and then added different volumes to mix with 4 g of dried P. notoginseng powder, creating
Cd-contaminated samples. To ensure homogeneity in the mixture, we added deionized
water to create a suspension of P. notoginseng. After thorough stirring with a glass rod, the
mixture was placed in an oven at 80 ◦C for 48 h to remove moisture.

Table 1. Sample information from different brands.

Variety ID Implementation Standard Number of Samples

Brand-1 Chinese pharmacopoeia 40
Brand-2 Primary agricultural products 40
Brand-3 Primary agricultural products 40
Brand-4 Chinese pharmacopoeia 40
Brand-5 Primary agricultural products 40
Brand-6 Local pharmacopoeia 40
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The contaminated P. notoginseng powders were prepared at concentrations of 0, 0.5,
1, 10, 20, 30, 40, 50, 60, and 70 µg/g, resulting in ten processing levels. Then, 0.2 g
contaminated powders were pressed into tablets with a diameter of 13 mm and thickness
of 1 mm using a tablet machine at a pressure of 20 MPa for twenty seconds. Four samples
were prepared for each concentration. Finally, 40 samples for each brand were collected. We
randomly divided the 40 samples of each brand into four groups, labeled Group1, Group2,
Group3, and Group4. Group1, with six brands, made up Dataset1. Dataset2, Dataset3, and
Dataset4 were composed in the same way. Dataset1, Dataset2, and Dataset3 were used as
the calibration set, and Dataset4 was used as the prediction set.

2.2. The Determination of Cd Reference Value

Considering the Cd concentration of the sample itself and the manipulation error, the
Cd reference value was measured by means of ICP-MS (Agilent 7800ICPMS, Santa Clara,
CA, USA) [43]. Samples needed to be pretreated before testing. Here, 0.1 g of contaminated
powder from each sample was weighed and put into a digestion tubes; 5 mL of 65%
nitric acid was added into each digestion tube. Then, the digestion tubes were placed
in the graphite digestion furnace at 110 ◦C. After the sample had been nearly digested,
the lids of the digestion tubes were opened to add the acid. When the above operations
were completed, the digestion solution was placed in a volumetric flask and diluted with
deionized water to 25 mL. Then, 5 mL of filter solution was used for the determination of
the Cd concentration. Similar steps were described by Geng et al. [44]. The Cd reference
value is shown in Table 2.

Table 2. Cd reference values of P. notoginseng powders, obtained by means of ICP-MS.

Brand-1 Brand-2 Brand-3 Brand-4 Brand-5 Brand-6

Min. (µg/g) 0.57 0.45 0.98 0.83 1.52 0.48
Max. (µg/g) 74.52 79.52 71.71 74.47 75.20 70.80
Mean (µg/g) 30.70 32.88 30.70 30.72 31.33 29.90

2.3. Experimental Instruments
2.3.1. LIBS Instrumentation

A self-assembled LIBS system was employed for LIBS data acquisition. As shown
in Figure 2, a Q-switched Nd: YAG pulsed laser (Vlite-200, Beamtech Optronics, Beijing,
China) generated the 532 nm laser with a pulse duration of 8 ns. The laser was focused
on the samples using an optical reflection system. The electromagnetic signal of plasma
radiation that was generated after the samples had been ablated was captured through
a signal collector. The monochromator (SR-500i-A-R, Andor, Belfast, UK) was used to
disperse light, and then an ICCD detector (iStar DH334T-18F-03, Andor, Belfast, UK)
converted the optical signal into an electrical signal, presented in the computer. In this
experiment, the LIBS spectra were collected in the range of 210-231 nm. A digital delay
generator (DG645, Stanford Research Systems, Sunnyvale, CA, USA) was adopted to
control the timings of lasers and ICCD detectors, and the laser frequency was set to 1 Hz.
The LIBS system was detected via single-shot scanning. The sample was positioned on
the X-Y-Z motorized stage (Zolix, Beijing, China), which was utilized to collect spectra
at different sites. Before the experiment, several parameters were optimized, including
a delay time of 2 µs, a gate width of 8 µs, and a laser pulse energy of 40 mJ. The laser
ablation path was configured as a 2 × 3 array of craters. Each position underwent nine
ablations, and the resulting spectra were averaged to minimize laser-induced point-to-point
fluctuations. The laser beam was focused 2 mm below the sample surface to ensure stable
signal acquisition [45].
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2.3.2. Ablation Crater Measurement

