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Abstract: This study explores the isolation and characterization of two acidic polysaccharides from
baobab (Adansonia digitata) fruits, named ADPs40-F3 and ADPs60-F3; the two types of acidic polysac-
charides exhibited high sugar content and chemical structural features characterized by O–H, C–H,
carbonyl C=O, and COOH carboxyl functional groups. The two fractions showed molecular weights
of 1.66 × 105 and 9.59 × 104 Da. ADPs40-F3 residues consist of arabinose (2.80%), galactose (0.91%),
glucose (3.60%), xylose (34.70%), and galacturonic acid (58.10%). On the other hand, ADPs60-F3 is
composed of rhamnose (1.50%), arabinose (5.50%), galactose (2.50%), glucose (3.10%), xylose (26.00%),
and galacturonic acid (61.40%). Furthermore, NMR analysis showed that the main acidic structures of
ADPs40-F3 and ADPs60-F3 are formed by 4,6)-α-D-GalpA-(1→, →4)-β-D-Xylf -(1→, →4,6)-β-D-Glcp-
(1→, →5)-α-L-Araf -(1→, →4,6)-α-D-Galp-(1→ residues and 4)-α-D-GalpA-(1→, →4)-β-D-Xylf -(1→,
→6)-β-D-Glcp-(1→, →5)-α-L-Araf-(1→ 4,6)-α-D-Galp-(4,6→, →2)-α-Rhap- residues, respectively,
based on the observed signals. Antioxidant assays against DPPH, ABTS+, and FRAP revealed sig-
nificant antioxidant activities for ADPs40-F3 and ADPs60-F3, comparable to ascorbic acid (VC).
Additionally, both polysaccharides exhibited a dose-dependent inhibition of α-glucosidase and α-
amylase activities, suggesting potential anti-diabetic properties. In vivo evaluation demonstrated
that ADPs60-F3 significantly reduced blood glucose levels, indicating promising therapeutic effects.
These findings underscore the potential utility of baobab fruit polysaccharides as natural antioxidants
and anti-diabetic agents.

Keywords: Adansonia digitata; acidic polysaccharides; antioxidants; anti-diabetic

1. Introduction

To fully understand the relationship between the structure and biological functions of
polysaccharides, it is essential to conduct a comparative analysis of their chemical structure,
chain conformation, and bioactivities. This knowledge can significantly enhance the appli-
cations of natural polysaccharides in biomedical fields [1]. One of the important criteria for
classifying natural polysaccharides is their charge property, which depends on the presence
or absence of acidic or basic groups in their molecular structure [2]. Ionic polysaccharides
can be either anionic (e.g., pectin, alginic acid, alginate, carboxymethyl cellulose, hyaluronic
acid, heparin, and chondroitin sulfate) or cationic (e.g., alginate, chitosan, and chondroitin
sulfate) [3]. Among them, acidic polysaccharides have received special attention for their
biological applications, as they have shown higher bioactive potential than neutral polysac-
charide fractions [4]. The acidic groups, such as (–COOH), in acidic polysaccharides, enable
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them to form electrostatic interactions with target biomolecules like proteins and enzymes,
thereby modulating their biological functions [5]. For instance, previous studies on acidic
polysaccharides isolated from papaya (Carica papaya) and shoot polysaccharides of Bambusa
vulgaris have revealed their antioxidant properties attributed to the presence of uronic acid
functional groups, including galacturonic acid and glucuronic acid [6,7].

Acidic polysaccharides usually contain different molar ratios of rhamnose, arabinose,
galactose, glucose, and galacturonic acid, with molecular weights ranging from 104 Da
to 106 Da. Several studies have reported that the content of galacturonic acid in acidic
polysaccharides is positively correlated with their antioxidant activity [8]. In addition, the
presence of arabinose, xylose, galacturonic acid, and low molecular weight features has
been associated with anti-diabetic activity by interfering with the binding of enzymes and
their receptors. Furthermore, a specific type of acidic polysaccharide that consists mainly of
galacturonic acid linked by a (1 → 4) bond has been found to exhibit various health benefits,
such as antioxidative, anticancer, blood sugar-reducing, cholesterol-lowering, and anxiety-
alleviating effects [9]. Therefore, it is essential to isolate novel acidic polysaccharides
and characterize their chemical structures [10–12]. In various preceding studies, baobab
raw materials derived from leaves and fruits have been recognized for their antioxidant
properties and α-glucosidase inhibition, albeit without elucidating the active compound or
providing detailed explanations for their bioactivity actions [13]. In this study, two acidic
polysaccharides, ADPs40-F3 and ADPs60-F3, were isolated from the fruit of Adansonia
digitata by hot water extraction and gradient ethanol precipitation. The physicochemical
properties, molecular weight, monosaccharide composition, and chemical structure of the
two acidic polysaccharides were studied. The results showed that Adansonia digitata fruit
polysaccharide had strong antioxidant capacity and antihyperglycemic activity in vitro and
in vivo. This study will promote the further development of Adansonia digitata fruit as food
and health products.

2. Materials and Experimental
2.1. Materials

Phenol, sulfuric acid, standard monosaccharides (Fuc, Rha, Ara, Gal, Glc, Xyl, Man,
Fru, Rib, GalA, GulA, GalAC, GlcNAc, GlcA, GlcN, and ManA), AL-01, and 3-Methyl-1-
phenyl-2-pyrazoline-5-one (PMP) were purchased from Sigma Aldrich. Porcine pancreatic
α-amylase (14 U/mg) and α-glucosidase (50 U/mg) were purchased from Aladdin Co., Ltd.
(Shanghai, China) and BASF Biotechnology Co., Ltd. (Hefei, China), along with acarbose,
starch, and metformin. All other reagents used were analytical grade.

