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Abstract: Flaxseed has been recognized as a superfood worldwide due to its abundance of diverse
functional phytochemicals and nutrients. Various studies have shown that flaxseed consumption is
beneficial to human health, though methods of processing flaxseed may significantly affect the absorp-
tion and metabolism of its bioactive components. Hence, flaxseed was subjected to various processing
methods including microwaving treatment, microwave-coupled dry milling, microwave-coupled
wet milling, and high-pressure homogenization. In vitro digestion experiments were conducted to
assess the impact of these processing techniques on the potential gastrointestinal fate of flaxseed
oil. Even though more lipids were released by the flaxseed at the beginning of digestion after it
was microwaved and dry-milled, the full digestion of flaxseed oil was still restricted in the intestine.
In contrast, oil droplets were more evenly distributed in wet-milled flaxseed milk, and there was
a greater release of fatty acids during simulated digestion (7.33 ± 0.21 µmol/mL). Interestingly,
wet-milled flaxseed milk showed higher oxidative stability compared with flaxseed powder during
digestion despite the larger specific surface area of its oil droplets. This study might provide insight
into the choice of flaxseed processing technology for better nutrient delivery efficiency.

Keywords: flaxseed processing technology; simulated digestion; lipid oxidation

1. Introduction

Flaxseed is regarded as a superfood all over the world and is rich in alpha-linolenic
acid (ALA), lignans (secoisolariciresinol bisglucoside, etc.), high-quality plant proteins,
dietary fiber, and vitamins [1–4]. Thereinto, ALA is an important and characteristic nutrient,
being a type of essential fatty acid, and possesses multiple biological activities, including
reducing cholesterol levels, regulating blood lipids, promoting normal brain development,
and slowing cognitive decline during aging [5,6]. Although the importance of ALA in
health has attracted much attention, the proportion of ALA-rich foods in people’s daily
diets remains relatively low. For example, a recent epidemiological study suggested that
an insufficient intake of omega-3 PUFAs occurred in nearly 195 countries and regions.
Additionally, a lack of omega-3 PUFAs can cause an imbalance in omega-6 PUFAs and
omega-3 PUFAs in the human body, resulting in cardiovascular, cerebrovascular, and
autoimmune diseases [7]. At the same time, the omega-3 PUFA in flaxseed, namely ALA,
needs to be properly processed to increase its stability and bioavailability. Hence, there is
an increasing demand for the development of flaxseed processing techniques aside from
the traditional oil-pressing process.

Recently, developing new techniques of flaxseed processing has become a research
hotspot to encourage the intake of ALA. Since microwave processing can give flaxseed
a crispy texture and nutty taste [8], microwave-treated flaxseed has been increasingly
consumed as an ingredient in bread, biscuits, yogurt, and other foods [9]. At the same time,
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flaxseed powder obtained by dry milling skim or whole-fat flaxseed is convenient to use
in smoothies, dairy products, and baked goods to improve the nutritive value of the final
product. Moreover, according to published articles, dry milling flaxseed can improve the
taste and quality of biscuits and bread [10]. Compared to flaxseed powder, whole flaxseed
has a longer shelf life with a slower oxidation rate and is easier to store. In general, flaxseed
and flaxseed powder can not only be eaten directly but also within multiple fortified foods,
and microwaving and dry milling are typical techniques for processing them [8].

Owing to their healthful qualities (high in unsaturated fat and polyphenol contents)
and unique flavors, the consumption of various plant-based milks (e.g., oat, soybean, and
almond milk) is currently growing [11,12]. They serve as alternatives to milk for consumers
with lactose intolerance or religious beliefs and those who are vegetarian [13]. Flaxseed
plant-based milk can be obtained by wet milling flaxseed coupled with high-pressure
homogenization [14]. Due to the large specific surface area of the flaxseed oil droplets
within flaxseed-based milk and readily oxidizable PUFAs, the physical and chemical
stability of flaxseed-based milk in storage and the digestive tract should be modulated
using an appropriate technology [15]. Notably, the oxidation products of PUFAs not only
reduce the nutritional value of lipids but also increase the risk of developing cardiovascular
disease, diabetes, tumors, and other pathologies after excessive consumption [16]. Although
the effect of lipid oxidation products on the activation of the anti-inflammatory response
has been studied [17,18], the current research still focuses on its negative effects on food
quality and human health [19,20]. Meanwhile, the human gastrointestinal tract contains a
variety of pro-oxidative factors such as metal ions and reactive oxygen species [21]. For
example, dietary iron could be released into the stomach during the digestion of vegetables,
grains, and meat [22]. Beyond that, processing techniques can severely influence the food
matrix of flaxseed-fortified food, including the cell wall structure and the size of tissues,
thus having a significant effect on the fate of flaxseed in the digestive tract [23,24]. Research
related to flaxseed is still mainly concerned with the pharmacological properties and
functionality of flaxseed itself, and less attention has been paid to the status of the nutrients
in flaxseed during gastrointestinal digestion [8,25]. To date, the effects of different methods
of processing flaxseed on the degree of flaxseed oil release and oxidation in digestion are
relatively unexplored.

