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Abstract: Soluble solids content (SSC) is one of the main quality indicators of apples, and it is
important to improve the precision of online SSC detection of whole apple fruit. Therefore, the
spectral pre-processing method of spectral-to-spectral ratio (S/S), as well as multiple characteristic
wavelength member model fusion (MCMF) and characteristic wavelength and non-characteristic
wavelength member model fusion (CNCMF) methods, were proposed for improving the detection
performance of apple whole fruit SSC by diffuse reflection (DR), diffuse transmission (DT) and full
transmission (FT) spectra. The modeling analysis showed that the S/S- partial least squares regression
models for all three mode spectra had high prediction performance. After competitive adaptive
reweighted sampling characteristic wavelength screening, the prediction performance of all three
model spectra was improved. The particle swarm optimization–extreme learning machine models of
MCMF and CNCMF had the most significant enhancement effect and could make all three mode
spectra have high prediction performance. DR, DT, and FT spectra all had some prediction ability for
apple whole fruit SSC, with FT spectra having the strongest prediction ability, followed by DT spectra.
This study is of great significance and value for improving the accuracy of the online detection model
of apple whole fruit SSC.

Keywords: different spectral modes; apple whole fruit soluble solids content; online detection;
spectral correction; model fusion

1. Introduction

Apple is one of the most important fruits in the world, which consumers love for
its rich nutrients [1]. With the economic development and the improvement of living
standards, consumers have higher and higher quality requirements for apples [2]. Soluble
solids content (SSC), as one of the main internal quality indicators of apples, directly
determines consumers’ willingness to buy and price [3]. The use of traditional physical and
chemical test methods for apple SSC detection has the disadvantages of destroying samples,
long detection time, and small detection sample size, which cannot meet the demand of
batch testing [4]. In recent years, visible/near-infrared (Vis/NIR) spectroscopy technology
has been widely used in the research field of internal quality detection of fruit due to its
advantages of nondestructive, rapid, online detection and low cost [5].

For spectroscopic detection, the interaction of light with tissue can be described in
terms of two fundamental processes related to absorption and scattering [6]. Absorption
depends strongly on the chemical composition of the tissue while scattering is mainly
caused by differences in physical properties (e.g., particle size and shape, sample packing,
and sample surface) [7]. Scattering leads to two consequences; the first is the lengthening
of the optical range, which introduces a multiplicative term. The second is photon loss,
which would be incorrectly counted as absorption, thus introducing an additive term [8].
Thus, the light scattering effect consists of both additive and multiplicative effects [9]. The

Foods 2024, 13, 1037. https://doi.org/10.3390/foods13071037 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13071037
https://doi.org/10.3390/foods13071037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-4124-0492
https://doi.org/10.3390/foods13071037
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13071037?type=check_update&version=1


Foods 2024, 13, 1037 2 of 18

additive effect mainly leads to a baseline drift in the spectrum, while the multiplicative
effect “scale” the entire spectrum [10,11]. Significant additive and multiplicative effects in
spectral data may invalidate commonly used multivariate linear models [12]. Therefore, the
key to quantitative spectral analysis is to eliminate the additive and multiplicative effects in
the original spectra as much as possible and extract the spectral information that is linearly
correlated with the target chemical components. Spectral pre-processing algorithms, such
as multiple scattering correction (MSC), standard normal variational transform (SNV),
and min–max normalization (NM), are common light-scattering correction algorithms
that are widely used in spectral pre-processing [13]. Different spectral pre-processing
algorithms may apply to different samples, so when quantitative modeling is carried out,
different spectral pre-processing algorithms are usually compared to find the best spectral
pre-processing algorithm applicable to that sample. For a naturally grown organism sample
such as an apple, the physical property differences between samples are more significant,
especially the morphology and size differences are also larger, which can lead to significant
light range differences when spectra are collected. Therefore, for apple spectral correction,
targeted elimination of multiplicative effects in the spectra may improve the quality of the
apple spectra and, thus the predictive performance of the model.

When it comes to spectral acquisition, three common fruit spectral acquisition modes
are diffuse reflection (DR), diffuse transmission (DT), and full transmission (FT) [14]. The
characteristics of different spectral acquisition modes are not the same, resulting in different
applicable scenarios. The DR mode of spectral acquisition has a simple structure and is
suitable for collecting spectral information on the surface and shallow layers of apples,
but it is easily affected by the specular reflection on the surface of the fruits, leading to
a decrease in detection accuracy [15]. DR mode is generally used for SSC detection in
some areas of fruit, but some scholars have used DR spectra for whole fruit SSC detection,
which also has some predictive ability [16]. The DT mode can obtain more information
about the internal spectrum of the fruit, avoiding the interference of specular reflection
and shortening the optical range of transmitted light, but it is easily affected by stray light
through the fruit and between the fruit holder. For the FT mode, the fruit is placed between
the light source and the fiber optic probe so that the spectral information of the whole fruit
can be collected and the light from the light source can be blocked entirely. However, when
the intensity of the light source is weak, or the diameter of the fruit is large, the quality of
the acquired spectra will be reduced [17]. The characteristics of different model spectra
may lead to differences in model prediction performance when an online detection of apple
whole fruit SSC is performed.

Model optimization through variable selection is also key to building a simple, fast,
and robust predictive model, as modern spectroscopic instruments often have high resolu-
tion, and the resulting spectra include thousands of variables [18]. Too much spectral data
has at least two drawbacks: firstly, the calibration and implementation of the model is very
time-consuming, which inevitably affects the ability of the model to perform fast analyses
online, and secondly, some of the spectral variables in the full spectra are irrelevant and
redundant, which reduces the predictive power of the model. However, since each variable
selection method is data-based and has its principles, advantages, disadvantages, and
applications, no study has shown which method is optimal [19]. The optimal characteristic
wavelength screening algorithms for different mode spectra may differ and must be studied
and analyzed.