The shape measurement laser microscopy system, mainly consisting of a controller
(VK-X1000, Keyence, Osaka, Japan) and measurement module (VK-X1050, Keyence, Osaka,
Japan) and a base (VK-D1, Keyence, Osaka, Japan), was used to obtain the morphologies
and parameters of craters. The VK-X1050 was equipped with a red semiconductor laser
at a wavelength of 661 nm. The optical receiving elements included a 16-bit induction
photomultiplier and an ultra-high fine color complementary metal oxide semiconductor
(CMOS). The instrument found the samples’ focal lengths for each point by way of progres-
sive scanning and pinhole conjugate focusing. The morphologies of different heights were
obtained by physically moving the objective lens. The 3D morphology of the sample was
recorded by means of longitudinal splicing.

2.4. Characteristic Peak Ratio Correction

We proposed a signal correction method that aimed at reducing the fluctuation of
target emission lines, named the characteristic peak ratio correction method (CPRC). The
specific steps of CPRC are as follows, and Cd was the target element.

(i) We obtained n LIBS spectra matrices X = [x1, . . ., xp]n∗p (p is the number of wave-
lengths, regarded as p variables) and n Cd reference value matrices Y = Cn. The characteristic
peaks were Cd emission lines employed for analysis, referring to the National Institute of
Standards and Technology (NIST) atomic spectral database. The jth (j = 1, 2, 3, . . ., p) wave-
length position was selected successively from X, and the corresponding signal intensity
was marked as zj (zj ∈ X). We then calculated the ratio of the characteristic peak intensity
to zj:

Bj = xN/zj (1)

where xN is the intensity of the characteristic peak, and zj is each variable of the spectrum.
(ii) We then calculated the linear correlation coefficient (r-value) between n Bj and Cn:

rj =
∑n

i=1
(

Bji − Bj
)
(yi − y)√

∑n
i=1

(
Bji − Bj

)2
√

∑n
i=1(yi − y)2

(2)

where Bji is the corrected intensity based on the jth wavelength position of the ith
(i = 1, 2, 3, . . ., n) collection site; yi is the Cd reference value of ith collection site; Bj and y
are the average values of signal intensity and Cd reference value, respectively.

The R-value was used as an evaluation index to find the highly correlated corrected
intensity (Bji) [46]. The higher the r-value, the more effective Bji is. Each variable (zj)
that composes the LIBS spectrum participates in the trial (Equation (1)). The wavelength
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range of LIBS spectrum is composed of p wavelength numbers; thus, p calculated r values
are obtained and arranged in descending order. The variables corresponding to the top r
values are chosen as those that have a positive effect on the signal correction. The first m
(m ≤ 10) variables of combination [zi]n are selected, and we here define these variables as
matrix-related variables, as we thought these variables contributed to reducing the matrix
effect, recorded as Z = [z1, . . ., zm]n. The mean of matrix-related variables is calculated
as follows:

Z =
1
m∑m

1 z (3)

where m is the number of matrix-related variables selected.
(iii) Output the corrected spectral matrix. The corrected spectral matrix is the ratio of

X to Z:

X′ =

[
x1

Z
, . . . ,

xp

Z

]
n∗p

(4)

where x1, . . ., xp are raw intensity values in the LIBS spectrum.
The approach to confirming m was as follows. We introduced variables one by one in

order of r value from high to low. PLSR was performed based on the full spectrum that
had been corrected. The RMSE of cross-validation is set as the evaluation index [47]. A
combination of variables corresponding to the minimum RMSE was selected.

Corrected characteristic peaks can be selected and extracted from the new spectral
matrix according to the wavelengths that they lie in, which are used for Cd concentra-
tion analysis.

2.5. Performance Evaluation and Software

We had to use evaluation indexes to check the model’s feasibility. In this study, the
calibration results were evaluated with the determination coefficient (R2) and the root-
mean-square error (RMSE). As the following formulas show, the closer R2 is to 1, the better
the model performs. A lower RMSE indicates a smaller deviation between the predicted
and reference values.

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1 (yi − yi) 2 (5)

RMSE =

√
1
n
·

n

∑
i=1

(yi − ŷi)
2 (6)

Here, ŷi and yi are the predicted values and the reference value of the i-th observation,
respectively. yi is the average of the true value of the i-th observation. n is the total number
of observations.