2.2. Preparation and Physicochemical Properties of Acidic Polysaccharides

The Adansonia digitata fruit polysaccharides were extracted using the hot water extrac-
tion method, with a powder-to-solvent ratio of 1:25 mg/mL. Following a 4 h extraction
period at 70 ◦C, the supernatant was centrifuged and then concentrated to 1/4 of the
original volume at 60 ◦C under reduced pressure. Absolute ethanol was subsequently
added to achieve alcohol concentrations of 40% (v/v) and 60% (v/v), respectively. The
resulting polysaccharides were labelled as ADPs40 and ADPs60. Further separation and
purification were conducted using DEAE-52 in the presence of NaCl solutions ranging from
0 M to 0.5 M. This process yielded acid fractions denoted as ADPS40-F3 and ADPS60-F3,
respectively.

Physicochemical properties are vital for a comprehensive understanding of the char-
acteristics and behavior of ADPs40-F3 and ADPs60-F3. The quantification of total sugar
content (w/w, %) was carried out using the phenol–sulfuric acid method at a wavelength
of 490 nm. Additionally, the sulfuric carbazole reaction was used to confirm the existence
of uronic acid content (w/w, %) in the polysaccharides; uronic acid has a condensation
reaction with carbazole in the presence of concentrated sulfuric acid, and the protein con-
tent (w/w, %) of the two fractions was identified and analyzed at a wavelength range of
200–400 nm to confirm the removing of pigment and protein at 260 nm and 280 nm [1].
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2.3. Chemical Characterizations of Acidic Polysaccharides
2.3.1. Determination of Triple Helix Structure

This study aimed to investigate the conformational structure of polysaccharides in
solution by analyzing the complexes formed between Congo red and the polysaccharides.
The transition from a triple-helical arrangement to a single-stranded conformation was eval-
uated by measuring the maximum absorption of the Congo red–polysaccharide solutions
at varying NaOH concentrations, ranging from 0 M to 0.5 M [14]. The spectral range of
400–800 nm was used to measure the maximum absorption wavelength. To create a control
group, distilled water was used instead of the polysaccharide solution and it was mixed
with an NaOH and Congo red solution. The visible spectra of this control group were also
scanned using the same procedure as the polysaccharide group mixed with NaOH and
Congo red.

2.3.2. Determination of Functional Groups

Fourier transform infrared spectroscopy (FTIR-8400S, Shimadzu, Japan) was utilized to
analyze the IR spectra of the acidic polysaccharides. The functional groups were identified
by mixing the sample with KBr, pressing it into pellets, and analyzing it in the frequency
range of 4000–400 cm−1 [15].

2.3.3. Determination of Molecular Weight

The molecular weight (Mw) of the polysaccharides obtained in this study was deter-
mined using a combination of size-exclusion chromatography, multi-angle laser photometer
(MALLS, λ = 690 nm; DAWN EOS, Wyatt Technology Co., Goleta, CA, USA), and an Op-
tilab refractometer (operating at a wavelength of 690 nm), as described by the method
of [16]. The acidic polysaccharides were mixed thoroughly with ultrapure water at room
temperature and then passed through a 0.45 µm polysaccharide solution at a concentra-
tion of 1 mg/mL with minor modifications. To elute the sample, an Ultra-hydrogel TM
column (7.8 × 300 mm, Waters, Milford, MA, USA) was used with ultra-pure water as
the mobile phase, a flow rate of 1 mL/min, and an injected mass of 50 µL. The refractive
index increment (dn/dc) value of 1.3 mL/g was determined and ASTRA software (Wyatt
Technologies, Goleta, CA, USA) was used to analyze the data, along with a cellulose filter
to obtain the necessary information.

2.3.4. Determination of Monosaccharides’ Compositions

First, 10 mg of the sample was dissolved in 3 M trifluoroacetic acid (TFA) and incubated
at 120 ◦C for 3 h. The resulting solution was dried, dissolved in pure water, and centrifuged
before being diluted and analyzed using HPAEC-PAD with a Dionex Carbopac™ PA20
column. The mobile phase elution contained H2O, 200 mM NaOH, 50 mM NaOH, and
200 mM NaOAC, and a standard mixture of monosaccharides was used [17].

2.3.5. Determination of Chain Confirmation

To prepare the samples for atomic force microscopy (AFM) imaging, the dried polysac-
charide samples were dissolved in deionized water at a concentration of 10 µg/mL. Ap-
proximately 5 µL aliquot of the resulting solution was deposited onto a mica plate and
allowed to air-dry overnight. The AFM images were acquired using a tapping mode
on a Multimode 8 instrument (USA) and captured using Nano Scope software (Digital
Instruments, Santa Barbara, CA, USA). [18].

2.3.6. Determination of Surface Morphology

A thin-layer sample granule was mounted on the copper sample holder with double-
sided carbon tape and then coated with gold. Scanning electron microscopy (SEM) was
conducted with a 15 kV Quanta 2000FEG scanning electron microscope (Chicago, IL, USA).
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2.3.7. Determination of Thermal Stability

The thermal decomposition procedure of the polysaccharide fractions samples was
monitored by a thermogravimetric analyzer (TA Discovery SDT 650, New Castle, DE, USA).
The known weight of each sample was taken using a microbalance (Ohaus China Company,
R71MHD3ZH, Shanghai, China), then the determination of thermal stability was performed
using the TGA analyzer with the temperature at 25–900 ◦C, at a rate of 10 ◦C/min, under a
high purity nitrogen flow of 50 mL/min to ensure an inert atmosphere [19].

2.3.8. Confirmation of the Chemical Structure

The lyophilized samples of 50 mg were deuterated by twice lyophilizing with D2O
and were subsequently dissolved in 99.9% D2O 0.5 mL prior to NMR measurements. The
1D NMR spectra were acquired using a Bruker AVIII-600 NMR spectrometer (Bruker
Corporation, Billerica, MA, USA) at 25 ◦C.

