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Abstract: The lotus seed and lily bulb beverage (LLB) has a problem with solid particle sedimenta-
tion. To address this issue, LLB was homogenised twice at different pressures (0~100 MPa) using
a homogeniser. This study aims to investigate the changes in the particle size distribution (PSD),
microstructure, rheological behaviour, sedimentation index (IS), turbidity, physicochemical prop-
erties, and sensory quality of LLBs after homogenisation treatments. The results regarding PSD
and microstructure showed that the suspended particles were decomposed at high pressure with
increasing homogenisation pressure, forming small particles of cellular material, cell wall fragments,
fibre fractions, and polymers. The LLB showed shear-thinning behaviour and weak gelation char-
acteristics (G′ > G′′) and rheological properties. Among all homogenisation pressures, the 60 MPa
sample showed the lowest sedimentation rate and the highest turbidity. When the pressure was
increased from 0 to 100 MPa, the total soluble solid (TSS) content showed an upward trend, while the
ascorbic acid content (AAC) gradually decreased. The highest sensory evaluation was observed in
the 60 MPa sample in terms of overall acceptability.

Keywords: homogenisation; particle size distribution; microstructure; rheological behaviour; sedimenta-
tion index; lotus seed; lily bulbs

1. Introduction

Nowadays, with the increasing concern for health management and disease preven-
tion, there is growing consumer demand for nutritious and tasty natural plant-based
functional beverages, which are less lactose intolerant than dairy products. These bever-
ages are made from a variety of ingredients, including fruits, vegetables, grains, nuts, and
seeds [1,2]. Therefore, the development of nutrient-rich functional plant-based beverages
has a promising future in the nutraceutical market, potentially impacting public health
and nutritional status [3]. Lily (Lilium brownii var. viridulum) is a herbaceous bulb plant
of the Liliaceae family, native to China, and its medicinal history can be traced back to
Shen NonG′s herbal classic of the Han Dynasty [4]. It is rich in proteins, vitamins, and a
variety of bioactive components, such as total phenolic content (2000 mg·100 mL−1), total
flavonoid content (150 mg·100 mL−1), total flavanol content (66 mg·100 mL−1), etc. Its
edible organ is mainly the bulb, which has the health benefits of relieving cough, lowering
blood sugar, antitumour properties, and improving immunity [5]. Lotus seeds and lotus
roots are the main edible parts of the lotus (Nelumbo nucifera Gaertn.). The seeds also have
a history of about 3000 years in China, and its components include carbohydrates (61–62%),
total protein (16–21%), and trace elements such as calcium (30–31 mg·100 mL−1), sodium
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(30–35 mg·100 mL−1), and iron (13–18 mg·100 mL−1). Lotus seeds are widely used in daily
diet and medicine, with antioxidant, anti-inflammatory, anticancer, and diabetes prevention
effects [6].

The combination of lotus seeds and lily bulbs is a traditional Chinese medicinal diet; it
is usually used to cook porridge or make desserts with high medical and edible values. The
two ingredients are rich in flavonoids and alkaloids, which are effective in treating mental
anxiety, insomnia, and irritability [7]. However, fresh lily bulbs have a long growth period
but a short harvesting period, which makes them prone to mechanical damage due to their
high water content and vulnerable surface. In long-term storage, the epidermis is prone
to browning, rotting, mildew, and other problems, resulting in the limited development
of the lily bulb industry [8]. The combination of lotus seeds and lily bulbs to make
plant-based functional beverages can not only make it easier for consumers to obtain a
nutritious traditional medicinal diet suitable for all ages but also reduce the problem of
lily storage difficulties, which is a very potential development strategy. However, lotus
seeds and lily bulbs are rich in starch, which leads to the tendency for solid particles to
settle when they are made into beverages, and such settled particles affect the level of
sensory acceptance by consumers. Therefore, the sedimentation index of the beverage is an
essential parameter that is influenced by particle size, particle distribution, and total soluble
solids. Homogenisation is used to solve the problems of the flocculation and precipitation
of suspended particles [9].