The ablation crater’s profile was measured using MultiFileAnalyzer 2.2.0.93 (Keyence,
Osaka, Japan). Data analysis in this study was performed in MATLAB 2019b (The Math-
Works, Natick, MA, USA).

3. Results and Discussions
3.1. Spectral Profile

Figure 3 displays the average spectra of the various ablation sites on P. notoginseng
tablets, with the highest Cd concentrations from each brand in Dataset1 chosen as repre-
sentatives. By referencing the NIST database, we identified several high-intensity spectral
lines. Three Cd emission lines were pinpointed at wavelengths of 214.44, 226.50, and
228.80 nm. These three Cd emission lines are commonly utilized as analytical lines for Cd
detection [17,19,21]. In addition, some other emission lines with higher intensity were also
identified and are listed in Table 3. The relatively pure peaks of Cd II 214.44 nm and Cd
I 228.80 nm could be recognized. The peaks of Cd II 226.50 nm were influenced by other
element emission lines, such as Fe II 226.48 nm and Fe I 226.50 nm. The spectral peaks
of the various brands of P. notoginseng powders were basically the same. The differences
in signal intensity and trends at some wavelengths arose due to signal uncertainty. In
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the enlarged image of Cd I 228.80 nm, signal fluctuation and background drifting can
apparently be observed.

Foods 2024, 13, x FOR PEER REVIEW 7 of 18 
 

 

lines. Three Cd emission lines were pinpointed at wavelengths of 214.44, 226.50, and 
228.80 nm. These three Cd emission lines are commonly utilized as analytical lines for Cd 
detection [17,19,21]. In addition, some other emission lines with higher intensity were also 
identified and are listed in Table 3. The relatively pure peaks of Cd II 214.44 nm and Cd I 
228.80 nm could be recognized. The peaks of Cd II 226.50 nm were influenced by other 
element emission lines, such as Fe II 226.48 nm and Fe I 226.50 nm. The spectral peaks of 
the various brands of P. notoginseng powders were basically the same. The differences in 
signal intensity and trends at some wavelengths arose due to signal uncertainty. In the 
enlarged image of Cd I 228.80 nm, signal fluctuation and background drifting can appar-
ently be observed. 

According to the principle of LIBS, a narrow line dominates corresponding to the 
element, and the line intensity is proportional to the atomic concentration [48]. The inten-
sity of the element emission line goes up with the concentration when the interference is 
small, showing a linear relationship [49]. To verify the difference in the models’ perfor-
mances between a single brand and various brands, we analyzed the emission lines of Cd 
based on the calibration curve model. 

 
Figure 3. The average spectra of P. notoginseng with the highest Cd concentrations. 

Table 3. Main LIBS emission lines of P. notoginseng powder. 

Elements Wavelength (nm) 
Al 221.00, 226.35, and 226.91 
Si 212.41, 220.80, 221.09, 221.17, 221.67, and 221.81 
Ca 211.28, 212.30, 215.08, and 227.55 
Fe 213.65, 213.70, 215.24, 215.59, 221.10, 221.71, 226.48, 226.50, and 227.71 

As can be seen in Figure 4, the intensity was plotted at the wavelengths of Cd II 214.44 
nm, Cd II 226.50 nm, and Cd I 228.80 nm for various brands. Figure 4a–f present the results 
of the fitting of experimental data for Brand-1, Brand-2, Brand-3, Brand-4, Brand-5, and 
Brand-6, respectively. It can be seen that the relationship between the LIBS intensity and 
Cd concentration is almost linear, and the fitting performances of P. notoginseng at the 
three emission lines are different. There is strong linearity among single brands of P. no-
toginseng. Even the results for Brand-4 and Brand-6 are satisfactory, with R2 of 0.98. Figure 
4g–i show the linear fitting of data from the six brands at the wavelengths of Cd II 214.44 
nm, Cd II 226.50 nm, and Cd I 228.80 nm, respectively. However, the fitting results are 
poor when the experimental data from the six brands are put together. Therefore, the sig-
nal uncertainty arising from matrix effects inevitably diminishes the linear correlation be-
tween signal intensity and Cd concentration. It is imperative to address signal uncertainty 
reduction in order to achieve more accurate results. This improvement is essential when 

Figure 3. The average spectra of P. notoginseng with the highest Cd concentrations.

Table 3. Main LIBS emission lines of P. notoginseng powder.