Partial least squares regression (PLSR) is a commonly used modeling method in spec-
tral analysis. The method finds potential variables that can be effectively used to explain
concentration variations using both spectral data and the concentration of the sample. In
addition to its simplicity and computational efficiency, PLSR gives better results than other
multivariate methods, such as multiple linear regression (MLR) and principal component
regression (PCR). Currently, nonlinear model-building methods, such as the least squares
support vector regression (LS-SVR) and particle swarm optimization–extreme learning
machine (PSO-ELM) algorithms, have been widely used in modeling for quantitative spec-
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tral analysis [20]. Due to the different spectral acquisition methods and data types, there
may be differences in the modeling results using linear and nonlinear modeling methods.
Therefore, it is necessary to explore the best modeling methods applicable to different
modes of spectra.

Many studies have been conducted to investigate and optimize the spectral pre-
processing algorithms, characteristic wavelength screening algorithms, modeling methods,
etc., and to establish an optimal prediction model [21]. A single model may have problems
such as poor robustness and generalization ability, which will limit the further improvement
of model accuracy [22]. A model fusion modeling strategy has been proposed to further
improve the model performance [23,24]. Model fusion is not a specific algorithm but an idea
of merging multiple weak models into a strong model. In the past, when using characteristic
wavelength modeling, the best characteristic wavelength prediction model was identified
through comparative analysis. However, other characteristic wavelength models with
relatively poor results would be discarded. This not only consumes the time and effort of
model building but also ignores the possible contribution of other characteristic wavelength
prediction models to the prediction results. In addition, spectral information other than
characteristic wavelengths is discarded when modeling with characteristic wavelengths.
However, non-characteristic wavelength data may also contain information that is often
ignored and weakly correlated with the components. Therefore, multiple characteristic
wavelength member model fusion (MCMF), as well as characteristic wavelength non-
characteristic wavelength member model fusion (CNCMF) approaches may be able to fully
utilize the contribution of the discarded predictive models and wavelength variables to the
prediction results, thus further improving the predictive performance of the models.

Aiming at the above problems, the main contents of this study include the following aspects:

(1) To explore spectral pre-processing algorithms applicable to apple to improve
spectral quality;

(2) To explore the effects of different mode spectra (DR, DT, and FT), spectral pre-
processing algorithms, characteristic wavelength screening algorithms, and model-
ing methods on the on-line detection model of SSC for whole apple fruit;

(3) To explore the effect of model fusion methods on improving model prediction performance.

2. Materials and Methods
2.1. Spectral Acquisition Devices and Acquisition Methods

In this study, online spectral acquisition devices for DR, DT, and FT spectra were used
to dynamically collect spectral information of apples. The DR spectral acquisition device
(Figure 1A) consisted of an optical fiber (Vis/NIR, Ocean Optics, Dunedin, FL, USA), a
spectrometer (USB2000+, Ocean Optics, Dunedin, FL, USA), four 35 W halogen lamp cups
(ESS MR 11 35 W, Philips, Amsterdam, The Netherlands), a micro-controller (ESP8266, TW,
ShenZhen, China), an opposing photoelectric sensor (CTD-1500P, OPTEX, Kyoto, Japan), a
power supply (S-350-120, Li-Cheng-An, Shenzhen, China), a conveyor chain, fruit trays,
a computer, and a dark box. The device collected the DR spectral information of apples
through the optical fiber at the upper end.

Figure 1B shows the DT spectral acquisition device, similar to the DR spectrum
acquisition device but differing in the spectral acquisition part. The device collected the
spectral information of the transmitted apple through the optical fiber at the lower end.

Figure 1C shows the FT spectral acquisition device. The device used a 100 W halogen
lamp cup (6834FO, Philips, Amsterdam, The Netherlands) as the light source, and a lens
(with a focal length of 40 mm) was mounted in front of the light source to avoid too
much dispersion of the light emitted from the light source. The device collected spectral
information through the apple through an optical fiber at the lower end.
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Figure 1. Spectral online acquisition devices. (A) Diffuse reflection spectral acquisition device; (B) diffuse
transmission spectral acquisition device; and (C) full transmission spectral acquisition device.

The control program of the device was developed based on PyQt and Arduino IDE.
Before the spectral acquisition, the light source should be warmed up for 30 min

to make the system reach a stable state. The integration time was set to 1 ms for the
acquisition of the DR spectrum, 30 ms for the acquisition of the DT spectrum, and 200 ms
for the acquisition of the FT spectrum. During spectral acquisition, transmission speed was
set to 0.2 m/s, the conveyor chain was switched on, and the apples were placed horizontally
on the fruit trays in the manner shown in Figure 1. When the apples reached the spectral
acquisition position, the photoelectric sensor detected the position information and sent the
in-place information through the micro-controller to the upper computer program, and the
upper computer triggered the spectrum acquisition. For each sample, spectral information
was collected three times, including DR, DT, and FT spectral information once each. Due to
the differences in the noise range of the spectra collected by different spectral acquisition
modes, the spectra within the range of 650–1000 nm were selected for the DR mode, and
the spectra within the range of 600–900 nm were selected for the DT and FT modes.

A polytetrafluoroethylene (PTFE) reference sphere of 80 mm diameter was used
to collect the white reference. The dark reference was collected with the light source
turned off. The absorbance was calculated using Equation (1) and used for subsequent
modeling analysis.

A = log10
1

TR
= log10

Twhite − Tdark
Traw − Tdark

(1)

where A is absorbance; TR is transmittance or reflectance; Traw is sample spectral intensity;
Twhite is white reference spectral intensity; Tdark is dark reference spectral intensity.

After the spectral acquisition, spectral pre-processing, characteristic wavelength screen-
ing, and modeling analysis were performed using MATLAB (R2016a; The MathWorks,
Natick, MA, USA).