Homogenisation technology could represent a promising strategy for changing the
physical properties of the liquid and significantly improving the particles’ stability. The
term homogenisation means that the liquid is forced to undergo pressure through a ho-
mogeniser so that the particles suspended in the liquid appear in a uniform distribution [10].
Homogenisation treatment distorts particles, fluid cells, and molecules into nanoscale par-
ticles by creating high shear stresses through extreme pressure and narrow space. The
fragmentation of particles interacts with shear actions, turbulence, and cavitation during
homogenisation, leading to the dispersion of individual elements. Moreover, homogeni-
sation has a variety of functions, such as particle size reduction, mixing, dispersion, and
emulsification [11,12]. Salehi et al. showed that homogenisation could reduce the particle
size of juices (tomato, taro, cashew, apple, blueberry, etc.) to sub-micrometres through
pressure, thus changing the sedimentation, PSD, and rheological properties of the pulp [13].
Niccolò et al.’s study on chia seeds showed that homogenisation treatment reduced the par-
ticle size and changed protein conformation [14]. Wellala et al. found that homogenisation
improved the rheological properties and cloud stability and reduced microbial populations
in blended juices consisting of apple, peach, and carrot [15]. Luo et al. found that the treat-
ment of quinoa protein isolates with 50 MPa homogenisation resulted in the destruction
of large protein aggregates, a reduced particle size, enhanced gel properties, and a more
homogeneous microstructure [16]. Homogenisation treatment can improve the sensory
qualities of liquid foods without affecting their nutritional values. Suárez-Jacobo et al. used
homogenisation to treat apple juice and found that the antioxidant capacity of apple juice
was not changed [17]. In addition, homogenisation can effectively extend the shelf life and
reduce the microbial activity of fruit juice [18]. Donsì et al. mentioned that when juices
were treated at 100 MPa, the homogenised juice improved in flavour and texture, while
the untreated juice deteriorated within 20 d [19]. Homogenisation is also used to emulsify
unstable liquids such as soy-protein-stabilised emulsions [20], condensed milk, ice cream,
and other dairy products to improve their flavour and texture while extending their shelf
life [21]. He et al. showed that homogenisation was very effective on plant milk made from
oats, adzuki beans, and adlay [22].

However, in terms of plant-based functional beverage processing, no studies have
been published on the effects of homogenisation for beverages made from lotus seeds
and lily bulbs. This study aimed to determine the effects of different homogenisation
treatments on the physical properties and sensory qualities of a LLB, including rheological
properties, particle size, microstructure, colour change, and nutritional properties. The
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result will provide a reference for selecting homogenisation conditions for the LLB and
provide theoretical support for its development.

2. Materials and Methods
2.1. Raw Materials

Dried lotus seeds (5 kg) were purchased from Jin Yuanbao Market (Tianjin, China).
Lily bulbs (5 kg) were harvested in Qilihe District, Lanzhou City, Gansu Province, a famous
lily growing area with more than 400 years of cultivation history, which produces Lanzhou
lily, the only sweet lily for both medicinal and food uses in China. Uniform-sized fresh lily
bulbs were dug on 15 August 2023 and transported to the laboratory via a cold chain. The
raw materials were kept in cold storage (4 ◦C) for subsequent use.

2.2. Product Development

Dried lotus seeds without cores were selected, which were washed and soaked in tap
water for 2 h before being pre-cooked at 95 ◦C for 15 min until the fruit softened. Fresh
and high-quality lily bulbs were selected and washed, with the mud removed, the bulbs
broken, and heated at 95 ◦C for 5 min. The pretreated materials (25 g of lotus seeds and
25 g of lily bulbs) were mixed with food additives (7.5% white granulated sugar, 0.2%
ascorbic acid, 0.18% citric acid, 0.06% CMC, and 0.08% Xanthan gum), and 450 mL of water
was added. Then, the mixture was ground using a high-speed blender (PB12 × 1, Midea
Living Appliance Manufacturing Co., Ltd. Wuhu, China) for 1 min and filtered twice with
double-layer gauze. All samples were stored in a 500 mL sterile high-temperature resistant
polypropylene plastic bottle in a refrigerator (4 ◦C) for future use.