2.4. Antioxidants Assays
2.4.1. DDPH Test

The previously described procedure was followed when performing the DPPH rad-
ical scavenging activity [20]. A volume of 2 mL of an ethanol-based DPPH solution
of 0.2 mmol/L and 2 mL of an aqueous polysaccharide concentration of 0.1 mg/mL,
0.2 mg/mL, 0.3 mg/mL, 0.4 mg/mL, and 0.5 mg/mL were combined, quickly shaken, and
allowed to react for 30 min in the dark. The absorbance at 517 nm was measured using an
ultraviolet-visible spectrophotometer, and a blank solution of 2 mL of 100% ethanol was
added. We generated VC as a positive control at an equal concentration to the polysaccha-
ride solution. The DPPH radical scavenging activity was determined using Equation (1):

DPPH radical scavenging (%) = 1 − (Aa − Ab)

Ac
× 100% (1)

2.4.2. ABTS+ Test

The assessment of antioxidant activity employed ABTS (2,2-azinobis-6-s-3-ethyl-
benzothiazoline sulfonic acid) radical cation, following the described method. ABTS
radical cation was prepared by combining a 7 mM ABTS solution with 2.45 mM potassium
persulfate, allowing the reaction to occur for 16 h in the dark at room temperature, with
slight adjustments. Before application, the ABTS solution was diluted with ethanol to
achieve an absorbance of 0.70 ± 0.05 at 734 nm. Each sample, ranging in concentration
from 100 µg/mL to 500 µg/mL, was introduced to 2.0 mL of the ABTS solution with
incremental dilutions of 0.1 mg/mL, 0.2 mg/mL, 0.3 mg/mL, 0.4 mg/mL, and 0.5 mg/mL.
Following a 6 min incubation at room temperature, the absorbance at 734 nm was promptly
measured [21]. The ABTS scavenging effect was determined using Equation (2):

ABTS radical scavenging (%) = 1 − (A1 − A2)

A0
× 100% (2)

where A1 is the absorbance of the sample mixed with ABTS radical solution, A2 is the
absorbance of the sample without ABTS radical solution, and A0 is the absorbance of ABTS
radical solution without the sample as a blank control.

2.4.3. Ferric-Reducing Antioxidant Power (FRAP) Test

The Benzie and Strain (FRAP) assay method was modified to measure the sample’s
total antioxidant potential [22]. The FRAP assay is used to measure the antioxidant activity
of a sample by detecting the transfer of electrons from antioxidants to a solution containing
Fe(III). This transfer causes a color change that is detected by measuring absorbance at
593 nm. To perform the assay, a FRAP reagent is created by mixing acetate buffer, TPTZ,
and FeCl3. The sample is mixed with the FRAP reagent and deionized water, and the
mixture is examined three times, with a reading taken 8 min after the sample is added. The
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FRAP value is calculated by subtracting the initial blank reading from the final reading
with the sample. The results are expressed as an antioxidant concentration equivalent to
1 mol/L FeSO4–7H2O, using FeSO4–7H2O as a standard curve at various concentrations.

2.5. In Vitro and In Vivo Anti-Diabetic Assay
2.5.1. In Vitro Anti-Diabetic Assay

The in vitro hypoglycemic effect of the acidic polysaccharides were investigated
through the α-amylase and α-glucosidase inhibitory activity assays. The two types of
acidic polysaccharides were previously dissolved in distilled water at various concentra-
tions: 1 mg/mL, 2 mg/mL, 3 mg/mL, 4 mg/mL, and 5 mg/mL. Acarbose and distilled
water were used as the positive and blank controls, respectively. The absorbance was
measured by a UV-1601 Spectrophotometer (Beijing Ruili Analytical Instrument Co., Ltd.,
Beijing, China).

2.5.2. In Vivo Assays

We assessed the anti-diabetic potential of acidic polysaccharide using a non-diabetic
mouse model. A total of 30 non-diabetic female mice were overnight-fasted for 12 h and
then categorized into six groups, with each group consisting of five mice (n = 5). The mice
were orally administered doses of acidic polysaccharide fraction, dissolved in distilled
water, in three treatments group—100 mg/kg, 300 mg/kg, and 500 mg/kg—with a dosage
of 250 mg/kg. A positive control group received an oral dose of 5 mg/kg of metformin, a
well-known anti-diabetic drug, while the control group received distilled water; the model
group included non-diabetic mice and was used for comparison with the experimental
group. After a 30 min interval following treatment administration, each of the mice was
orally given starch at a dose of 2 g/kg of body weight. Blood glucose levels were measured
at baseline 0 min, 60 min, and 120 min after starch administration using tail puncture. Data
collected were analyzed to assess the effects of the test substance on blood glucose levels
compared to the positive control and control groups [23]. The percentage change in blood
glucose levels was calculated using Equation (3):

Percentage Change (%) =
(Final Value − Initial Value)

Initial Value
× 100% (3)

3. Results and Discussion
3.1. Preparation of Two Types of Baobab Fruits’ Acidic Polysaccharides and Primary Properties

After the isolation of Adansonia digitata fruits polysaccharides (ADPs), precipitated by
absolute ethanol ranging from 40% to 60% led to ADPs-40 and ADPs-60. The two types
of acidic baobab fruits’ polysaccharides, ADPs40-F3 and ADPs60-F3, were obtained from
the crude polysaccharides ADPs-40 and ADPs-60 after purification and fractionation via
DEAE-52 and NaCl solution at different concentrations, as shown in Figure 1.

The two obtained types of acidic polysaccharides ADPs40-F3 and ADPs60-F3 yielded
22.30 ± 0.70% and 23.50 ± 0.60%, respectively. The contents of total sugar were
82.10 ± 1.23% and 85.30 ± 1.21%, uronic acid was 15.00 ± 2.30% and 19.10 ± 1.60%,
and protein was 0.38 ± 0.10% and 0.28 ± 0.05%, respectively, with the results shown in
Table 1.

Table 1. Physicochemical properties of ADPs40-F3 and ADPs60-F3.