Hence, in this study, whole flaxseed, flaxseed powder, and flaxseed plant-based
milk were chosen as research models to explore the effects of processing methods on
the physicochemical and nutritive properties of flaxseed within the digestive tract. The
manifestations of flaxseed during simulated digestion after a microwaving treatment,
microwaving coupled with dry milling, microwaving coupled with wet milling, and
high-pressure homogenization were thoroughly studied and discussed. The structure,
particle size, and oxidation stability of these three types of samples in simulated digestion
were fully determined and compared. Our results might provide important insights
into novel processing techniques for flaxseed for improving its lipid oxidative stability
and bioaccessibility.

2. Materials and Methods
2.1. Materials

Flaxseeds were procured from the Gansu Academy of Agriculture (Zhangye, China);
the variety is Zhangya No. 2. Nile red (≥98%, CAS: 7385-67-3) was purchased from McLean
(Beijing, China). All inorganic chemical reagents were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Beijing, China). 2-Methyl-3-heptanone (95.0%, CAS: 13019-20-0) was
purchased from TCI Ltd. (Tokyo, Japan). Mucin (CAS:84082-64-4), Pepsin (CAS: 9001-75-6),
Pancreatin (CAS: 8049-47-6), RGE (RGE-15), Hematin (CAS: 15489-90-4), and bile salts were
purchased from Sigma (New York, NY, USA).
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2.2. Pretreatment of Flaxseed and Preparation of Flaxseed-Based Milk

Whole flaxseeds (WFs): The water content of flaxseeds was adjusted from 3.4% to 19%
at 4 ◦C before heating. Flaxseeds (19 g) were placed in a Petri dish with a diameter of 9.5 cm
and microwaved for 5 min at 700 W (CEM Mars-6, Matthews, NC, USA). The resulting
microwaved flaxseeds were referred to as whole flaxseeds (WFs) in this study. Subsequently,
the product was ground in a grinder (the particle size of the sample was less than 3000 µm)
(GX200, Shijiazhuang, China) for 10 s [26], simulating the human chewing process [27].

Flaxseed powder (FP): After the same microwave treatment and moisture adjustment
process, the microwaved flaxseeds were ground in a grinder (GX200, Hebei, China) for 20 s.
The flaxseeds after microwaving and dry milling were referred to as flaxseed powder (FP)
in the study.

Flaxseed-based plant milk (FM): Microwaved flaxseeds were soaked in water at 25 ◦C
for 2 h (1: 7, w/v). The soaked flaxseeds were mixed with deionized water (1: 7, w/v;
pH = 7.0) and ground using a colloid mill (Horizontal-60, Shenzhen, China). After that, 1%
cellulase and 2% glucoamylase were added to the sample for enzymolysis at 50 ◦C for 1 h
and then it was placed at 95 ◦C for 15 s to inactivate the enzyme. The resulting emulsion
was filtered through a 200-mesh filter cloth and homogenized under a pressure of 20 Mpa
(GYB40-10S, Shanghai, China). Finally, flaxseed-based plant milk (FM), the wet-milled
flaxseed, was obtained by sterilization at 137 ◦C for 15 s (ST21-4338-1, Shanghai, China).

After all samples were packed with nitrogen, they were placed at −20 ◦C and the
follow-up simulated digestion experiments were completed within 1 week.