2.3. Homogenisation Treatment of LLB

Before homogenisation treatment, the homogeniser (BP-3/100, Dao You Industrial
Equipment Co., Ltd., Shanghai, China) was sterilised with 70% ethanol and washed twice
with hot water. The samples were removed from the refrigerator and immediately loaded
into the homogeniser, where they were homogenised twice under different pressures at
0 (control), 20, 40, 60, 80, and 100 MPa. After homogenisation, the sample temperature
was measured using a thermometer, and the results showed that the outlet temperature of
the samples increased with homogenisation pressure (i.e., 0 MPa, 20.50 ± 0.50 ◦C; 20 MPa,
28.50 ± 1.32 ◦C; 40 MPa, 37.30 ± 0.58 ◦C; 60 MPa, 51.00 ± 0.87 ◦C; 80 MPa, 64.80 ± 0.29 ◦C;
and 100 MPa, 73.80 ± 1.04 ◦C). All the homogenised samples were put back into the bottle
and pasteurised at 70 ◦C for 20 min to ensure that they were safe to eat, which were then
cooled down at room temperature and stored in a refrigerator at 4 ◦C after sterilisation.

2.4. Particle Size Distribution

The particle size parameters were measured using a laser particle size analyser (Better-
size 3000, Baxter Instrument Co., Ltd. Dandong, China). The particle size was distinguished
by the volume-based diameter (D [4,3]) and area-based diameter (D [3,2]) [23].

2.5. Microstructure Observation

The micrographs of LLB particles were carried out using a SU1510 scanning electron
microscope (Sulin Scientific Co., Ltd. Hubei, China) according to the method proposed by
Sharma et al. [23]. Briefly, 3 mL of the samples were freeze-dried for 48 h (−50 ◦C) in an
FD-IA-50 lyophilizer (Bilang Co., Ltd. Shanghai, China). After grinding into powder, they
were glued to a sample table with double-sided tape, and their PSDs were observed using
an electron microscope.

2.6. Rheological Properties

A rheological test was carried out using a rotational rheometer (MARS 60, Haake
Technik GmbH, Vreden, Germany) following the methodology described by Saricaoglu
et al. with some modifications [24]. The rheometer was equipped based on parallel plate
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geometry with the shape (diameter: 35 mm), whose gap size was set at 2 mm. The test was
conducted at a constant temperature (25 ◦C), before which 70% ethanol was utilised for
disinfection, and then a small amount of the samples were transferred using a pipette and
moved to the centre of the rheometer plate to prevent the formation of air bubbles while
minimising the damage to the sample structure.

Equation (1) expresses the relationship between the shear rate and shear stress and the
shear rate and apparent viscosity in steady-state rheological tests:

τ = K × γn (1)

where τ is the shear stress (Pa), K is the consistency coefficient (Pa·sn), γ is the shear rate
(s−1), and n is the flow behaviour index.

For dynamic rheology, we used frequency sweep to determine the viscoelastic be-
haviour of the LLB samples at a temperature of 25 ◦C and a scanning frequency (1~100 Hz)
to determine the viscoelastic characteristics of the test samples by comparing G′ (elasticity)
and G′′ (viscosity) at different frequencies.