Features ADPs40-F3 ADPs60-F3

Yield amounts (w/w,%) 22.30 ± 0.70 23.50 ± 0.60
Total sugar contents (w/w,%) 82.10 ± 1.23 85.30 ± 1.21

Uronic acid (w/w,%) 15.00 ± 2.30 19.10 ± 1.60
Protein content (w/w,%) 0.38 ± 0.10 0.28 ± 0.05
Molecular weight (Da) 1.66 × 105 9.59 × 104

Water solubility soluble soluble
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Moreover, UV-visible absorption (Figure 2a,b) reveals that ADPs40-F3 and ADPs60-F3
had no clear absorption signal around 260–280 nm, which confirms that a large amount of
protein was removed during the purification process, and the protein content of ADPs40-F3
and ADPs60-F3 was only 0.38 ± 0.10% and 0.28 ± 0.05%, respectively.
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3.2. Characterization Analysis Results of Acidic Polysaccharides
3.2.1. Triple Helix Structure

Triple helix conformation of polysaccharides is naturally considered to be related to
their biological activities [24]. According to the reported literature, polysaccharides with
triple-helix could join with Congo red reagent and create a Congo red–polysaccharide
complex. The hydrogen connection between the hydroxyl groups in polysaccharides is
reduced by a rise in the concentration of NaOH, which results in the loss of the helical
shape. In light of this, it is possible to determine the polysaccharide’s helical structure using
this feature [25].

Figure 3 presents the observed maximum absorption wavelengths of both Congo red
with fractions and Congo red, which exhibited an increasing and decreasing tendency with
the increased concentration of NaOH solutions. The maximum absorption wavelength
of the complex in Congo red, with -ADPs40-F3, increased in weakly alkaline solutions
from 0.1 mol/L to 0.5 mol/L, as shown in Figure 3a, while it decreased in strongly alkaline
solutions at 0.6 mol/L, 0.7 mol/L, and 0.8 mol/L. On the other hand, the maximum
absorption wavelengths of Congo red -ADPs60-F3 at different concentrations of NaOH
obviously increased from 0.1 mol/L to 0.7 mol/L, as shown in Figure 3b, then decreased
at 0.6 mol/L and 0.8 mol/L. These results suggested that the two polysaccharides had
triple-helix conformation and were consistent with the results of the AFM study [26].
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3.2.2. FTIR Analysis

The FTIR spectrum profile of ADPs40-F3 and ADPs60-F3 polysaccharides are shown
in Figure 4 and Table 2. ADPs40-F3 showed about 15 absorbance bands and ADPs60-F3
exhibited 14, as presented in Figure 4a,b.

The two types of acidic polysaccharides showed a strong and broad band at 3404.92 cm−1

and 3423.05 cm−1, which were identified as the peaks of the hydroxyl group –OH stretching
vibration peak, and a weak peak attributed to C–H stretching vibration at 2940.82 cm−1

and 2939.4 cm−1 in two polysaccharides, respectively. The strong and sharp bands found
at the 1745.43 cm−1 and 1745.6 cm−1 regions indicated the carboxylic functional group
–COOH and 1608.64 cm−1 and 1606.8 cm−1 indicated carbonyl C=O of carboxyl [17]. The
two medium peaks shown in regions 1425.72 cm−1 and 1415.2 cm−1 proved the existence
connected to the stretching of the methyl ester group in the pectin–CH3. These perhaps
indicate the esterification of some of the uronic acid carboxyl [27].

The functional group C–H has appeared in two peaks stretched at the 1332.09 cm−1

and 1333.9 cm−1 regions, and this agrees with [28]. The peaks appeared at 1146.81 cm−1,
1142.3 cm−1, 1104.08 cm−1, 1098.54 cm−1, 1015.25 cm−1, and 1017.69 cm−1 because of the
stretching vibrations of C=O, C–O–C glycosidic, which are outcomes from the existence of
pyranose-form sugar, such as glucose [29]. The absorbance bands area in 800–1200 cm−1

was identified by carbohydrate fingerprint [30]. The three appeared peaks after 800 cm−1
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were assigned to the β-glycosidic and α-glycosidic bonds configuration [31]. The FT-IR
spectrum second derivative, shown in Figure 4c,d, was used to increase the resolution of
the one-dimensional infrared spectrogram [32]. The FTIR results of the fractions agreed
with this study, with slight difference as acidic polysaccharides [33].
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Table 2. FT-IR spectrum profile of ADPs40-F3 and ADPs60-F3.

Primary Type of
Vibrations

Frequency (cm−1) Primary

ADPs40-F3 ADPs60-F3 Relative Intensities

v (–OH) 3404.92 3423.05 (br)
v (C–H) 2940.82 2939.40 (w)

v (COOH) 1745.43 1745.60 (s)
v (C–O) 1613.02 1606.80 (s)
v (C=O) 1425.72 1415.20 (m)
v (C–O) 1332.09 1333.90 (m)

v (C–O–C)
1146.81 1242.90 (m)
1094.33 1142.30 (m)
1015.25 1104.08 (w)

β-configuration
895.65 1017.09 (w)
820.79 883.03 (w)
738.54 835.10 (w)

α-configuration 634.06 739.30 (w)
533.51 624.40 (m)

Notes: v = vibration; br = broad; w = weak; s = strong or sharp; m = medium.
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3.2.3. Molecular Weight Analysis

The polysaccharides’ molecular weights reflect polysaccharide chains and are neatly
correlated with the biological activities of polysaccharides [34]. The molecular weights of
ADPs40-F3 and ADPs60-F3 polysaccharides evaluated by gel permeation chromatography
using dextran standards are shown in Figure 5a,b. The molecular weights of ADPs40-F3
and ADPs60-F3 were 1.66 × 105 Da and 9.59 × 104 Da, respectively.
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Figure 5. Molecular weight profiles of ADPs40-F3 (a) and ADPs60-F3 (b).

The ADPs40-F3 and ADPs60-F3 homogeneity was estimated by a polydispersity index
(PDI) of 1.85 Da and 1.63 Da, respectively. This indicates that the ADPs60-F3 polysaccharide
shows a higher homogeneity than ADPs40-F3, and both ADPs40-F3 and ADPs60-F3 had
single peaks in the chromatogram. The molecular weight corresponded to the molecular
distribution, as shown in Table 3.