2.2. Preparation of Samples

In this study, Fuji apples were used as the research object to establish the online
detection models of apple SSC. The Fuji apples were grown in Yantai City, Shandong
Province, and 105 apples without mechanical damage and external defects were selected
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and transported to the nondestructive techniques laboratory in the College of Engineering
of China Agricultural University. The surface of the apple samples was wiped clean,
numbered, and stored at 4 ◦C. Before the spectral acquisition, the apples were placed
at room temperature (20 ◦C) for 24 h to minimize the effect of temperature variation on
spectral acquisition. Before modeling, the samples must be divided into correction and
prediction sets. This study used a randomized grouping method to divide the samples into
a correction set and a prediction set at a ratio of approximately 3:1.

2.3. SSC Measurement

The SSC of apples was determined using a refractometer (PAL-BX/AC5, ATAGO Co.,
Ltd., Tokyo, Japan) in conjunction with destructive methods. The SSC measurement range
of the refractometer is 0.0–60.0%, with a resolution of 0.1% and an accuracy of ±0.2%. After
collecting the spectra, the juice of the whole apple was extracted using a juicer, poured
into a beaker, and stirred well, and the apple SSC was determined by dropping the juice
into the refractometer measuring position using a rubber-tipped burette. Each sample was
collected three times, and the average value was taken as the SSC of that sample.

2.4. Spectral Scattering Correction Method

For non-homogeneous mixtures such as apples, the relationship between the raw
absorption spectra and the content of the target chemical components is shown in
Equation (2) [11,25,26]:

Xi = pi

J

∑
j=1

ci,jsj + bi1 (2)

where Xi is the absorption spectrum vector of the ith mixture sample; pi is the multiplication
factor, which represents the multiplicative effect of the change in effective optical range due
to the change in physical properties of the sample on the spectrum of the ith mixture sample;
ci,j is the concentration of the chemical component in section j of the ith sample; sj is used
to evaluate the light absorption capacity of the jth chemical component, which is mainly
related to the type of chemical component; bi is an addition coefficient that represents the
baseline of the spectrum, mainly related to the environment and sample state; 1 is a row
vector with element 1.

From Equation (2), it can be seen that pi and bi are sample-dependent variables,
resulting in the original spectra no longer showing a regular linear law with the target
chemical content. Therefore, eliminating pi and bi is the key to ensuring the robustness of
the multiple regression model.

2.4.1. Addition Coefficient Elimination

Some scholars have proposed the linear regression correction (LRC) method, in which
the intercept is obtained by constructing a one-dimensional linear regression equation
between the sample spectrum and the average spectrum, and the intercept is subtracted
from the original spectrum to achieve the elimination of bi [12]. This method is equivalent to
a simplified version of the MSC algorithm, which eliminates only the additive coefficients
in the spectrum. After the elimination of bi, Equation (2) can be changed to Equation (3).

Xc,i = pi

J

∑
j=1

ci,jsj (3)

where Xc,i is a vector of absorption spectra for the ith mixture sample affected only by
multiplicative effects.
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2.4.2. Multiplication Coefficient Elimination

The elimination of multiplicative coefficients can be achieved by dividing the spectral
data Xc,i after the elimination of additive coefficients by the spectral data xi,λ in which the
wavelength is λ, as shown in Equation (4).

Xs/s,i =
Xc,i

xi,λ
=

pi∑
J
j=1 ci,jsj

pici,λsλ
=

∑J
j=1 ci,jsj

ci,λsλ
(4)

where Xs/s,i is the vector of absorption spectra of the ith mixture sample after correction
for spectra-to-spectra ratio (S/S); ci,λ is the concentration of the substance reflected by the
wavelength λ; sλ is the extinction coefficient of the substance reflected by wavelength λ.

From Equation (4), when ci,λsλ is a constant value that is not sample-dependent,
the spectral data show a better linear relationship with the target chemical composition
content. Assuming that the chemical composition content represented by wavelength λ

in the spectra varies less for each sample, ci,λsλ can be approximated as a constant value
at this time. The spectral correction can be completed by substituting this wavelength
spectral data into Equation (4). This study adopts the global search method, substituting
the spectral data at each wavelength into Equation (4) in turn for correction, and then
constructs the PLSR prediction models of the corrected spectra with the content of the
target components by Monte Carlo cross-validation method with the root mean square of
the standard error of cross-validation (RMSECV) was minimized as a criterion to determine
this wavelength data.

In summary, the S/S spectral correction method proposed in this study achieves spec-
tral scattering correction by first eliminating the additive coefficients of the original spectra
and then eliminating the multiplicative coefficients. The elimination of the multiplicative
coefficients is oriented to the optimal model prediction results, highlighting the effect
of the elimination of the multiplicative coefficients on enhancing the model prediction
performance. This method was used to correct the spectra in subsequent studies, and the
modeling results were used to judge the correction effect.

2.5. Spectra Pre-Processing Methods

Pre-processing was performed to remove the variations in the spectrum due to distur-
bances and to highlight the components related to SSC. Spectral pre-processing methods
such as MSC, SNV, and NM are most widely used in spectral pre-processing. Therefore,
this study used MSC, SNV, NM, and S/S to pre-process the spectra and develop prediction
models for apple SSC. A comparative analysis of the modeling results would verify the
effectiveness of the proposed spectral pre-processing method.

2.6. Characteristic Wavelength Screening Methods

Since the full spectrum contains much irrelevant and collinear information, it affects
the prediction model’s performance. Therefore, characteristic wavelength screening algo-
rithms were used to select wavelength points in the spectrum that were closely related to
the SSC information, which could reduce the number of spectral variables and improve
the model prediction performance. In this study, the competitive adaptive reweighted
sampling (CARS), bootstrapping soft shrinkage (BOSS), and interval variable iterative space
shrinkage approach (iVISSA) algorithms were used to screen characteristic wavelength.