2.7. The Sedimentation Test and Sedimentation Index

The sedimentation index was determined according to the methodology described by
Staubmann et al. [25]. The samples were kept in 10 mL sealed glass bottles, placed upright
in a 4 ◦C refrigerator, and remained stable and undisturbed except when transported from
the refrigerator to the experiment table. The heights of the bottom sediment, middle turbid
liquid, and top supernatant in sealed glass bottles were measured with a vernier calliper at
0, 48, and 96 h after the sample preparation. An analysis of the sedimentation index was
carried out as previously reported [24] with some modifications. The 10 mL of samples
were placed in centrifuge tubes and subjected to centrifugation at 4000 rpm for 20 min using
a high-speed freezing centrifuge (TGL-16M, Scenery Technology Co., Ltd. Ji’an, China).
The supernatant was carefully decanted after centrifugation, and the mass of the sediment
was measured. The sediment degree of the samples was evaluated according to the index
of sedimentation, which was calculated using the following Equation (2):

Sedimentation Index =
M0

M
× 100 (2)

where M0 is the sedimentation volume (g); M is the total sample volume (g).

2.8. Turbidity Measurement

The turbidity (%) was determined according to the methodology described by Zhong
et al. [26]. The LLB samples were centrifuged (8000 rpm, 10 min), and the supernatant was
extracted into a 96-well microplate. The absorbance values with wavelengths ranging from
650 nm to 700 nm were measured using a microplate reader (SpectraMax190, Precision
Instrument Co., Ltd. Yunze, China).

2.9. Colour Parameters

The colour parameters were determined using a colourimeter (SR-66, Ledi Instrument
Co., Ltd. Ningbo, China) according to the methodology described by Kubo et al. [23]. The
LLB samples were shaken evenly and poured into a glass cuvette to measure their L*, a*,
and b* values after being corrected with black and white plates. The colour variation (∆E*)
was calculated using the following Equation (3):

∆E =

√
(L − L0)

2 + (a − a0)
2 + (b − b0)

2 (3)

where the L0, a0, and b0 values refer to the colour of the samples under 0 MPa, while L, a,
and b are the colour of the samples under 20, 40, 60, 80, and 100 MPa.
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2.10. pH and Total Soluble Solids (TSS)

The pH was measured using a pH instrument (PHS-3E, Yiqian Scientific Instruments Co.,
Ltd. Xinghua, China). After calibration with a buffer solution, a pH meter probe was inserted
into the sample liquids to determine the pH value. A PAL-α digital refractometer (AK002B,
Ceyou Technology Co., Ltd. Shenzhen, China) was used to measure the TSS (◦Brix).

2.11. Ascorbic Acid Content (AAC)

The ascorbic acid (mg·100 mL−1) was determined using the 2,6-dichlorophenol in-
dophenol titration method described by Santana et al. [27]. The samples (10 mL) were
placed into a 100 mL volumetric flask and titrated to scale with a 20 g·L−1 oxalic acid
solution, which was shaken and extracted for 10 min. The extraction solution (10 mL) was
absorbed into a 100 mL triangular bottle and titrated until it appeared reddish without
fading for 15 s.

2.12. Sensory Evaluation

The sensory evaluation was determined using Pali et al.’s method [28]. The appearance,
colour, aroma, mouthfeel, taste, and overall acceptability of the LLB were scored by a
sensory evaluation group involving 10 participants. The sensory evaluation should be
in an area without smell or noise, the temperature should be controlled within 20~22 ◦C,
the relative humidity should be maintained at 50~55%, and the room should be draughty.
Appropriate amounts of samples were poured into 50 mL open transparent containers and
placed in a refrigerated environment at 4~6 ◦C, which should not be co-stored with others
that are toxic, harmful, smelly, or have adverse effects on them. The samples were taken
out only before the evaluation began so that their temperature during the evaluation was
within the range of 6~10 ◦C. The result was based on an intensity scale from −4 to 4 points,
where the differences were defined as very substantial (−4 and 4), considerable (−3 and
3), significant (−2 and 2), minimal (−1 and 1), or not significant (0 points) compared to
the samples under 0 MPa. Algebraic symbols, i.e., negative or positive, indicate lower or
higher perceptions [29].