Elements Wavelength (nm)

Al 221.00, 226.35, and 226.91
Si 212.41, 220.80, 221.09, 221.17, 221.67, and 221.81
Ca 211.28, 212.30, 215.08, and 227.55
Fe 213.65, 213.70, 215.24, 215.59, 221.10, 221.71, 226.48, 226.50, and 227.71

According to the principle of LIBS, a narrow line dominates corresponding to the
element, and the line intensity is proportional to the atomic concentration [48]. The intensity
of the element emission line goes up with the concentration when the interference is small,
showing a linear relationship [49]. To verify the difference in the models’ performances
between a single brand and various brands, we analyzed the emission lines of Cd based on
the calibration curve model.

As can be seen in Figure 4, the intensity was plotted at the wavelengths of Cd II
214.44 nm, Cd II 226.50 nm, and Cd I 228.80 nm for various brands. Figure 4a–f present the
results of the fitting of experimental data for Brand-1, Brand-2, Brand-3, Brand-4, Brand-5,
and Brand-6, respectively. It can be seen that the relationship between the LIBS intensity and
Cd concentration is almost linear, and the fitting performances of P. notoginseng at the three
emission lines are different. There is strong linearity among single brands of P. notoginseng.
Even the results for Brand-4 and Brand-6 are satisfactory, with R2 of 0.98. Figure 4g–i show
the linear fitting of data from the six brands at the wavelengths of Cd II 214.44 nm, Cd II
226.50 nm, and Cd I 228.80 nm, respectively. However, the fitting results are poor when the
experimental data from the six brands are put together. Therefore, the signal uncertainty
arising from matrix effects inevitably diminishes the linear correlation between signal
intensity and Cd concentration. It is imperative to address signal uncertainty reduction in
order to achieve more accurate results. This improvement is essential when constructing a
model capable of predicting Cd concentrations simultaneously across six different brands.
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3.2. Principal Component Analysis

Principal component analysis (PCA) was applied to display the distribution and
separability among all samples. Two 3D scatter plots from six brands and ten processing
levels of P. notoginseng powder are displayed in Figure 5. The PCA results show that the
first three principal components (PC) (79.9% for PC1, 9.5% for PC2, and 6.5% for PC3)
explained 95.9% of the total variance in the LIBS spectra. Figure 5a shows the classification
among various brands. Four distinction zones can be seen, and Brand-1, Brand-3, and
Brand-5 cluster separately. Brand-2, Brand-4, and Brand-6 have different clustering centers,
but they overlap, making them difficult to distinguish. From the qualitative point of view,
Figure 5a illustrates that there were discrepancies among the various brands. Figure 5b
presents the classification of ten processing levels. Distinct clustering zones failed to form.
Overall, samples from the same source tended to cluster together, while samples with
similar concentrations struggled to cluster. This indicates that samples are more influenced
by differences in the matrix composition due to different sources. Therefore, it is necessary
to reduce matrix effects and improve detection accuracy. The detection of concentrations
among various brands requires further analysis.
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3.3. The Crater Morphology Analysis

P. notoginseng powders from six brands with different physical properties yielded to
different crater morphologies. Figure 6 displays the full-color pictures, height pictures, and
a 3D morphology picture of six ablated positions’ craters, with the highest Cd concentration
in Dataset1 being representative. In order to present the pictures more comprehensively
and clearly, we set different scaling ratios and placed the reference scales on the figure.
In the full-color pictures, we can see that the color of each brand is not the same. The
P. notoginseng’s color in Figure 6a,c,e is close to brown; in Figure 6b,f, it is close to red; and in
Figure 6d, it is close to yellow. The crater sizes of Brand-1 and Brand-2 are bigger than the
others due to their looser texture. Brand-5, with the densest texture, presents the smallest
damage regions. More loosely textured P. notoginseng powders resulted in more damage
and increased laser penetration, which brought about larger craters.
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To further illustrate the differences in craters as influenced by the matrix, the ablation
crater profile was measured. We set the upper surface of the tablet as a threshold. The ana-
lyzer system could calculate nine parameters of craters, including volume, cross-sectional
area, surface area, average depth, maximum depth, perimeter, horizontal Feret’s diameter,
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vertical Feret’s diameter, and circle equivalent diameter, which together characterize the
craters’ morphologies. The volume and surface area refer to the three-dimensional space
enclosed by the shape and threshold of the measurement object. The cross-sectional area
was obtained by crosscutting the cross-sectional area of the shape with a threshold. The av-
erage height and maximum height represent the average and maximum deviation between
the height and the threshold of the shape, respectively. The perimeter, horizontal Feret’s
diameter, vertical Feret’s diameter, and circle equivalent diameter describe the sample
surface states that are ablated by the application of a laser from various perspectives. The
distances between the parallel lines of the upper and lower boundaries of the ablated
surface are defined as the vertical Feret’s diameter, and the left and right boundaries are
defined as the horizontal Feret’s diameter. The circle equivalent diameter is the diameter
of a circle whose area is equal to its cross-sectional area. Table 4 shows nine measurement
values among six brands of P. notoginseng powders in Dataset1. We can identify significant
discrepancies, with RSD beyond 20%. As a result, the ablation crater profiles of each brand
with different physical properties vary. The sample matrix affects the ablation process,
which reflects the interaction between the sample and the laser, itself causing LIBS signal
fluctuations and crater profile differences. This finding inspired us to include crater profiles
as variables when analyzing Cd concentration to reduce the signal uncertainty that rises
during concentration prediction.