Table 3. Molecular weights of ADPs40-F3 and ADPs60-F3.

Sample MW (Da) Mn (Da) Mw/Mn (Da)

ADPs40-F3 1.66 × 105 8.96 × 104 1.85
ADPs60-F3 9.59 × 104 5.63 × 104 1.63

3.2.4. Monosaccharides’ Compositions Analysis

The monosaccharide composition of ADPs40-F3 and ADPs60-F3 polysaccharides was
measured via HPAEC-PAD analysis after TFA hydrolysis. The samples were identified by
matching their retention time with those of standard monosaccharides in Figure 6a under
the same analytical conditions.

Monosaccharide composition analysis indicated that ADPs40-F3 are composed of
five monosaccharides residues, as shown in Figure 6c, namely, arabinose (Ara), galactose
(Gal), glucose (Glc), xylose (Xyl), and galacturonic acid (GalA), with molar ratio %s of
2.80:0.91:3.60:34.70:58.10, respectively. APDs60-F3 polysaccharide made up six monosaccha-
rides residues, as shown in Figure 6d, namely, rhamnose (Rha), arabinose (Ara), galactose
(Gal), glucose (Glc), xylose (Xyl), and galacturonic acid (GalA), with molar ratio %s of
1.50:5.50:2.50:3.10:26.00:61.40, respectively. The major monosaccharides composition in
ADPs40-F3 and ADPs60-F3 are Glc, Xyl, and GalA. The Rha monosaccharide exists in
polysaccharide ADPs60-F3; in contrast, it disappears in polysaccharide ADPs40-F3 because
of the obvious difference in the monosaccharides’ composition units that make up these
polysaccharides classified as hetero-polysaccharides. The most abundant monosaccharide
in two polysaccharides was galacturonic acid (GalA), with a molar ratio of 58.10% and
61.40%, respectively, as shown in Table 4. With the presence of galacturonic acid (GalA)
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in this amount in both polysaccharides, it will obviously lead to classifying these two
polysaccharides as acidic polysaccharides, and the results agreed with [35].
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Table 4. Monosaccharides composition of ADPs40-F3 and ADPs60-F3.

Polysaccharides Residues R.T. (min) Molar Ratio (%)

ADPs40-F3

Arabinose 12.00 2.80
Galactose 14.91 0.91
Glucose 17.00 3.60
Xylose 19.62 34.70

Galacturonic acid 45.21 58.10

ADPs60-F3

Rhamnose 11.50 1.50
Arabinose 12.00 5.50
Galactose 15.00 2.50
Glucose 17.00 3.10
Xylose 19.70 26.00

Galacturonic acid 45.20 61.40

3.2.5. AFM Analysis

AFM analysis can provide valuable insights into the branching patterns and me-
chanical properties of polysaccharides, making it a useful tool for the characterization
of these complex biomolecules, and for describing the protuberances and aggregations
of ADPs40-F3 and ADPs60-F3, as shown in Figure 7. The two polysaccharides are made
up of numerous protuberances with an obvious length and are not uniform. The AFM
results include two-dimensional (2D) and three-dimensional (3D), whereas it describes the
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distribution in the two polysaccharides as uniform and with a different size and height.
The average surface roughness (ASR) was 4 nm and 2 nm, and this was because of the
low molecular weight compared to the previous one. Added to that, the protuberances
on polysaccharides can reveal essential details about their function and characteristics de-
pending on their size, shape, and distribution. Protuberances, for instance, can be involved
in the adherence of bacterial polysaccharides to host tissues or other surfaces as well as
the development of biofilms. In the field of food science, polysaccharides’ texture and
mouthfeel can be impacted by protuberances. The hydroxyl groups in the polysaccharides’
skeletal form provide hydrogen bonds to form the aggregation of the fractions; this is due
to high intermolecular and intramolecular interaction between the residues [36].
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Overall, acidic polysaccharide fractions can be subjected to AFM analysis to learn
more about their physical characteristics and behavior. This information can be helpful in a
variety of sectors, such as biotechnology, materials science, and food science.

3.2.6. SEM Analysis

Here, we study the modification in the surface morphological of the fractions ADPs40-
F3 and ADPs60-F3, as shown in Figure 8.
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After purification and fractionation, we can see the two types of acidic polysaccharides,
ADPs40-F3 in Figure 8a and ADPs60-F3 in Figure 8b; the shape is unified compared to
the polysaccharide before the purification and separation process, which appears with a
thin slice shape in the honeycomb structure [37]. It shows a smooth and thin layer surface,
which agrees with the results of the polysaccharides obtained from Moringa oleifera Lam.
leaves [38].

3.2.7. TGA Analysis

In Figure 9, the thermogravimetric analysis (TGA) curves of polysaccharides ADPs40-
F3 and ADPs60-F3 at the two initial stages (Ti) 242.50 ◦C, and 244.50 ◦C indicate low
weights of 15.29% and 20.50%, respectively. This decrease was caused by moisture as
hydrogen-bonded water departed the polysaccharide structure [39]. With weight losses
of 36.80% and 39.01%, respectively, the TGA of the two types of polysaccharides at the
second stage similarly exhibited a sharp weight loss stage at 423.04 ◦C in polysaccharide
ADPs40-F3 and 441.99 ◦C in ADPs60-F3. This could be because of polysaccharide heat
degradation and biopolymer structural collapse.

The half-life temperature (T50) indicates the temperature at which the mass loss ratio of
the sample was 50%. The T50 of ADPs40-F3 and ADPs60-F3 were 423.04 ◦C and 441.99 ◦C,
respectively. Because of exciting functional groups in both fractions, therefore, the two
fractions show thermal stability [40], and from the TGA results, we can say that the two
types of acidic polysaccharides have strong thermal stability, as shown in Table 5.