CARS is an algorithm used in conjunction with the regression coefficients in PLSR
to screen wavelength variables in a spectrum. Firstly, a part of the calibration set of
the sample is randomly selected for PLSR modeling, the random modeling is repeated
several times, and the exponentially decreasing function (EDP) is used to remove the
wavelength points with smaller weights of the regression coefficient values [27]. After
several modeling sessions, the wavelength points with larger weights of absolute values of
regression coefficients are screened out to construct a subset of variables, and the resulting
new subset of variables is then subjected to PLSR modeling and analysis, in which the
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subset with the smallest RMSECV is the optimal combination of wavelength variables
selected. The parameters used for CARS characteristic wavelength screening in this research
were as follows: the maximum number of latent variables (LVs) was set to 15, five-fold
cross-validation, and 100 sampling runs.

The BOSS algorithm is derived from the idea of weighted bootstrap sampling (WBS)
and model population analysis (MPA) [28]. The weights of the variables are determined
based on the absolute values of the regression coefficients, WBS generates sub-models
based on the weights, and MPA is used to analyze the sub-models to update the variable
weights. The optimization process follows the “soft shrinkage” rule, i.e., smaller weights
are assigned instead of directly eliminating unimportant variables. The algorithm runs
iteratively until the number of variables reaches one. The set of variables with the smallest
RMSECV is selected as the result of feature wavelength screening. The parameters used for
BOSS characteristic wavelength screening in this research were as follows: the maximum
LVs were set to 15, five-fold cross-validation, and 1000 sampling runs.

iVISSA is a wavelength interval selection algorithm proposed by Deng et al. based
on the variable iterative space shrinkage approach (VISSA) [29]. The algorithm combines
global and local search to intelligently and iteratively optimize the position, width, and
combination of wavelength intervals. In the global search process, the advantages of VISSA
soft shrinkage are inherited to search for the positions and combinations of informative
wavelengths, while in the local search process, the continuity information of the spectral
data is utilized to determine the widths of the wavelength intervals. The global and local
searches are performed alternately for wavelength interval selection. The parameters
used for iVISSA characteristic wavelength screening in this research were as follows: the
maximum LVs were set to 15, five-fold cross-validation, and 500 sampling runs.

2.7. Model Fusion Methods

Model fusion is the process of fusing multiple weak models into one strong model.
This method has the effect of collective decision-making, which can compensate for the
error of a single model and further improve the model’s performance [30]. This study
used two model fusion methods, multiple characteristic wavelength member model
fusion (MCMF), and characteristic wavelength and non-characteristic wavelength member
model fusion (CNCMF), to further optimize the prediction model for a single mode
spectrum. Figure 2A shows the MCMF fusion methods, and Figure 2B shows the CNCMF
fusion methods.

2.8. Modeling Methods

In this study, the models were divided into two categories, namely, single-mode
spectral prediction models and fusion prediction models. Due to the large number of
single-mode spectral variables, PLSR, LS-SVR, and PSO-ELM were used to build prediction
models. For the fusion models, simple averaging (SA), Bates–Granger averaging (BG),
MLR, LS-SVR, and PSO-ELM were used to build prediction models.

The above modeling methods are common modeling methods used in data analysis.
SA averages the predictions of the member models as fusion predictions, which is equiv-
alent to assigning the same weight to each model. BG assigns weights to the integrated
model based on the associated variance [31]. For example, sensor predictions with higher
predictive variance are assigned lower weights than sensor predictions with lower predic-
tive variance. MLR is commonly used to construct linear relationships between multiple
independent and dependent variables [32]. PLSR, as a multivariate regression analysis
method, can perform downscaling and integrative screening of spectral data and analyze
the correlation between two sets of variables, etc., and has high modeling stability [33]. The
number of LVs in the PLSR model was selected using RMSECV results.
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LS-SVR is an improvement of the classical support vector machine, which is a powerful
machine learning method in classification problems and pattern recognition [34]. The
algorithm converts dot product operations in high-dimensional feature space into primitive
spatial kernel functions. In the LS-SVR model of spectra, the radial basis function (RBF)
is usually chosen as the kernel function for data analysis, which is adaptively stable and
robust to the nonlinear modeling process of spectra. The two main parameters of the RBF
are the regularization parameter (γ) and the width parameter (σ2). Different values of
these two parameters lead to changes in the stability and predictive performance of the
model [35]. Therefore, there is an urgent need to find optimization methods to optimize γ

and σ2 to improve LS-SVR’s learning ability and generalization. In this study, the coupled
simulated annealing (CSA) algorithm, grid search, and ten-fold cross-validation methods
built into the least squares support vector machine (LS-SVM) toolbox (LS-SVM v 1.7,
Suykens, Leuven, Belgium) were used to seek the optimal γ and σ2.

PSO-ELM is a method for optimizing ELM models based on a particle swarm optimiza-
tion algorithm [36]. In PSO-ELM, the PSO algorithm is used to optimize the weights and
biases of the implicit layer neurons in the ELM to minimize the prediction error. This can
improve the prediction accuracy and generalization ability of ELM and avoid overfitting
ELM models.

2.9. Model Evaluation Methods

The models were evaluated based on the correlation coefficient of calibration (Rc), root
mean square error of calibration (RMSEC), the correlation coefficient of prediction (Rp), root
mean square error of prediction (RMSEP), and relative percentage difference (RPD). For the
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same sample set, the larger Rc, Rp, and RPD are, and the smaller RMSEC and RMSEP are,
the better the predictive performance of the corresponding model. For different sample
sets, it is more objective to use RPD to evaluate the predictive performance of the model.
When RPD > 2, it indicates that the prediction effect is better, the prediction accuracy is
high, and the established model can be used for actual detection. When 1.4 < RPD < 2, it
indicates that the model prediction ability is ordinary, and the prediction accuracy needs to
be improved. When RPD < 1.4, it indicates that the model prediction performance is poor
and cannot be used for quantitative detection [37].