Table 4. Measurement values of ablation craters from the six brands in Dataset1.

Variable Min. Max. Mean RSD

Volume/µm3 6,948,531 312,237,208 59,940,633 76%
Cross sectional area/µm2 180,775 1,831,790 626,770 46%

Surface area/µm2 231,658 3,190,570 911,987 51%
Average depth/µm 28 179 88 32%

Maximum depth/µm 89 571 278 27%
Perimeter/µm 2083 13,829 5555 38%

Horizontal Feret’s diameter/µm 503 2034 1018 24%
Vertical Feret’s diameter/µm 517 2042 1049 23%

Circle equivalent diameter/µm 480 1527 873 22%

3.4. Quantitative Analysis of Cadmium
3.4.1. Crater Morphology Compensation Method

The linear quantitative analysis method was applied in combination with LIBS to
achieve Cd detection in relation to the linear fitting in Figure 4. Hence, the calibration
curves were constructed, and multiple linear regression (MLR) analysis was performed.
The calibration curve was drawn with the Cd concentration as the X-axis and the LIBS
intensity as the Y-axis, with a single X-variable. A linear function was applied to fit the
experimental data, expressed as y = ax + b. MLR involves regressing one Y-variable on a set
of X-variables [45,50]. The nine parameters of craters and three Cd lines of LIBS signals were
the independent variables used as inputs, and the Cd concentrations were the dependent
variable used as the output. MLR was also conducted to explore the degrees of contribution
of crater morphologies and LIBS signals. The paired t-test was used to evaluate whether
the independent variable has a significant linear influence on the dependent variable. If the
p-value is <0.05, the observed effect is not due to random variations. Thus, the variables
under study have a significant effect. Stepwise regression analysis was carried out to select
contributing variables and optimize the regression model [51].

We input twelve parameters, including crater parameters and emission lines, into
the initial model so as to make good use of crater profiles. Then, one X-variable with
the highest p-value, larger than 0.05, was set to be removed every time we utilized MLR
based on the new X-variable combinations until the p-values for all X-variables were below
0.05. The variable selection process is presented in Table 5. We eliminated the variables
without significant effects on Y one by one to obtain the best model with the lowest RMSE.
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Finally, the volume, average depth, maximum depth, and horizontal Feret’s diameter of
craters were recognized as X-variables in the following analysis, thus together contributing
significantly to the linear model. The selected craters’ parameters are marked in Figure 7
to provide straightforward information, which is roughly consistent with the findings of
other studies [52]. The blue line indicates the moving path of the X-Y-Z motorized stage.
The pulsed laser beam ablates mass from a sample surface. Thus, the volume indirectly
reflects the ablated mass quantity [53]. The average depth and maximum depth describe
the penetration of the laser through the sample [54]. The horizontal Feret’s diameter
characterizes the crater shape of the sample surface [55]. These selected parameters were
sufficiently applied to compensate for the signal uncertainty.

Table 5. The p-value of X-variables based on stepwise regression analysis.