2.3. In Vitro Simulated Digestion

Based on INFOGEST 2019 [28], an in vitro semi-dynamic digestion model was used
to simulate the digestion of WF, FP, and FM. For oral digestion, 20 g samples were gently
mixed with 20 mL simulated salivary fluid (SSF) at 37 ◦C for 2 min using a thermostatic
shaking water bath at 100 rpm (Shanghai Boxun, SHZ-B, Shanghai, China).

A total of 20 g of this portion of digesta was then immediately transferred to a water-
packed glass container containing 10% simulated gastric fluid (SGF) to simulate the basal
volume of an empty stomach. This vessel was connected to a thermostatic water circulator
(Mettler Toledo, Greifensee, Switzerland) to adjust the temperature to 37 ◦C before being
placed on an orbital shaker (Servicebio, Wuhan, China) at 20 rpm for gentle mixing of the
vessel contents. Hematin was the main source of total iron in the body; the concentration of
heme iron in gastric fluid was approximately 20 µM [29]. Based on the INFOGEST model,
heme iron (20 µm in methanol) and 60 U/mL RGE-15 was added to the stomach portion of
the simulated digestive system. The remaining 90% SGF was then added and Milli-Q water
was added until the whole sample weighed 40 g, shaking for 2 h to perform simulated
stomach digestion.

The small intestine environment was simulated in vitro using a pH Stat (Mettler
Toledo, Greifensee, Switzerland). During the simulation of digestion in the small intes-
tine, 0.1 M NaOH solution was dripped continuously to maintain the pH of the whole
reaction system at 7.0. The whole intestinal digestion stage took 2 h. The amount of re-
leased free fatty acids (FFAs) was calculated using the recorded volume of NaOH required
for neutralization.

FFA =
VNaOH × CNaOH × 1000
Vintestinal digestion mixture

where VNaOH and CNaOH represent the consumed volume and molar content of the NaOH,
respectively, and Vintestinal digestion mixture represents the volume of the mixed intestinal
digestion fluid [30].

2.4. Particle Size Measurement

The particle size distributions and mean particle sizes of WF, FP, FM, and their digesta
(expressed as D[4,3]) were measured during digestion using a Mastersizer 3000 static light
scatterer (Malvern Instruments, Malvern, UK). Milli-Q water was selected as the dispersant
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for the original samples. For the digested samples, the dispersant used was the digestion
fluid from each digestion stage [31]. Since WF and FP are solid particles, determining their
original sample size requires diluting them in Milli-Q water to maintain the same lipid
content as that of the original FM samples.

2.5. Lipid Content Determination

The WF, FP, and their chyme at different stages of digestion were collected and nat-
urally dried at 25 ◦C. The lipid contents of the samples were determined using a Soxhlet
extraction apparatus with petroleum ether as the solvent. The results of the lipid content
analysis were expressed as a percentage relative to the dry weight [32].

2.6. Observation of Microstructure

Briefly, 200 µL of the original and digested samples was diluted with deionized water
and simulated digestion fluid from each stage in a 1:1 (v/v) ratio. Additionally, 10 µL of
Nile red at a concentration of 1 mg/mL was added for staining purposes [31]. A small
portion of softened digesta obtained from the WF and FP using tweezers was carefully
placed on a slide. The distribution of oil droplets in the samples was observed using a laser
scanning confocal microscope (LSCM) (Zeiss, LSM980, Chiba, Japan).

2.7. Determination of Volatile Unsaturated Aldehydes in Secondary Oxidation Products

The 20 mL headspace flasks were used to weigh 5 g of WF, FP, FM, and their digesta
at each stage of digestion. An internal standard of 1 µL 2-methyl-3-heptanone was added
before equilibrating the samples at 40 ◦C for 20 min. The headspace compounds were then
absorbed by DVB/CAR/PDMS fibers for 50 min and injected into the injection port for a
duration of 5 min. A 7890A gas chromatograph (Agilent, Santa Clara, CA, USA) was used
in combination with a 5975C mass spectrometer (Agilent, Santa Clara, CA, USA) to detect
the volatile compounds. Separation occurred on DB-WAX (30 m × 0.25 mm × 0.25 µm)
columns with helium as the carrier gas at a flow rate of 1.5 mL/min and an injection
temperature set to 250 ◦C. The initial temperature was 40 ◦C; this was held for 2 min
before heating to 180 ◦C at 5 ◦C min−1. This temperature was held for 2 min before
heating to 240 ◦C at 8 ◦C min−1. The ion source temperature, electron energy, transmission
line temperature, and mass scanning range were 230 ◦C, 70 eV, 280 ◦C, and 40–350 m/z,
respectively [26].