3. Results and Discussion
3.1. Analysis of Apple Spectra

The spectra of 105 apples were dynamically collected using the spectral acquisition
devices and methods in Section 2.1, and the absorbance was calculated according to
Equation (1), as shown in Figure 3. The 650–700 nm visible light band in the figure is
associated with pigments (e.g., chlorophyll and anthocyanins) in apple pericarp [4]. The
700–900 nm spectral range is associated with the C-H, O-H, and NH2 vibrations, where the
C-H and O-H vibrations are closely related to the SSC [38,39]. The DR, DT, and FT spectra
exhibited different absorbance values, with the absorbance of the transmission spectrum
being higher than that of the DR spectrum. This is mainly because less light is transmitted
through the apple, resulting in a lower intensity of light received by the fiber. The positions
of the peaks and troughs of the DR, DT, and FT spectra had some similarities, but the
shapes of the spectra had significant differences. The difference in spectral shape may be
caused by the different sensitivity of different spectral acquisition methods to different
wavelengths of light. Therefore, there may be differences in the ability of different spectral
acquisition methods to predict the SSC of whole apple fruit.
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3.2. Statistics of SSC

The SSC data of 105 apples were determined using the method in Section 2.3, as shown
in Table 1.

Table 1. Results of apple SSC statistics.

Acquisition Modes Dataset No. of Samples Max
(%)

Min
(%)

Average
(%)

Standard Deviation
(%)

DR
Total 105 16.600 9.000 12.950 1.551

Calibration 78 16.600 9.000 12.937 1.554
Prediction 27 16.600 9.100 12.989 1.571

DT
Total 105 16.600 9.000 12.950 1.551

Calibration 79 16.600 9.000 13.030 1.568
Prediction 26 15.200 9.000 12.708 1.503

FT
Total 105 16.600 9.000 12.950 1.551

Calibration 79 16.600 9.000 12.880 1.553
Prediction 26 16.600 9.000 13.165 1.554

Notes: DR: diffuse reflection, DT: diffuse transmission, FT: full transmission.

As can be seen from Table 1, the SSC distributions of the samples in the correction set
and the prediction set were more similar, and the correction set contained the SSC range
of the prediction set. Therefore, the division of the calibration set and prediction set is
reasonable, which is conducive to constructing more robust prediction models.

3.3. Model Results

This study developed the PLSR, LS-SVR, and PSO-ELM prediction models of apple
SSC after spectral processing using MSC, SNV, NM, and S/S pre-processing algorithms.
For the PLSR model, the Monte Carlo cross-validation method was used in this study to
calculate the variation of RMSECV with the number of LVs, and the number of LVs was
selected according to the minimum RMSECV principle [40]. For the LS-SVR model, this
study first calculated the initial values of the parameters γ and σ2 by CSA, then constructed
the grid based on the initial values, and finally fine-tunes the parameters by using grid
search and ten-fold cross-validation methods to realize the optimization search for the
parameters γ and σ2. The PSO method was used to optimize the initial weights and biases
of the ELM model. The apple SSC modeling results based on the best pre-processing
method are shown in Table 2.

Table 2. Apple SSC modeling results.

Model Spectral Mode Pre-Processing Factor
Calibration Set Prediction Set

RPD
Rc RMESC (%) Rp RMSEP (%)

PLSR
DR S/S LVs: 8 0.877 0.742 0.858 0.811 1.937
DT S/S LVs: 11 0.902 0.641 0.902 0.649 2.316
FT S/S LVs: 10 0.917 0.615 0.912 0.653 2.380

LS-SVR
DR RAW γ: 2.592 × 104,

σ2: 1.486 × 105 0.915 0.645 0.890 0.843 1.864

DT RAW γ: 7.565 × 105,
σ2: 4.283 × 105 0.931 0.573 0.893 0.670 2.243

FT RAW γ: 2.272 × 105,
σ2: 2.787 × 105 0.951 0.483 0.910 0.659 2.358

PSO-ELM
DR SNV Hidden nodes: 30 0.859 0.791 0.840 0.838 1.875
DT SNV Hidden nodes: 30 0.916 0.626 0.894 0.659 2.281
FT SNV Hidden nodes: 30 0.918 0.612 0.902 0.658 2.362

Notes: PLSR: partial least squares regression, LS-SVR: least squares support vector regression, PSO-ELM: particle
swarm optimization–extreme learning machine, DR: diffuse reflection, DT: diffuse transmission, FT: full transmission,
S/S: spectra to spectra ratio, RAW: raw spectra, SNV: standard normal variational transform, Rc: the correlation
coefficient of calibration, RMSEC: root mean square error of calibration, Rp: the correlation coefficient of prediction,
RMSEP: root mean square error of prediction, RPD: relative percentage difference, LVs: latent variables.
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As can be seen from Table 2, for the PLSR model, the S/S pre-processing spectra had
the best modeling effect. This indicates that the S/S pre-processing method can eliminate
the scattering effect in the spectra to a certain extent, improving the linear relationship
between the spectral data and the SSC. The S/S algorithm is better than other pre-processing
algorithms in correcting the scattering effect in the apple spectra. The modeling results can
also show that the S/S algorithm has good generality and can be applied to the correction
of DR, DT, and FT spectra simultaneously. For the LS-SVR model, the raw spectra had
the best prediction performance. This may be caused by the fact that the raw spectra
contain a lot of nonlinear information related to SSC. After the spectra were corrected using
different pre-processing methods, the modeling effectiveness of the nonlinear modeling
approach decreased. This may be caused by pre-processing algorithms that make the
spectral data more linear in relation to the SSC. The SNV pre-processed spectra had the
best predictive performance for the PSO-ELM model. Among all models, the S/S-PLSR
model with three-mode spectra had the best prediction performance, followed by the
SNV-PSO-ELM model.