Variable 1 2 3 4 5 6

Volume 0.2165 0.1311 0.0855 0.0974 0.0663 0.0086 *
Average depth 0.0285 * 0.0062 * 0.0014 * 0.0005 * 0.0000 * 0.0000 *

Maximum depth 0.0000 * 0.0000 * 0.0001 * 0.0001 * 0.0000 * 0.0000 *
Horizontal Feret’s diameter 0.0660 0.0479 * 0.0835 0.1098 0.1783 0.0373 *

Cd II 214.44 nm 0.0102 * 0.0102 * 0.0103 * 0.0086 * 0.0113 * 0.0123 *
Cd II 226.50 nm 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0000 *
Cd I 228.80 nm 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0000 *

Surface area 0.2031 0.1931 0.1786 0.2078 0.6127
Cross-sectional area 0.4452 0.1368 0.2303 0.2296

Perimeter 0.2745 0.2746 0.5054
Vertical Feret’s diameter 0.3262 0.2883

Circle equivalent diameter 0.9649
*: The variable exerts a significant linear influence on the Cd concentration.
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In this part, the effect of crater compensation on the single-point signal was explored,
which did not involve other variables. Therefore, the raw signal was not preprocessed.
Linear regression analysis results based on different variables, peak intensity, or selected
crater parameters are shown in Table 6. A single emission line, set as the variable, was
analyzed using a calibration curve model. The feasibility of improving detection capacity
by combining the LIBS signal with selected crater parameters was explored based on MLR.
Cd I 228.80 nm exhibits a stronger correlation with Cd concentration compared to other Cd
emission lines. This could be attributed to the absence of significant interference peaks near
228 nm in the P. notoginseng powders. A better performance was obtained with higher R2

and lower RMSE when adding variables of craters for analysis, compared with using only
LIBS peak information. Therefore, the result implies that the crater morphology caused by
laser ablation compensates for the fluctuation of a single peak and thus enhances prediction
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ability, regardless of whether it is influenced by the interference of other elements or a
poor correlation with Cd concentration. The combination of three emission lines and the
selected crater parameters achieved the lowest RMSE, with an RMSEC of 5.6434 µg/g and
an RMSEP of 5.4043 µg/g. Additionally, we utilized multiple emission lines as inputs to
investigate whether increasing the number of emission lines could enhance the predic-
tive effectiveness. The findings indicate that augmenting the number of emission lines
enhanced the model’s performance. Hence, crater profiles play a role in predicting Cd
concentrations, and compensating for signal uncertainty through ablation crater parameters
is a viable approach.

Table 6. Linear regression analysis with different variables.

Variable Rc2 RMSEC (µg/g) Rp2 RMSEP (µg/g)

Cd II 214.44 nm 0.8535 10.8314 0.8830 9.1792
Cd II 226.50 nm 0.6255 20.2269 0.6143 18.6068
Cd I 228.80 nm 0.9084 8.3028 0.9174 7.6517

Cd II 214.44 nm, Craters 0.8929 9.6902 0.9238 9.7984
Cd II 226.50 nm, Craters 0.7117 14.8176 0.7360 14.9050
Cd I 228.80 nm, Craters 0.9402 6.8812 0.9568 6.5869

Cd II 214.44 nm, Cd II 226.50 nm 0.8822 10.3789 0.9182 11.0419
Cd II 214.44 nm, Cd I 228.80 nm 0.9195 7.9063 0.9175 8.4123
Cd II 226.50 nm, Cd I 228.80 nm 0.9405 6.8192 0.9458 7.0339

Cd II 214.44 nm, Cd II 226.50 nm, Craters 0.9069 9.2159 0.9368 9.3580
Cd II 214.44 nm, Cd I 228.80 nm, Craters 0.9467 6.4911 0.9566 6.2532
Cd II 226.50 nm, Cd I 228.80 nm, Craters 0.9590 5.6944 0.9682 5.4291

Three Cd emission lines 0.9419 6.7512 0.9445 7.0233
Three Cd emission lines, Craters 0.9598 5.6434 0.9679 5.4043

3.4.2. Characteristic Peak Ratio Correction (CPRC) Method

A stable LIBS signal with less uncertainty interference after correction is conducive to
enhancing accuracy and sensitivity. Thus, CPRC has been further carried out to achieve
more ideal results. The wavelengths selected as matrix variables from the calibration set
are shown in Table 7, the variable numbers of which are less than ten. The position of the
selected wavelength is almost at the end of the spectrum, which reduces the interference of
background signal and background drifting from the matrix and experimental conditions.
Considering the spectral profiles shown in Figure 3, two commonly used preprocessing
methods, baseline correction and normalization, were applied for comparison. Baseline
corrections with asymmetric least squares smoothing [56] and total area normalization [57]
were performed.