2.8. Data Analysis

Data were presented as mean ± SD (n = 3). A one-way ANOVA, followed by Tukey’s
test, was performed to analyze the significant differences between the data (p < 0.05) using
SPSS 24 (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Changes in FM, FP, and WF during Oral In Vitro Digestion

The particle sizes of the WF, FP, FM, and their digesta are characterized and presented
in Figure 1. The results revealed distinct patterns in the particle size distribution of these
three samples during the oral digestion stage. Due to the limited duration of this stage, the
simulated oral digestive fluid had a negligible impact on the particle size distribution of
WF and FP, which can be attributed to their gradual release of lipids, proteins, and other
substances. On the other hand, the particle size distribution diagram showed that the small
peak below 1 µm of the FM vanished and a new peak above 10 µm appeared, suggesting
that oil droplets within FM flocculated due to mucin in the oral digestive fluid [33].
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Figure 1. (a,d) The mean particle diameter and distribution of flaxseed-based milk (FM), (b,e) flaxseed
powder (FP), (c,f) whole flaxseed (WF), and their digesta after each stage of simulated digestion.
D[4,3] was used to evaluate the mean particle size of the samples. Data points and error bars represent
means (n = 3) ± standard deviations. Different letters between groups indicate significant differences
between samples (p < 0.05).

CLSM was employed to observe the alterations in microscopic states of the WF, FP,
and FM during the entire process of digestion. Confocal micrographs of FM during the oral
digestive stage (Figure 2a) revealed a more homogeneous state within the entire system
due to its delicate structure encompassing oil bodies, colloidal macromolecules, etc. [14].
Hence, during the oral stage of digestion, the particle size D[4,3] in the FM showed only
relatively minor changes (Figures 1a and 2a). Given that solid particles in WF and FP were
not uniformly distributed during the digestion process, separate observations were made
on digestive fluid and chyme in WF and FP to examine nutrient distribution across the
entire system as well as lipid release extent from solid particles (Figure 2b,c).

As shown in Figure 2b,c, in the oral digestive fluid, unevenly distributed oil droplets
were released into the oral digesta from WF and FP, and oil droplets clustered significantly.
The CLSM analysis of the chyme revealed ruptured edges of flaxseed tissues, leading
to a partial release of lipids. In contrast, the core of the solid particles in the WF and
FP were not successfully stained, indicating that lipids located within the interior of
flaxseed tissues were sealed during the oral digestion stage. These oil droplets combined
with other substances such as flaxseed protein might need further enzymolysis to be
released in the subsequent digestive process. Precisely because lipid residues were observed
in solid granules of FP and WF after oral digestion, the lipid contents of FP and WF
remaining in the granules after different stages of digestion were determined (Figure 3). The
percentages of lipids remaining in FP and WF after oral digestion were 74.27 ± 0.40% and
84.44 ± 0.43%, respectively.
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The volatile unsaturated aldehydes produced by these three samples during digestion
were analyzed using gas chromatography–mass spectroscopy (GC-MS). Additionally, the
content of volatile aldehydes generated by each sample at different stages of digestion was
quantified and expressed as ng/g oil, based on the lipid release data shown in Figure 3. In
the initial state, only a few types and low amounts of oxidation products were observed
(Table 1). Similarly, the peroxide value of the samples before the experiment was tested,
but the value obtained did not exceed the effective detection limit (data not shown in
the article), indicating low oxidation levels in the samples prior to digestion. Due to the
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short duration of the oral digestion, the types of oxidation products produced at this stage
were similar to the original samples. According to the above results, the influence of three
different processing methods, including microwaving treatment, dry milling, and wet
milling, both on the original and oral oxidation states of flaxseed, was negligible.
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Table 1. Volatile unsaturated aldehyde content generated by flaxseed-based milk (FM), flaxseed
powder (FP), whole flaxseed (WF), and their chymes at different stages of simulated digestion.
Different letters following the mean in the same column indicate significant differences (p < 0.05).