All three mode spectra have some predictive ability for whole fruit SSC of apples,
with FT spectra having the best predictive ability, followed by DT spectra. The reason is
that the FT spectrum collects information on the whole apple and corresponds closely to
the whole fruit SSC. DT spectrum can also reflect information from more regions of the
apple, and its correspondence with SSC is only second to that of the FT spectrum. The
modeling results show that the DR spectra can also predict the whole fruit SSC, which the
correlation between the SSC of some regions of a single apple and the whole fruit SSC may
cause. Mo et al. (2017) [41] classified a single apple into 29, 9, and 5 regions of interest and
measured their SSC values separately. The results of the SSC analysis of 25 apples showed
that for individual apples, the coefficient of variation in SSC between the 5 ROIs was the
smallest, which was below 6.00%. It indicates a certain correlation between the SSC of
some regions of a single apple and the average SSC of the whole apple, which is also the
fundamental reason leading to the feasibility of predicting the SSC of the whole apple by
DR spectroscopy.

3.4. Model Results Based on Characteristic Wavelength

To eliminate the co-linear information and noise in the spectra, simplify the model,
and improve the model prediction performance [19]. This study used the CARS, BOSS, and
iVISSA algorithms to screen the wavelength data closely related to apple SSC and optimize
the S/S-PLSR models for the three mode spectra.

The results of characteristic wavelength screening are shown in Figure 4. As can be
seen from the figure, the number of characteristic wavelengths screened by CARS and
BOSS was relatively close, and the wavelength points had a high degree of overlap. iVISSA
algorithm screened a larger number of characteristic wavelengths, which include the charac-
teristic wavelengths screened by CARS and BOSS algorithms. The number of characteristic
wavelengths screened in the NIR band was larger than the number of characteristic wave-
lengths screened in the Vis band. For apple SSC detection, the contribution of the NIR band
is larger than that of the Vis band. The characteristic wavelengths screened by the three
algorithms cover the range of wavelengths relevant to SSC.

The screened characteristic wavelengths were used to build prediction models for
apple SSC, and the results are shown in Table 3.

As seen in Table 3, the characteristic wavelength modeling results screened by the
CARS algorithm were better than the full spectrum modeling results. This indicates that
CARS characteristic wavelength screening can effectively eliminate irrelevant and covariant
information in the original spectra and improve the prediction performance of the apple SSC
model. Among the three spectra, the FT spectrum had the best modeling results, followed
by the DT spectrum, and the DR spectrum had the worst modeling results. The reason is the
strength of the correspondence between spectra and SSC. The RPD values of the modeling
results of the three spectra after CARS characteristic wavelength screening were greater
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than 2, which indicates that all three spectra have high prediction performance for apple
SSC after CARS characteristic wavelength screening. The modeling results of the screened
characteristic wavelengths of the BOSS and iVISSA algorithms were decreased compared
to those of the full spectra, which is probably because the modeling results of the BOSS
and iVISSA algorithms eliminate the irrelevant and covariance information along with
the elimination of characteristic wavelength data related to apple SSC. iVISSA algorithm
screened the largest number of characteristic wavelengths, and although many wavelengths
related to apple SSC were retained, some irrelevant and covariance information was also
retained. Overall, the S/S-CARS-PLSR model predicted apple SSC best.
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Table 3. Results of apple SSC modeling based on characteristic wavelengths.

Model Spectral Mode Number of Characteristic
Wavelengths

LVs
Calibration Set Prediction Set

RPD
Rc RMSEC (%) Rp RMSEP (%)

S/S-CARS-PLSR
DR 45 9 0.899 0.675 0.883 0.749 2.097
DT 26 8 0.916 0.624 0.907 0.630 2.386
FT 34 9 0.944 0.508 0.931 0.575 2.703

S/S-BOSS-PLSR
DR 24 6 0.862 0.783 0.857 0.827 1.900
DT 15 10 0.906 0.658 0.887 0.693 2.169
FT 24 9 0.938 0.537 0.892 0.696 2.233

S/S-iVISSA-PLSR
DR 481 7 0.902 0.668 0.820 0.909 1.728
DT 417 8 0.852 0.815 0.810 0.894 1.681
FT 438 11 0.939 0.531 0.891 0.706 2.201

Notes: S/S: spectra to spectra ratio, PLSR: partial least squares regression, CARS: competitive adaptive reweighted
sampling, BOSS: bootstrapping soft shrinkage iVISSA: interval variable iterative space shrinkage approach,
DR: diffuse reflection, DT: diffuse transmission, FT: full transmission, LVs: latent variables, Rc: the correlation
coefficient of calibration, RMSEC: root mean square error of calibration, Rp the correlation coefficient of prediction,
RMSEP: root mean square error of prediction, RPD: relative percentage difference.
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3.5. Model Fusion Results
3.5.1. MCMF Modeling Results

To further improve the prediction performance of different mode spectra for apple
SSC. The MCMF methods proposed in Section 2.7 were used to construct the prediction
models for apple SSC, and the results are shown in Table 4.

Table 4. MCMF modeling results.