Table 7. The selected variables used for characteristic peak correction.

Characteristic Peak Num. Selected Wavelengths as Matrix Variables (nm)

Cd II 214.44 nm 8 230.69; 230.58; 230.73; 230.66; 230.71; 230.81; 230.97; 230.83
Cd II 226.50 nm 5 229.85; 229.79; 229.87; 229.77; 229.75
Cd I 228.80 nm 8 230.73; 230.71; 230.75; 230.69; 230.97; 230.89; 230.87; 230.83

The results based on the calibration curve model can be seen in Table 8; we can see that
total area normalization pretreatment obtained better results than no pretreatment at the
wavelength of Cd II 226.50 nm and at Cd I 228.80 nm to some extent. The baseline correction
showed worse results than no pretreatment. The proposed CPRC method improved the
analytical performance the most. The standard deviation of the data set was significantly
cut down, resulting from the reduced signal fluctuation. The RMSEP values at the three
emission lines reached 4.5823, 5.7979, and 3.4980 µg/g, respectively. We could infer that the
spectral deviation in our study is influenced more by the matrix effect than by the baseline
drift of the instrument.
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Table 8. Quantitative analysis results with different pretreatment methods.

Model Pretreatment Wav. (nm) Rc2 RMSEC
(µg/g) RP

2 RMSEP
(µg/g)

Calibration
curves

Raw 214.44 0.8535 10.8314 0.8830 9.1792
226.50 0.6255 20.2269 0.6143 18.6068
228.80 0.9084 8.3028 0.9174 7.6517

Baseline 214.44 0.8473 11.0970 0.8084 11.6209
226.50 0.6007 21.3171 0.5005 23.2237
228.80 0.8608 10.5128 0.8890 12.6730

Normalization 214.44 0.8856 15.3480 0.8771 14.4296
226.50 0.8991 9.6649 0.9279 7.6563
228.80 0.9612 6.1469 0.9603 5.7425

CPRC 214.44 0.9714 4.4882 0.9706 4.5823
226.50 0.9478 6.2345 0.9543 5.7979
228.80 0.9820 3.5259 0.9828 3.4980

PLSR

Raw Full 0.9834 3.4846 0.9831 3.9480
Baseline Full 0.9709 4.5606 0.9398 6.5590

Normalization Full 0.9851 3.3040 0.9874 3.3297
CPRC Full 0.9870 3.0715 0.9879 3.1889

The samples after CPRC pretreatment in both the calibration set and prediction set
obtained the best performance. The most optimal results using Cd I 228.80 nm as a variable
with different pretreatments based on the calibration curve model are presented in Figure 8.
By referencing the calculation method in [58], we can see that the limit of detection was
1.92 µg/g and the limit of quantification was 6.41 µg/g. The relationship between the
reference value and predicted value shows that the distribution is closest to the linear
fit lines with CPRC pretreatment, which demonstrates that CPRC is beneficial to signal
intensity correction when seeking to obtain better sensitivity. The acceptable performance of
CPRC may be due to the processing, as a result of which it takes into account the important
contribution of emission lines to the model, while normalization pretreatment ignores the
contribution of characteristic variables and merely makes an undifferentiated correction
based on the full spectrum. In short, CPRC reduced the number of variables considerably
and achieved better results in the confirmatory study.
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Partial least squares regression (PLSR), as a mode of multivariate analysis, is consid-
ered an effective tool to deal with the matrix effect by extracting useful information in
such a way that it outperforms univariate analysis [59,60]. In this study, PLSR based on
a full spectrum was performed with different pretreatments to evaluate the effectiveness
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of CPRC again. The peak intensity of emission line 228.80 nm showed the best ability to
predict Cd concentration with the highest R2. Thus, the Cd I 228.80 nm is applied as a
characteristic peak in the CPRC method to correct the full spectrum. From Table 8, we can
see that the data without pretreatment based on the PLSR model could reach an acceptable
outcome with an R2 above 0.98, which is achieved by considering more effective variables
using full-spectrum information. The CPRC method further improved the results, with the
lowest RMSEP of 3.1889 µg/g. The satisfactory results indicate that the proposed CPRC
contributes to the linearity and accuracy of calibration models. Also of note is that the
prediction results based on the calibration curve model with CPRC are almost as good
as those with PLSR, but with reduced complexity of the model. The variables required
for PLSR are also not small. CPRC requires only a few variables, usually less than ten, to
achieve spectrum correction, which lowers the need for variables and enhances computa-
tional efficiency. CPRC shows advantage and application potential in developing portable
instruments wherein the number of variables available is limited.