Phase Name of Compound FM (ng/g Oil) FP (ng/g Oil) WF (ng/g Oil)

Original Sample Hexanal 21.1 ± 4.1 b 34.1 ± 2.9 b 58.8 ± 10.4 a

Nonanal - - 19.9 ± 3.4

Oral
Hexanal 34.7 ± 2.5 b 46.3 ± 2.8 b 71.8 ± 2.2 a

Octanal 4.5 ± 0.3 - -
Nonanal 7.9 ± 0.8 - 38.0 ± 8.7

Gastric

Propanal - 17.3 ± 2.2 17.8 ± 0.1
Pentanal - 22.5 ± 0.8 24.0 ± 1.7
2-Butenal - 55.2 ± 1.3 52.9 ± 3.6
Hexanal 166.0 ± 7.3 c 663.6 ± 43.6 b 865.7 ± 40.8 a

(E)-2-Pentenal 213.2 ± 9.0 a 166.3 ± 11.3 b 155.1 ± 7.7 b

3-Hexenal - 18.8 ± 3.7 0.018.0 ± 2.5
Heptanal 6.2 ± 2.1 b 27.6 ± 0.4 a 35.2 ± 4.9 a

(E)-2-Hexenal 56.6 ± 8.1 b 126.7 ± 0.7 a 167.5 ± 8.5 a

Octanal - 22.7 ± 1.4 32.0 ± 2.9
(E)-2-Heptenal 205.2 ± 23.8 b 341.9 ± 2.0 a 371.5 ± 21.0 a

Nonanal 12.8 ± 0.7 c 39.8 ± 2.8 b 61.5 ± 10.0 a

(E,E)-2,4-Hexadienal - 42.9 ± 11.1 10.0 ± 13.8
(E)-2-Octenal 42.1 ± 7.4 b 132.3 ± 27.8 a 158.1 ± 10.7 a

(E,E)-2,4-Heptadienal 1101.1 ± 29.0 c 1556.9 ± 176.8 a 1315.8 ± 24.6 b

Benzaldehyde 28.0 ± 6.3 b 33.1 ± 5.1 a 31.5 ± 3.9 a

2-Decenal - 15.0 ± 1.9 17.1 ± 5.0
(E,E)-2,4-Decadienal - 7.0 ± 0.9 10.6 ± 1.4
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Table 1. Cont.

Intestinal

Hexanal 36.8 ± 2.4 a 33.9 ± 0.6 b 19.9 ± 2.1 c

(E)-2-Pentenal 10.8 ± 0.6 14.8 ± 0.2 -
Heptanal 8.8 ± 0.1 - -
Octanal 16.0 ± 2.2 - -

(E)-2-Hexenal - 7.4 ± 0.2 -
(E)-2-Heptenal 4.6 ± 0.7 6.0 ± 0.9 -

Nonanal 15.9 ± 0.8 a 8.2 ± 0.2 b 8.5 ± 0.8 b

(E,E)-2,4-Heptadienal 58.7 ± 10.8 b 88.1 ± 3.2 a 7.9 ± 0.2 c

Decanal 4.2 ± 0.3 - -
Benzaldehyde 6.4 ± 0.6 4.5 ± 0.4 -
(E)-2-Nonenal 4.0 ± 0.5 - -

(E,E)-2,6-Nonadienal 5.1 ± 0.4 - -

3.2. Changes of FM, FP, and WF during Gastric In Vitro Digestion

After undergoing gastric digestion, the average size of FM particles (D[4,3]) increased
from 5.58 ± 0.16 µm to 32.93 ± 6.43 µm (Figure 1). One possible explanation for this
phenomenon could be attributed to the hydrolysis of proteins at the oil droplet interface by
proteases present in gastric digestive fluid, which significantly impacted the stability of FM
and led to aggregation or coalescence of the oil droplets [34]. According to Figure 1, during
the gastric digestion stage, the particle sizes (D[4,3]) of the WF and FP decreased from
1086.67 ± 24.94 and 497.33 ± 20.34 µm to 473.33 ± 28.11 and 121.33 ± 5.44 µm, respectively.
After gastric digestion, the size of solid particles, such as almond and other nuts, could
decrease significantly [23]. The differences between the CLSM results of FP and WF during
the gastric digestive stage were not obvious (Figure 2b,c). The lipid particle sizes were
reduced in the digestive fluid, but still much larger than that in the FM, while the structures
of the particle edges were further disrupted. Moreover, fewer lipids remained at the edges
of the food chyme, with more fluorescence staining inside the particles. The percentages of
remaining lipids in the two samples were 53.89 ± 0.33% and 71.84 ± 0.28% after gastric
digestion, respectively (Figure 3). The above results indicated that the nutrients of FP and
WF in gastric digestive fluid were further released and digested owing to the presence of
gastric lipases and proteases [27], but there were still a lot of lipids remaining in the solid
particles. The particles in the chyme were continuously broken in the gastric environment
and the lipids were gradually released at the edges. At the same time, the mechanical
action from the stomach alone was not enough to fully degrade the cell wall within the core
of the granule, and as a result, the cores of the particles were still not all stained [27].