Model Spectral Mode Factor
Calibration Set Prediction Set

RPD
Rc RMESC (%) Rp RMSEP (%)

SA
DR (f 1 + f 2 + f 3)/3 0.889 0.712 0.895 0.736 2.135
DT (f 1 + f 2 + f 3)/3 0.907 0.658 0.905 0.636 2.363
FT (f 1 + f 2 + f 3)/3 0.915 0.629 0.899 0.725 2.143

BG
DR 0.428 f 1 + 0.318 f 2 + 0.254 f 3 0.894 0.695 0.898 0.729 2.155
DT 0.407 f 1 + 0.355 f 2 + 0.238 f 3 0.911 0.645 0.908 0.622 2.416
FT 0.547 f 1 + 0.274 f 2 + 0.179 f 3 0.931 0.568 0.915 0.664 2.340

MLR
DR 0.793 f 1 + 0.253 f 2 − 0.025 f 3

−0.266 0.903 0.664 0.888 0.734 2.140

DT 1.070 f 1 − 0.210 f 2 + 0.157 f 3
−0.217 0.917 0.620 0.911 0.610 2.464

FT 1.134 f 1 − 0.211 f 2 − 0.075 f 3
+0.026 0.946 0.502 0.936 0.550 2.825

LS-SVR
DR γ: 6.288,

σ2: 12.348 0.915 0.626 0.881 0.753 2.086

DT γ: 28.276,
σ2: 4.662 0.953 0.475 0.898 0.656 2.291

FT γ: 38.849,
σ2: 5.462 0.965 0.407 0.940 0.542 2.867

PSO-ELM
DR Hidden nodes: 15 0.935 0.547 0.931 0.562 2.795
DT Hidden nodes: 15 0.944 0.464 0.936 0.518 2.902
FT Hidden nodes: 15 0.966 0.401 0.956 0.449 3.461

Notes: SA: simple averaging, BG: Bates–Granger average, MLR: multiple linear regression, LS-SVR: least squares
support vector regression, PSO-ELM: particle swarm optimization–extreme learning machine, DR: diffuse reflec-
tion, DT: diffuse transmission, FT: full transmission, Rc: the correlation coefficient of calibration, RMSEC: root
mean square error of calibration, Rp the correlation coefficient of prediction, RMSEP: root mean square error of
prediction, RPD: relative percentage difference.

As can be seen from Table 4, for the DR spectrum, the SA, BG, MLR, and PSO-ELM
models of MCMF could further improve the prediction performance, while the LS-SVR
model decreased the prediction performance; for the DT spectrum, the BG, MLR, and PSO-
ELM models of MCMF could further improve the prediction performance, while the SA and
LS-SVR models decreased the prediction performance; for FT spectra, the MLR, LS-SVR,
and PSO-ELM models of MCMF were able to further improve the prediction performance,
while the SA and BG models reduced the prediction performance; among all the fusion
methods, the PSO-ELM model of MCMF had the greatest enhancement effect, followed by
MLR; and among all the fusion models, the PSO-ELM model for FT spectra had the best
prediction of the apple whole fruit SSC had the best prediction performance, followed by
DT spectra. The PSO-ELM model of MCMF resulted in a fairly high prediction performance
for the DR spectrum, which originally had a poor prediction performance, with the RPD
increasing from 2.097 to 2.795. This method also increased the RPD for the DT spectra from
2.386 to 2.902 and the FT spectra from 2.703 to 3.461. From the weighting coefficients of
the MLR model, it can be seen that each member model has a certain contribution to the
prediction results, and the magnitude of the weighting coefficients is positively correlated
with the prediction performance of the member models, and the better the prediction
performance of the member models, the larger the weighting coefficients. The predictive
performance of the fusion model may be correlated with the predictive performance of
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the member models, and the better the predictive performance of the member models,
the better the predictive performance of the fusion model usually is. The fusion model
can make full use of the predictive capability of each member model, thus improving
the predictive performance of the model, and does not superimpose the covariance or
noise information between different data. The MLR and PSO-ELM models of MCMF can
further improve the predictive performance of the three-mode spectral model based on the
traditional single model.

3.5.2. CNCMF Modeling Results

From previous studies, it is known that the prediction performance of the fusion model
is positively correlated with the prediction performance of the member models. Therefore,
this study fused the characteristic wavelength and non-characteristic wavelength prediction
models screened by the CARS algorithm. The characteristic wavelengths screened by the
CARS algorithm were removed, and then the PLSR prediction models for non-characteristic
wavelengths were established. The results are shown in Table 5.

Table 5. Non-CARS characteristic wavelength modeling results.

Model Spectral Mode LVs
Calibration Set Prediction Set

RPD
Rc RMESC (%) Rp RMSEP (%)

PLSR
DR 8 0.874 0.751 0.854 0.820 1.916
DT 12 0.915 0.629 0.879 0.723 2.079
FT 10 0.915 0.623 0.909 0.662 2.347

Notes: PLSR: partial least squares regression, DR: diffuse reflection, DT: diffuse transmission, FT: full transmission,
Rc: the correlation coefficient of calibration, RMSEC: root mean square error of calibration, Rp the correlation
coefficient of prediction, RMSEP: root mean square error of prediction, RPD: relative percentage difference, LVs:
latent variables.

From Table 5, it can be seen that the performance of the non-characteristic wavelength
prediction models decreased compared to the characteristic wavelength, but the non-
characteristic wavelength prediction models also had some prediction ability. It indicates
that the non-characteristic wavelength also contains information related to apple SSC.
Previous modeling methods using characteristic wavelengths did not make full use of the
information related to apple SSC in the spectra. Therefore, using the fusion method of
characteristic wavelength and non-characteristic wavelength member models can make
full use of the contribution of the non-characteristic wavelength model to the prediction
results. CNCMF modeling results, as shown in Table 6.

As can be seen from Table 6, for the DR spectrum, the SA, BG, MLR, LS-SVR, and
PSO-ELM models of CNCMF could further improve the prediction performance; for the
DT spectrum, only the PSO-ELM model of CNCMF improved the prediction performance,
while all others decrease; for the FT spectrum, the LS-SVR and PSO-ELM models of
CNCMF could further improve the prediction performance, while the SA, BG, and MLR
models degrade the prediction performance. The PSO-ELM model of CNCMF significantly
improved the prediction models of DR, DT, and FT spectra and slightly outperformed
the PSO-ELM model of MCMF. However, the difference in the prediction performance of
the two methods may be caused by the randomness in optimizing the PSO-ELM model
parameters. Therefore, it can be considered that the prediction performance of the two
prediction models is relatively close, and both can significantly improve the prediction
performance of the models.
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Table 6. CNCMF modeling results.