3.4.3. Crater–Spectrum Feature Fusion Method

The feature information extracted from the crater morphology and the corrected LIBS
signal were fused. A single LIBS signal (Cd I 228.80 nm as representative) and multiple LIBS
signals were combined with crater parameters. The crater parameters selected in Section 3.3
and the corrected intensities were used as the input variables, and Cd concentrations were
output for analysis using MLR. As is shown in Table 9, the results were improved when the
corrected signal intensity using CPRC replaced the raw intensity to carry out MLR analysis
(compared with Table 6).

Table 9. Modeling results based on crater–spectrum feature fusion strategy.

Model Variables RC
2 RMSEC

(µg/g) RP
2 RMSEP

(µg/g)

MLR
Craters, Corrected Cd I 228.80 nm 0.9836 3.4913 0.9850 3.3126

Craters, three corrected Cd emission lines 0.9848 3.3655 0.9865 3.1817

LSSVM
Craters, Corrected Cd I 228.80 nm 0.9851 3.2753 0.9872 2.9971

Craters, three corrected Cd emission lines 0.9860 3.1630 0.9885 2.8556

RF
Craters, Corrected Cd I 228.80 nm 0.9903 2.8174 0.9834 3.6354

Craters, three corrected Cd emission lines 0.9942 2.0747 0.9882 3.0091

Meanwhile, we input the combination of variables into the non-linear model, with
the intention of studying the performance of non-linear models established on fused data
sets. Two typical non-linear models, least square support vector machine (LSSVM) [61] and
random forest (RF) [62], were used to predict Cd concentration. Table 9 lists the modeling
results with various variables and different models based on the crater–spectrum feature
fusion method. The LSSVM model achieved the best results, with an RP

2 of 0.9885 and
an RMSEP of 2.8556 µg/g. Therefore, the crater–spectrum feature fusion method has
demonstrated its effectiveness in model development. By combining crater morphology
and LIBS at the feature level, more comprehensive information about the physical and
chemical properties of samples can be obtained, enhancing the detection capability.

4. Conclusions

To tackle the challenge of signal uncertainty, especially in plant samples with complex
compositions, we undertook a study to investigate the effectiveness of crater morphology
compensation and signal intensity correction. Firstly, the crater parameters that character-
ize the states were carefully selected. By incorporating these crater parameters as input
variables in MLR analysis, the RMSEP was reduced from 7.0233 µg/g to 5.4043 µg/g. This
result proves that the crater morphology compensation method was conducive to construct-
ing a model suitable for various categories of P. notoginseng. Secondly, the characteristic
peak correction employed in data pretreatment was demonstrated to be effective for detect-
ing Cd concentrations in P. notoginseng. The CPRC pretreatment exhibited an improved
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linear relationship between the reference value and the predicted value. Prediction results
were obtained using the calibration curve model with an RMSEP of 3.4980 µg/g and using
the PLSR model with RMSEP of 3.1889 µg/g. Thirdly, by integrating crater morphology
compensation and the CPRC method, a crater–spectrum feature fusion method was pro-
posed, which yielded satisfactory results in our study. This fusion method was applied to
both linear and non-linear models, showing good practicality. The best result was derived
when combining crater–spectrum feature fusion and the LSSVM model, with the lowest
RMSEP of 2.8556 µg/g.

The proposed approaches are anticipated to advance the application of LIBS for toxic
metal detection in plant samples. Crater morphology compensation, which accounts for
variations in sample states, can help reduce deviations to a certain extent. The CPRC method
is expected to gain widespread acceptance as a technique for preprocessing LIBS spectra in
order to minimize signal variations, proving effective in both univariate and multivariate
analyses. The crater–spectrum feature fusion method, being relatively straightforward and
more precise, is suitable for use with portable LIBS instruments. Certainly, it is important
to note that further improvements beyond our current study are necessary. Exploring the
ability of the CPRC method to extend to multi-element synchronous correction is essential.
The integration of crater morphology parameter calculation and the LIBS signal acquisition
system could enhance the collection of more useful information for analysis. With ongoing
developments in LIBS systems and data processing, the rapid and accurate detection of
toxic metals in plant samples holds significant promise, ensuring the quality and safety of
agricultural production.
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