With the increase in digestion time, the content of various long-carbon-chain unsatu-
rated aldehydes was increased in the gastric digestive stage (Table 1), which exhibited a
positive correlation with the degree of lipid oxidation [35]. From the initial stage of lipid
oxidation, with the extension of oxidation time, the concentration of hydrogen peroxide will
first increase and then decrease. The total concentration of volatile oxidation products will
continue to rise throughout the oxidation process. Then, when the concentration of volatile
products increases, the hydrogen peroxide concentration may still be at a high value or
will show a downward trend. It is undeniable that as the concentration of hydroperoxides
increases, the concentration of volatile products also increases [29]. The oxidation degree
and volatile unsaturated aldehydes produced by FM, FP, and WF during gastrointestinal
digestion were comprehensively compared using a PCA model [35]. Due to the highest
levels of (E,E)-2,4-heptadienal, (E)-2-heptadienal, and (E)-2-pentadienal, FP was placed
on the far right of the score plot (Figure 4B). Additionally, in Figure 4A, both FP and WF
were classified in the lower half of the score plot due to the generation of hexanal. In
Figure 4A, it could be seen that the oxidation degree of FP was higher than that of WF
and FM. Meanwhile, according to Table 1, in the gastric stage, the types and contents of
aldehydes produced from FP were higher than FM, which is rather interesting considering
the higher specific surface area of flaxseed oil droplets of FM. Even though the lipids in
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the FM were more exposed to the digestive fluid, the stabilization of amphipathic proteins
and the adsorption of antioxidant substances at the interface resulted in certain antioxidant
properties [36,37]. In contrast, the released lipids of FP in the digestive fluid were not uni-
formly encapsulated, resulting in increased lipid oxidation [38]. Overall, short-carbon-chain
aldehydes were produced more by WF and FP in simulated gastric digestion, presumably
due to the collapse of the oil bodies in solid particles, which led to triglyceride spillover
and inconsistent spatial distribution of antioxidant substances with triglycerides [39–41].

Foods 2024, 13, x FOR PEER REVIEW 9 of 14 
 

 

positive correlation with the degree of lipid oxidation [35]. From the initial stage of lipid 

oxidation, with the extension of oxidation time, the concentration of hydrogen peroxide 

will first increase and then decrease. The total concentration of volatile oxidation products 

will continue to rise throughout the oxidation process. Then, when the concentration of 

volatile products increases, the hydrogen peroxide concentration may still be at a high 

value or will show a downward trend. It is undeniable that as the concentration of hy-

droperoxides increases, the concentration of volatile products also increases [29]. The ox-

idation degree and volatile unsaturated aldehydes produced by FM, FP, and WF during 

gastrointestinal digestion were comprehensively compared using a PCA model [35]. Due 

to the highest levels of (E,E)-2,4-heptadienal, (E)-2-heptadienal, and (E)-2-pentadienal, FP 

was placed on the far right of the score plot (Figure 4B). Additionally, in Figure 4A, both 

FP and WF were classified in the lower half of the score plot due to the generation of 

hexanal. In Figure 4A, it could be seen that the oxidation degree of FP was higher than 

that of WF and FM. Meanwhile, according to Table 1, in the gastric stage, the types and 

contents of aldehydes produced from FP were higher than FM, which is rather interesting 

considering the higher specific surface area of flaxseed oil droplets of FM. Even though 

the lipids in the FM were more exposed to the digestive fluid, the stabilization of amphi-

pathic proteins and the adsorption of antioxidant substances at the interface resulted in 

certain antioxidant properties [36,37]. In contrast, the released lipids of FP in the digestive 

fluid were not uniformly encapsulated, resulting in increased lipid oxidation [38]. Overall, 

short-carbon-chain aldehydes were produced more by WF and FP in simulated gastric 

digestion, presumably due to the collapse of the oil bodies in solid particles, which led to 

triglyceride spillover and inconsistent spatial distribution of antioxidant substances with 

triglycerides [39–41]. 