Model Spectral Mode Factor
Calibration Set Prediction Set

RPD
Rc RMESC (%) Rp RMSEP (%)

SA
DR (f 4 + f 5) /2 0.903 0.665 0.891 0.739 2.126
DT (f 4 + f 5) /2 0.921 0.607 0.898 0.659 2.281
FT (f 4 + f 5) /2 0.936 0.543 0.928 0.593 2.621

BG
DR 0.553 f 4 + 0.447 f 5 0.904 0.661 0.892 0.735 2.137
DT 0.504 f 4 + 0.496 f 5 0.921 0.607 0.898 0.658 2.284
FT 0.600 f 4 + 0.400 f 5 0.938 0.532 0.930 0.585 2.656

MLR
DR 0.708 f 4 + 0.321 f 5 − 0.374 0.905 0.656 0.893 0.722 2.176
DT 0.541 f 4 + 0.470 f 5 − 0.147 0.921 0.607 0.899 0.659 2.281
FT 1.071 f 4 − 0.072 f 5 + 0.015 0.944 0.508 0.931 0.577 2.693

LS-SVR
DR γ: 878.253,

σ2: 37.202 0.916 0.618 0.895 0.731 2.149

DT γ: 69.051,
σ2: 4.147 0.956 0.455 0.887 0.692 2.172

FT γ: 18.710,
σ2: 3.633 0.956 0.455 0.936 0.556 2.795

PSO-ELM
DR Hidden nodes: 15 0.936 0.546 0.934 0.552 2.846
DT Hidden nodes: 15 0.959 0.442 0.944 0.485 3.099
FT Hidden nodes: 15 0.958 0.445 0.956 0.445 3.492

Notes: SA: simple averaging, BG: Bates–Granger average, MLR: multiple linear regression, LS-SVR: least squares
support vector regression, PSO-ELM: particle swarm optimization–extreme learning machine, DR: diffuse reflec-
tion, DT: diffuse transmission, FT: full transmission, Rc: the correlation coefficient of calibration, RMSEC: root
mean square error of calibration, Rp the correlation coefficient of prediction, RMSEP: root mean square error of
prediction, RPD: relative percentage difference.

3.6. Discussion

The effectiveness of the proposed S/S algorithm for spectral correction is demon-
strated by the results of PLSR modeling of DR, DT, and FT spectra. It is also shown that
the correction effect of the method on spectra is general and superior to several other
common spectral pre-processing algorithms. The S/S algorithm is mainly used to eliminate
multiplicative effects in spectra. Apples, as naturally growing organisms, multiplicative
effects caused by differences in physical properties are a significant cause of spectral differ-
ences. Therefore, it may be the main reason why this algorithm can effectively improve the
prediction performance of the model.

The results of this study demonstrated that the use of DR spectroscopy also has a
certain prediction ability for apple whole fruit SSC. In particular, after model fusion, the
RPD of DR spectroscopy for the prediction of apple whole fruit SSC was significantly
improved. It shows that the model fusion strategy enables the DR spectroscopy to meet
the demand for practical detection of apple whole fruit SSC. Due to the simple structure of
DR spectroscopy acquisition, the model fusion method can be used to improve the online
detection accuracy of apple whole fruit SSC at a low cost.

Not all fusion models improve the predictive performance of models compared to
single predictive models. Therefore, exploring the applicable MCMF and CNCMF modeling
methods in this study is necessary. The fusion models show some similarities, and all of
them are PSO-ELM models with the best enhancement effect. This study fully demonstrates
the effectiveness of the proposed model fusion method by building the prediction models
of the three mode spectra. It also shows that the boosting effect of the method is not a
chance phenomenon.

Compared with other studies on apple SSC online detection, the best prediction model
constructed in this study is better than Li et al. (2023) [42], Xia et al. (2019) [16], and
Tian et al. (2019) [43], and slightly lower than Chang et al. (2023) [44] and Zheng et al.
(2023) [45]. Moreover, the spectrometer used in this study has a lower cost. Therefore, the
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methods proposed in this study can improve the model prediction performance based on a
lower-cost spectrometer.

The spectral pre-processing method proposed in this study enables targeted elimina-
tion of multiplicative effects in spectra. The method can be applied in the spectral correction
of other agricultural products with significant differences in physical properties. The model
fusion methods proposed in this study are different from other previous research methods
in that they can fully utilize the contribution of the discarded models and wavelength
variables to the overall prediction results and provide new ideas and methods for online
detection of apple SSC. However, this study was only conducted for specific varieties of
apples, and the applicability to other varieties of apples or other types of fruit needs to
be explored in the future. In addition, other quality indicators, such as acidity and moldy
heart disease, need to be further explored.

4. Conclusions

(1) For the full spectrum, the S/S-PLSR models for all three mode spectra had good
prediction performance;

(2) The CARS characteristic wavelength screening algorithm can further improve the
prediction performance of the S/S-PLSR models;

(3) The PSO-ELM models of MCMF and CNCMF could simultaneously improve the
prediction performance of the three modal spectra for apple whole fruit SSC, so
that the DR spectra, which originally had a weaker performance, also had a higher
prediction performance;

(4) For the full spectrum, characteristic wavelength, and fusion models, the DR, DT, and
FT spectra all had some predictive ability for apple whole fruit SSC, with the FT
spectrum having the best predictive ability, followed by the DT spectrum.

The results demonstrate the effectiveness of the proposed spectral correction method
and model fusion methods. The proposed methods provide new ideas and approaches to
improve the accuracy of online apple quality detection. These methods can be applied to the
quality detection of other fruits or agricultural products. The results of the study provide
data support for guiding the development of online apple quality detection devices, and
they are of great significance and value in reducing the cost of the devices and improving
detection accuracy.
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