2.13. Statistical Analysis

All experiments were arranged using a randomised design and conducted in triplicates.
Data were reported as means ± standard deviation (SD) for triplicate determinations. The
ANOVA analysis of variance was used to compare the mean values, the SPSS 20.0 statistical
analysis was adopted, and all graphs in this study were plotted using Origin 2018. The
level of significance was set at (p < 0.05).

3. Results
3.1. Particle Size Distribution (PSD)

Figure 1 illustrates the effect of several homogenisation pressures on the particle size
distribution of LLB samples. As shown in Figure 1a, the average particle size of LLBs is
reduced after the homogenisation treatment, which is consistent with the observations in
previous studies on fruit and vegetable products, such as lily pulps [30], rosehip nectar [24],
tomato juice [31] and blackcurrant juice [32]. Gul et al. found that cavitation, friction, shear,
and turbulence phenomena were generated after homogenisation, and as the homogenisa-
tion pressure increased, suspended particles such as cellular debris, polymers, and fibrous
particles in the samples were further broken down into smaller sizes [33].
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In addition, as shown in Table 1, the samples treated under 0~100 MPa showed the
phenomenon of unimodal distribution. Compared with the sample under 0 MPa, the PSD
span of those under 20 and 40 MPa were significantly reduced, which represented the
width of the PSD, with smaller values indicating a narrower distribution [23]; however, the
samples under 60~100 MPa had a significantly higher span than those under 0~40 MPa
(p < 0.05). This is contrary to the findings of Liu et al. [30], who reported a narrower dis-
tribution of PSD with increasing pressure on homogenised lily pulps from 20 to 100 MPa,
possibly because two composite raw materials, lily bulbs and lotus seeds, were used in
our study and that homogenisation preferentially crushed one of the more friable mate-
rials, resulting in a slightly larger measured span value. Moreover, the particle diameter
decreased while the number of particles increased after homogenisation treatment, which
increased the number of contact points among the particles due to mechanical and chemical
interactions [23]. On the other hand, the span parameter was determined by the cumulative
distribution values D10, D50, and D90 (Table 1). Therefore, the proportion of these three
values greatly influenced the parameter of span. In this study, the average particle size of
LLBs decreased with the increase in pressure, and the cumulative distribution values of the
particles of samples treated under 60~80 MPa decreased accordingly so that the derived
parameter of the span was the one that represented the wider distribution of LLBs in the
range of small particles.

Table 1. Particle size characteristics in lotus seed and lily bulb beverage. Different letters in the same
row indicate significant differences (p < 0.05) between the means.

Homogenisation
Pressure D10 (µm) D50 (µm) D90 (µm)