 

Figure 4. PCA model of GCMS data of gastric digestive stage (PC1 vs. PC2; R2X[1] = 0.963, Q2[1] = 

0.577; R2X[2] = 0.036, Q2[2] = 0.002) with scores plot (A) and loadings plot (B). 

3.3. Changes in FM, FP, and WF during Intestinal In Vitro Digestion 

During intestinal digestion, all the samples exhibited rapid release of FFAs in the 

early stages and slow release during the later stages. Compared with WF and FP, the total 

amount of fatty acids released by FM was the largest (7.53 ± 0.21 μmol/mL) (Figure 5A). 

Moreover, none of the samples reached a plateau after 120 min due to long-chain triacyl-

glycerol digestion [42]. The amount of fatty acids released was affected by the composition 

and structure of the interface and the droplet size [43]. The rapid FFA release was likely 

caused by small droplets with larger oil–water interfacial area undergoing rapid lipolysis 

[44]. In addition, the faster release rate of FFA in the early stages might be attributed to 

the faster adsorption rate of lipase on the oil droplet surface [45]. Meanwhile, the cell walls 

of the WF and FP presented a greater barrier to lipase. Larger particle size made it much 

more difficult for there to be contact between lipids and digestive fluid [46]. After wet 

milling, the nutrients in flaxseeds were dispersed to the maximum extent in water. The 

highest degree of lipid hydrolysis was observed in FM, followed by FP and WF, resulting 

in the release of 26.47 ± 0.21 % and 34.03 ± 0.25 % residual lipids in solid particles of FP 

Figure 4. PCA model of GCMS data of gastric digestive stage (PC1 vs. PC2; R2X[1] = 0.963,
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3.3. Changes in FM, FP, and WF during Intestinal In Vitro Digestion

During intestinal digestion, all the samples exhibited rapid release of FFAs in the early
stages and slow release during the later stages. Compared with WF and FP, the total amount
of fatty acids released by FM was the largest (7.53 ± 0.21 µmol/mL) (Figure 5A). Moreover,
none of the samples reached a plateau after 120 min due to long-chain triacylglycerol
digestion [42]. The amount of fatty acids released was affected by the composition and
structure of the interface and the droplet size [43]. The rapid FFA release was likely caused
by small droplets with larger oil–water interfacial area undergoing rapid lipolysis [44]. In
addition, the faster release rate of FFA in the early stages might be attributed to the faster
adsorption rate of lipase on the oil droplet surface [45]. Meanwhile, the cell walls of the
WF and FP presented a greater barrier to lipase. Larger particle size made it much more
difficult for there to be contact between lipids and digestive fluid [46]. After wet milling,
the nutrients in flaxseeds were dispersed to the maximum extent in water. The highest
degree of lipid hydrolysis was observed in FM, followed by FP and WF, resulting in the
release of 26.47 ± 0.21% and 34.03 ± 0.25% residual lipids in solid particles of FP and
WF after intestinal digestion (Figure 3). During both the oral and gastric digestive stages,
WF exhibited lower oil release compared to other samples, with a significant amount of
lipids being released only during intestinal digestion. These findings indicated that the
cell structure in WF granules remained highly stable during gastric digestion, resulting
in a reduction in cell fragmentation [27]. Furthermore, compared with FM and FP, WF
had the lowest concentration of fatty acids in the intestinal digestive fluid (Figure 5B). At
the same time, FM and FP had similar fatty acid release efficiency and FM exhibited a
higher total amount of fatty acid release. Overall, these results highlight the significant
impact of different processing techniques on flaxseed lipid digestion. Specifically, FM
prepared by microwaving coupled with wet milling and high-pressure homogenization
could significantly enhance lipid digestion compared to dry milling.
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During gastrointestinal digestion, the particle size of FP decreased more significantly
than that of WF (Figure 1). This could be attributed to the fact that smaller solid food
particles tend to undergo greater fragmentation during digestion [27]. In contrast, the
average size of FM particles (D[4,3]) decreased from 32.93 ± 6.43 µm to 9.73 ± 0.44 µm
after small intestinal digestion, and there was a significant increase in the proportion of
particles with a size less than 1 µm. This suggested that the oil droplets in FM had a
larger surface area during intestinal digestion. More sites on the interface could increase
the contact between lipids and pancreatic lipase, resulting in more lipid hydrolysates and
formation of absorbable micelles [47,48]. In intestinal digestion, the degree of fragmentation
of solid particles within the chyme in the FP and WF increased but was not significantly
different from that of those in the gastric stage (Figure 2). The structure of the particles
was continuously broken and disintegrated by proteases present in the digestive fluid,
while tissue fragmentation during intestinal digestion was not prominently evident [49].
However, most of the lipids inside the cells were stained and almost no oil droplets
remained at their edges. At this point, the lipid content in the digestive fluid of both FP and
WF was very low, similar to FM. The confocal micrographs of the WF exhibited minimal
fluorescence signal. Due to the influence of bile salts on both oil droplet and cell structure,
pancreatic lipase interacted with free oil droplets as well as lipids at the edges and core of
the granules. Similar to the FM, lipids released by the WF and FP into the digestive fluid
were rapidly digested. However, during digestion, the release of lipids inside the solid
particles could be significantly blocked due to the intact cellular structure [49,50]. More
oil droplets of the FM were released into the digestive fluid, leading to a higher fatty acid
release rate. In contrast, the FP displayed a more disrupted structure and less intact internal
cells than the WF, thus releasing more lipids into the digestive fluid. Nevertheless, a large
amount of lipids remained within the cells, resulting in lower fatty acid release compared
to that observed for FM (Figure 5).