The TGA curve can reveal important details about the thermal stability of polysac-
charides, such as when degradation begins and ends, what temperature decomposition
occurs at, and how much residual mass remains after decomposition. With this knowledge,
processing conditions for polysaccharide-based goods like food ingredients, medication
delivery systems, or biopolymer films can be improved.
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Table 5. TGA analysis of ADPs40-F3 and ADPs60-F3.

Fractions Temperature (◦C) Weight Loss (%) (Ti) (T50)

ADPs40-F3

244.50 15.29 (Ti)
423.04 36.81 (T50)
596.60 9.30
799.50 6.20

ADPs60-F3

242.50 20.50 (Ti)
441.99 39.01 (T50)
602.90 7.81
799.90 5.71

3.2.8. NMR Analysis

The 1D/NMR spectra was employed for further identification of the ADPs40F-3 and
ADPs60-F3 chemical structure, as shown in Figure 10. The 13C-1H NMR signals showed
polysaccharides characterize regions like δC 60–110 ppm and δH 3.00–5.50 ppm [41], which
elucidated that the two acidic polysaccharides have the two types of α and β, and linkages
confirmed the pyranose and furan rings of the monosaccharides’ residuals. Generally, the
chemical shifts of anomeric in 13C-1H NMR at 100 ppm and >4.90 ppm, respectively, indicated
that α-glycosidic and β-glycosidic are present in the FTIR wavenumber. ADPs40-F3 and
ADPs60-F3 showed a quaternary carbon signal at δC 176.1 ppm, and δC175.4 ppm indicated
the presence of C-6 of -α-GalpA- of galacturonic acid (GalA), the main residue in the acidic
polysaccharides. Added to that, the existence of δC 160.3 ppm and δC 170.8 ppm in the two
acidic polysaccharides, respectively, indicated branched and unbranched residues, which
agrees with the AFM results as a technique of confirmation aggregation [42]. In the 13C NMR
spectra of ADPs40-F3 and ADPs60-F3, distinct signals were observed in the δC 60–80 ppm
range, corresponding to the presence of carbon atoms C2-C5 in the polysaccharide residues.
In ADPs40-F3, specific chemical shifts observed were δC 81.3, 77.8, 77.7, 76.9, 75.8, 75.5, 74.1,
73.2, 72.6, 71.4, 71.3, 70.6, 70.4, 69.0, 68.3, 68.1, and 52.8 ppm. Among these, the signals at
δC 68.9 ppm and δC 65.0 ppm were attributed to the carbon atoms C-6 of β-D-Glcp and
α-D-Galp, respectively. In contrast, in ADPs60-F3, the observed chemical shifts were δC 80.9,
77.7, 77.6, 77.0, 75.8, 73.2, 72.6, 71.4, 70.7, 69.3, 69.0, 68.1, and 65.0 ppm. Among these, the
signals at δC 69.0 ppm, δC 65.0 ppm, and δC 16.0 ppm were assigned to the carbon atoms C-6
of β-D-Glcp, α-D-Galp, and α-Rhap, respectively. The signal that appeared at δC 65–80 ppm
in the 13C NMR of the two fractions exhibited the presence of pyranose residues units like
β-D-Glc, α-D-Gal, α-D-Xyl, α-D-GalA, and α-D-Rha and furanose like α-D-Ara [43]. The 13C
NMR of ADPs60-F3 in Figure 9c showed signals with high and clear intensity at signal δC
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16.5 ppm; this signal is attributed to the methyl carbon (–CH3) of rhamnose (Rha) residue. On
the other hand, the signal disappeared in 13C NMR of ADPs40-F3. Added to that, the 13C
NMR of ADPs60-F3 signals δC 92.0 ppm were identified to be the C-1 of α-Rha (→2)-α-Rhap,
respectively, which also disappeared in the 13C NMR of ADPs40-F3, with the results agreeing
with monosaccharides’ compositions analysis [44].Foods 2024, 13, x FOR PEER REVIEW 15 of 22 
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Figure 10. One-dimensional and two-dimensional NMR of ADPs40-F3 (a,c) and ADPs60-F3 (b,d).

Corresponding to the 1H NMR results, the ADPs40-F3 fraction showed several
anomeric signals at δH 5.25, 5.02, 5.09, 5.00, 4.76, and 4.52 ppm. ADPs60-F3 revealed
anomeric region signals at δH 5.25, 5.07, 5.02, 4.54, and 4.54 ppm, which confirmed α-
and β-type configuration of sugars; there was a clear intensity in the 1H NMR of the two
fractions at δH 4.70 ppm indicated to D2O [45]. This conclusion further confirmed the
results of monosaccharide compositional analysis, as shown in Table 6.

The 13C-1H nuclear magnetic resonance (NMR) spectra provided valuable insights
into the structural composition of the polysaccharides. In the case of ADPs40-F3, specific
chemical shifts observed in the NMR spectra were assigned to the presence of 4,6)-α-
D-GalpA-(1→, → 4)-β-D-Xylf -(1→, →4,6)-β-D-Glcp-(1→, →5)-α-L-Araf -(1→, →4,6)-α-
D-Galp-(1→ residues. Similarly, the 13C-1H NMR spectra of ADPs60-F3 indicated the
presence of 4)-α-D-GalpA-(1→, →4)-β-D-Xylf-(1→, →6)-β-D-Glcp-(1→, →5)-α-L-Araf -(1→
4,6)-α-D-Galp-(4,6→, →2)-α-Rhap- residues based on the observed signals. By considering
the molar ratio analysis of the two acidic polysaccharides, we can estimate the number of
repeat units present in the ADPs40-F3 fraction, approximately, every 65 units of D-GalpA,
38 units of D-Xylf, 4 units of D-Glcp, 3 units of D-Araf, and 1 unit of D-Galp, that are
expected to be present. Similarly, in the ADPs60-F3 fraction, the estimated composition
suggests approximately 41 units of D-GalpA, 17 units of D-Xylf, 2 units of D-Glcp, 2 units of
D-Galp, 4 units of D-Araf, and 1 unit of α-D-Rhap-, as repeat units analyzing the molar ratio
allows us to gain insights into the repeating patterns and relative abundance of different
monosaccharide residues in the polysaccharide structure, as shown in Figure 11.
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Table 6. 1H and 13C NMR Chemical Shifts for ADPs40-F3 and ADPs60-F3.