Particle
Distribution

Span

0 MPa 25.41 ± 0.02 a 71.06 ± 0.29 a 218.43 ± 9.99 a 2.72 ± 0.13 e

20 MPa 6.44 ± 0.02 b 32.92 ± 0.15 b 84.69 ± 0.32 b 2.38 ± 0.01 d

40 MPa 5.83 ± 0.02 c 31.22 ± 0.13 c 73.84 ± 0.15 c 2.18 ± 0.05 c

60 MPa 2.68 ± 0.02 d 15.82 ± 0.13 d 51.27 ± 0.16 d 3.07 ± 0.02 b

80 MPa 2.43 ± 0.02 e 12.67 ± 0.07 e 44.55 ± 0.34 de 3.32 ± 0.01 a

100 MPa 2.33 ± 0.02 f 10.94 ± 0.04 f 39.49 ± 0.50 e 3.40 ± 0.03 a
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The effect of the homogenisation treatment on the LLB volume (D [3,2]) and surface
weight (D [3,2]) is shown in Figure 1b. The values of both D [4,3] and D [3,2] significantly
decreased (p < 0.05) due to the homogenisation pressure, with a reduction of 78% and 82%
in D [4,3] and D [3,2] in the range of 0~60 MPa, while a reduction of 23% and 15% in D [4,3]
and D [3,2] occurred in the range of 60~100 Mpa, respectively. This result indicated that
both large and small particles were greatly affected when the samples were treated under
less than 60 MPa, while large and small particles were less affected when the pressure was
higher than 60 MPa, but large particles were more seriously damaged than small particles.
The damage behaviour of particles under homogeneous pressures appeared asymptotic. Yu
et al. also reported similar patterns of homogenisation effect on particles [34]. As explained
by Augusto et al. about the effect of homogenisation on suspended particles, the remaining
cells were destroyed during the homogenisation process, and the fragments in the liquids
were broken up into smaller particles [31]. However, these small fragments were less
susceptible to fragmentation than slightly larger or whole cells.

3.2. Microstructure

Figure 2 describes the micrographs of LLBs at different high pressures, and it is obvious
that there are many large spherical particles of irregular shapes in the sample under 0 MPa,
with small particles and inhomogeneous suspensions distributed around them. The sizes
of the particles in the samples under 20~40 MPa were gradually unified but still showed
scattered small particles dispersed in the suspension. When the pressure increased to
60~100 MPa, the particles therein became more rounded, with fewer and fewer broken
particles visible.

In order to further analyse the microstructure of LLBs, we used a scanning electron
microscope to observe it. As shown in Figure 3, the structural morphology of the sample
under 0 MPa changes drastically compared to those under 20~100 MPa. The surface of
the samples under 0 MPa is rough, aggregated, and stacked, showing irregular geometry
shapes, with scattered small particles visible around them; these accumulated aggregates
may be formed by some complete proteins in cells or plants after lyophilization and grind-
ing; meanwhile, irregular geometric structures are formed, while smaller particles are
related to starch particles, fibre particles, or other substances [35]. In addition, samples
under 20~100 MPa stretch after homogenisation treatment, gradually forming irregular
lamellar structures with sharp edges and smooth surfaces, which are fragmented into
smaller particles. As observed through a particle size analysis, these suspended particles
were strongly decomposed under high pressure, leading to the formation of small parti-
cles such as cellular materials, cell wall fragments, fibre fractions, and polymers. Similar
microstructural changes were obtained by Huang et al. in their study on homogenisation-
treated sugar beet pulps (5~100 MPa) [36]. In fact, homogenisation has been evaluated to
affect microstructural changes not only in many fruit and vegetable juices or products such
as pumpkin [37] and mango juices [38] but also in a number of protein beverages, such
as peanut milk [39] and skim milk powder [40]. These results indicated that homogeni-
sation strongly affected the particle size, particle number, and microstructural changes
in suspensions.
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3.3. Rheological Characterisation
3.3.1. Steady-State Shear Properties

Rheological properties reflect the deformation and flow behaviour of substances. The
rheological behaviour is mainly related to the types of interactions between the particles
and molecules responsible for gel formation [41]. The effect of different homogenisation
pressures on LLBs was described through the response of the shear rate and shear stress as
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well as the shear rate and apparent viscosity in rotation mode (Figure 4). The shear stress
of all samples increased with the shear rate, while the apparent viscosity decreased with
the increase in the shear rate. In other words, the samples all exhibited non-Newtonian
fluid properties (which refer to the fluid with a nonlinear correlation between the shear
rate and shear stress) and shear-thinning behaviour, which presented the pseudo-plastic
behaviour [42]. An increasing shear stress was observed with an increasing shear rate
among the LLB samples under different homogenisation pressures. Specifically, the appar-
ent viscosity of the samples under 20~100 MPa was consistently higher than that of the
sample under 0 MPa throughout the shear rates we observed. The shear stress increased
significantly (p < 0.05) in the range of 0~60 MPa, which might be due to the interaction force
between particles and the formation of interconnected gel networks, thereby enhancing the
internal structure of the samples [43]. However, the shear stress did not change significantly
(p > 0.05) with an increase in pressure of 60~100 MPa because changes in the shear stress
might be related to the differences in particle volume fractions, power of interparticle
interactions, and particle sizes, just as in the previous results of particle sizes. There was no
significant difference (p > 0.05) in the homogenisation pressure of 60~100 MPa, which was
consistent with the results of studies on walnut yogurt and pomelo peel flour [44,45].
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Unlike the changes in shear stress, the apparent viscosity of all homogenously treated
samples decreased with an increasing shear rate, exhibiting shear thinning. The difference
in apparent viscosity among the samples under different homogeneous pressures at high
shear rates was less than that of the samples at low shear rates because the gel structure
tended to break at higher shear rates [46], which could also be explained by the structural
damage and rearrangement caused by shear rates [33]. The increase in the apparent
viscosity of LLBs treated through homogenisation was partly due to a reduction in the
suspended particles in the system, similar to the observations of the microstructures and
PSD. The decrease in particle size produced a larger interfacial area as well as a decrease in
the average distance among particles, leading to an increase in interparticle interactions
with increasing homogeneous pressure and a better dispersion of smaller particles in the
beverage system, which resulted in higher viscosity values [24]. This result is consistent
with the viscosity variation trend of tomato juice and soybean yogurt treated using different
homogenisation methods [31,47].