Lipids in the digestive fluid were gradually hydrolyzed into fatty acids through the
synergistic action of pancreatic lipase and bile salts within the intestine. At the same time,
the total amount of unsaturated aldehydes produced by FM, FP, and WF decreased in
intestinal digestion compared to gastric digestion. This phenomenon may be because the
reaction substrate to produce a certain volatile product had a structural change due to
oxidation, which made it easier to generate more complex volatile oxidation products.
At the same time, these volatile products with more complex structures were not easily
separated by detection instruments, making these products difficult to detect. Therefore,
the reduction in detected concentrations of volatile unsaturated aldehydes at later stages of
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lipid oxidation does not necessarily indicate a diminished extent of lipid oxidation [35]. In
the intestinal stage, more hexanal and (E)-2-pentenal were produced by FM, while more
(E,E)-2,4-Heptadienal was produced by FP (Table 1). Due to the formation of (E,E)-2,4-
Heptadienal, hexanal, and (E)-2-pentenal, FM and FP were classified in the lower half of
the score plot (Figure 6). Compared with FP and WF, more kinds of volatile unsaturated
aldehydes were released by FM at this stage. In view of the fact that the least amount of
lipids was released and hydrolyzed from WF, the amount of aldehydes generated following
intestinal digestion was reduced [47]. Overall, in the simulation of digestion, FP contained
more long-carbon-chain unsaturated aldehydes; thus, it might have a higher lipid oxidation
degree than FM.
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4. Conclusions

In general, at the beginning of digestion, the distribution of flaxseed oil in FM was
more uniform and the whole system was more stable due to wet milling coupled with high-
pressure homogenization. Subsequently, during the later stages of digestion, hydrolysis
of the oil droplet interface by digestive enzymes led to complete lipid hydrolysis and
subsequent release of free fatty acids. However, it was observed that the cell structure
within WF and FP did not fully disrupt the digestion process, resulting in a lower rate
of fatty acid release. Owing to the high degree of fragmentation and small granule size,
more lipids were released from FP into the digestive fluid. Simultaneously, the lipid
oxidation degree of FP increased during digestion due to the larger oil–water interface
without protection. In contrast, the lipids in the WF were oxidized at a lower rate during
digestion, which might be due to the low degree of granule breakage and greater restriction
on the chain reaction of oil oxidation. Overall, more fatty acids were released by FM than
FP during digestion, while the total oxidation level of lipids in FM was lower than that
in FP. Different processing methods of flaxseed significantly influence the digestion and
absorption of long-chain polyunsaturated fatty acids, including their oxidative stability.
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