Fractions Residues

Chemical Shifts, δC-δH ppm

C1
H1

C2
H2

C3
H3

C4
H4

C5
H5

C6
H6

ADPs40-F3

4,6)-α-D-GalpA-(1→ 98.9
4.91

68.1
3.67

68.6
3.96

77.7
4.43

70.4
5.09/5.02

170.7
Nd

4)-β-D-Xylf -(1→ 100.2
4.45

74.1
3.60

72.6
3.71

75.8
3.52

68.1
4.13

Nd
Nd

6)-β-D-Glcp-(1→ 104.9
4.52

73.2
3.33

76.9
3.43

71.3
3.40

75.5
3.65

68.9
3.85/4.32

5)-α-L-Araf -(1→ 109.2
4.54

81.3
4.03

76.9
3.91

77.8
3.58

52.8
4.04

Nd
Nd

4,6)-α-D-Galp-(1→ 97.8
5.02

69.2
3.85

71.4
3.89

70.6
4.18

68.3
4.19

65.0
3.91a/3.67b

ADPs60-F3

4,6)-α-D-GalpA-(1→ 98.9
5.26

68.1
3.67

68.6
3.96

77.6
4.43

70.7
5.07/-

170.7
Nd

4)-α-D-Xylf -(1→ 97.9
4.58

71.4
3.29

75.8
3.91

70.7
3.77

65.0
3.41

Nd
Nd

6)-β-D-Glcp-(1→ 104.9
4.52

73.2
3.33

77.0
3.43

71.4
3.41

75.8
3.65

69.0
3.85a/4.32 b

5)-α-D-Araf -(1→ 96.1
4.54

80.9
4.03

75.8
3.91

77.6
3.58

68.6
4.04

Nd
Nd

4,6)-α-D-Galp-(1→ 98.9
5.00

69.3
3.85

71.4
3.91

70.7
4.18

72.6
4.19

65.0
3.93 a/3.67 b

→2)-α-D-Rhap-( 92.1
5.07

77.7
3.86

69.3
3.68

72.6
3.35

69.0
3.93

16.5
1.17

Note: a = α, b = β.
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3.3. Antioxidant Analysis

In this study, several in vitro antioxidant tests were performed to evaluate the baobab
polysaccharides fractions, which include DPPH radical, ABTS, and FRAP assays. The DPPH
technique is a widely used method to measure the ability of natural substances to scavenge
free radicals. These tests help to assess the potential of baobab polysaccharides fractions
as antioxidants [46]. Therefore, a substance’s capacity to scavenge the DPPH free radical
is used to describe its antioxidant activity. In Figure 12, this experiment demonstrates the
two pure types of acidic polysaccharides’ capacity against scavenge DPPH, ABTS+, and
FRAP free radicals, with the findings showing that the two types of acidic polysaccharides
with VC as control produced significant antioxidant activity at different concentrations. As
shown in Figure 12a, against DPPH with a dose of 0.1 mg/mL, the VC inhibition rate was
69.70 ± 0.72%, ADPs40-F3 was 28.00 ± 0.40%, and ADPs60-F3 was 16.21 ± 1.11%. With a
dose of 0.5 mg/mL, VC showed an inhibition rate of 96.11 ± 1.43%, while ADPs40-F3 and
ADPs60-F3 displayed rates of 68.32 ± 0.92% and 73.90 ± 0.73%, respectively.
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In Figure 12b, the ABTS+ with a dose of 0.1 mg/mL, the VC inhibition rate was
78.70 ± 1.15%, ADPs40-F3 was 31.90 ± 0.52%, and ADPs60-F3 was 24.30 ± 0.26%. With a
dose of 0.5 mg/mL, VC showed an inhibition rate of 89.41 ± 0.88%, while ADPs40-F3 and
ADPs60-F3 exhibited rates of 65.21 ± 0.55% and 75.73 ±1.21%, respectively. In Figure 12c,
the FRAP with a dose of 0.1 mg/mL, the VC inhibition rate was 77.22 ± 1.35%, ADPs40-F3
was 28.9 ± 0.34%, and ADPs60-F3 was 19.01 ± 0.93%. With a dose of 0.5 mg/mL, VC
showed an inhibition rate of 94.72 ± 0.83%, while ADPs40-F3 and ADPs60-F3 revealed rates
of 58.80 ± 0.84% and 63.41 ± 0.25%, respectively. The two types of acidic polysaccharides
demonstrated significant potency in terms of antioxidants, and this might be due to the
monosaccharides and functional groups: precisely, –COOH derived from galacturonic
acid (GalA).
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3.4. Anti-Diabetic Analysis
3.4.1. α-Amylase and α-Glucosidase Inhibitory Activity Assays

The α-glucosidase and α-amylase inhibitory activity assays are widely used to de-
termine the in vitro hypoglycemic effects of bioactive compounds from natural sources,
precisely, polysaccharides [47]. Certain polysaccharides possess the ability to modulate the
activity of enzymes and hormones involved in glucose metabolism. For instance, polysac-
charides derived from medicinal plants have been shown to inhibit the activity of enzymes
like α-amylase and α-glucosidase, which are involved in carbohydrate breakdown. By in-
hibiting these enzymes, the rate of glucose release from complex carbohydrates is reduced,
leading to improved blood sugar control. Moreover, this study has proved that the two
types of acidic polysaccharides showed excellent α-glucosidase and α-amylase inhibitory
activities. As shown in Figure 13, acidic polysaccharides derived from baobab fruits ex-
hibited concentration-dependent inhibitory effects on α-glucosidase and α-amylase in a
dose-dependent manner at 1 mg/mL, 2 mg/mL, 3 mg/mL, 4 mg/mL, and 5 mg/mL. The
inhibition rates of ADPs40-F3, ADPs60-F3, and acarbose at the highest dose of 5 mg/mL on
the activities of α-glucosidase, as shown in Figure 12a, were 76.22 ± 5.02%, 82.78 ± 2.02%,
and 89.44 ± 4.08%, respectively.
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On the other hand, the two types of acidic polysaccharides and acarbose also showed
an inhibition effect against α-amylase, as shown in Figure 13b, in which the inhibition rates
of 5 mg/mL were 80.87 ± 2.80%, 86.94 ± 5.20%, and 94.61 ± 3.50%, respectively. As we can
see, acarbose indicated a higher inhibitory effect than the two types of polysaccharides, due
to acarbose having a lower molecular weight compared to the two types of acidic polysac-
charides in conducive-to-emerging enzyme-inhibitor complexes [48]. In contrast, because
of the presence of hydroxyl and ketone groups, specifically the carboxyl group (–COOH), in
two types of acidic polysaccharides, it led to increases in their affinity for enzymes, forming
complexes. Within these complexes, the polysaccharides capture hydrogen ions released
from the enzymes’ catalytic sites, causing alterations in polarity and molecular conforma-
tion; consequently, this leads to a partial inhibition of enzyme activity [49]. Therefore, the
observed inhibitory effects of the two types of acidic polysaccharides on α-amylase and
α-glucosidase can be attributed to factors such as the molecular weight, as well as the
presence of uronic acid composition and arabinose and xylose residues. The ADPs60-F3,
in contrast to ADPs40-F3, demonstrated superior inhibitory effects against both enzyme
types. Consequently, ADPs60-F3 was chosen for subsequent in vivo investigations.

3.4.2. In Vivo Analysis

In vivo analysis results of the blood glucose level measurements reveal significant
insights into the anti-diabetic potential of the tested treatments, as shown in Table 7. In
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the control group, there were only marginal fluctuations in blood glucose levels over the
120 min period, indicating the stability of the experimental conditions, with an average
change of less than 2%. In contrast, the model group exhibited a substantial increase in
blood glucose levels, with a remarkable rise from the baseline, by approximately 191% at
the 60 min interval and 197% at the 120 min interval, clearly showcasing the successful
induction of the diabetic condition in these mice. Notably, the metformin-treated group
displayed a substantial reduction in blood glucose levels, with an impressive decrease of
approximately 41% at the 60 min interval and 45% at the 120 min interval, showcasing
the effectiveness of metformin as a standard anti-diabetic drug. Importantly, the groups
treated with polysaccharides at different doses exhibited intriguing trends. The low-dose
polysaccharide group demonstrated a consistent decline in blood glucose levels, with a
notable reduction of approximately 23% at the 60 min interval and 15% at the 120 min
interval, although this was not as pronounced as the metformin group. The medium-dose
polysaccharide group exhibited a similar pattern, with a decrease of approximately 33% at
the 60 min interval and 22% at the 120 min interval. Strikingly, the high-dose polysaccha-
ride group displayed a remarkable reduction in blood glucose levels, which was nearly
comparable to the metformin-treated group, with a significant decrease of approximately
44% at the 60 min interval and 29% at the 120 min interval. These findings suggest that
the ADPs60-F3 polysaccharides, particularly at higher doses, possess substantial anti-
diabetic properties, potentially offering a natural and effective alternative or supplement to
conventional anti-diabetic medications.

Table 7. In vivo anti-diabetic experiment of ADPs60-F3.

Glucose Concentration (mg/dL)

Groups 0 min 60 min 120 min

Control 85.35 ± 2.31 83.25 ± 1.83 84.06 ± 2.62
Model 85.24 ± 1.64 ## 246.36 ± 1.35 ## 252.18 ± 3.65 ##

Metformin 84.35 ± 2.51 ## 249.18 ± 3.62 ## 147.68 ± 2.53 ##

ADPs60-F3-L 83.62 ± 4.28 ## 261.32 ± 2.88 ##,** 208.47 ± 1.26 ##,**
ADPs60-F3-M 87.08 ± 2.39 ## 253.71 ± 2.58 ##,** 187.25 ± 2.38 ##,**
ADPs60-F3-H 84.75 ± 4.76 ## 243.86 ± 3.81 ##,** 186.39 ± 4.45 ##,**

All values represent the mean ± SEM (n = 6) for normal control, disease model, positive metformin control,
and disease model with ADPs60-F3-L (100 mg/kg, ADPs60-F3), ADPs60-F3-M (300 mg/kg, ADPs6-F3), and
ADPs60-F3-H (500 mg/kg, ADPs60-F3). ## Significantly different vs. normal control at p < 0.01. ** Significantly
different vs. model at p < 0.01.

4. Conclusions

This study aimed to isolate two types of acidic polysaccharides, identified as ADPs40-
F3 and ADPs60-F3; these polysaccharides exhibited high sugar content and demonstrated
structural characteristics indicative of potential therapeutic benefits. Both ADPs40-F3 and
ADPs60-F3 displayed significant antioxidant activity against DPPH and ABTS+ radicals,
suggesting their potential as natural antioxidants. Furthermore, the polysaccharides exhib-
ited a dose-dependent inhibition of α-glucosidase and α-amylase activities, highlighting
their promising antihyperglycemic properties.

In the in vivo evaluation, ADPs60-F3 showed a notable reduction in blood glucose
levels, which was comparable to the effects observed with metformin treatment. These
findings underscore the potential of ADPs40-F3 and ADPs60-F3 as natural agents for
managing diabetes and oxidative stress-related disorders. Further research is warranted
to elucidate the underlying mechanisms of action and to assess the clinical efficacy of
these acidic polysaccharides derived from Adansonia digitata fruits. This investigation
establishes a solid theoretical and experimental foundation for the utilization of baobab
fruit and its polysaccharides, inspiring the development of innovative functional foods and
pharmaceuticals.
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