3.3.2. Dynamic Shear Properties

In addition, the deformation resistance of the LLB samples was determined using a
dynamic frequency sweep assay. G′ and G′′ were used to represent the storage modulus
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(elastic capacity) and loss modulus (viscous capacity), respectively [34]. G′ and G′′ had
an increasing scanning frequency (in the range of 0.1~100 rad·s−1), and G′ was always
higher than G′′, indicating that all samples had significant viscoelasticity (p < 0.05) and that
homogenisation had a greater effect on elasticity than the viscosity of LLBs (Figure 5). The
LLB can be described as a so-called weak gelatinous structure [48].
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In this study, G′ and G′′ significantly increased (p < 0.05) in the range of 0~60 MPa,
indicating that the elasticity and viscosity of LLBs were significantly improved through ho-
mogenisation within this homogenisation pressure range. However, with a further increase
in pressure, the increases in G′ and G′′ were insignificant (p > 0.05) within 60~100 MPa,
indicating that the continued increase in pressure had less effect on the viscoelasticity of
LLBs. The increase in G′ and G′′ might be due to starch gelatinisation and protein denatura-
tion in the beverage system caused by homogenisation pressure [43]. It has been previously
reported that differences in flow characteristics might be due to the solubilisation of large
particles such as starch and pectin in the system or the changes in beverage particle mor-
phology and the interactions among the particles affected by homogenisation [48]. Tan
et al. explained that the differences in the viscoelasticity of tomato juice caused by different
homogenisation treatments resulted from the decomposition of the system-suspended
particles during processing [49]. Therefore, our results showed that homogenisation had an
ameliorating effect on the viscoelasticity of LLBs and was most effective at 60 MPa, which
meant that the deformation resistance of the beverage was related to different pressures. Hu
et al. showed that the G′ and G′′ values of mango juice increased with the gradual increase
in the range of test frequencies (0.1–10 rad·s−1); the G′ was always greater than G′′ among
all samples, and mango juice had a weak gelling property [50]. Bi et al. showed that an
increase in homogenisation pressure significantly enhanced the viscoelasticity of soybean-
isolated protein emulsion gels and that a certain pressure (less than 60 MPa) contributed to
the formation of a more stable three-dimensional network structure of soybean-isolated
protein emulsion gels [51]. However, when the homogenisation pressure was too high
(up to 80 MPa), the stability of the emulsion structure was affected. Luo et al. found that
the homogenised quinoa protein samples had weak gel properties and that G′ and G also
increased gradually with increasing pressure (0~50 MPa) [16].

3.4. Pulp Sedimentation

Pulp sedimentation is a common problem during the production of LLBs. The sedi-
mentation test results after homogenisation treatment are shown in Figures 6 and 7, where
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the sample under 0 MPa shows accelerated sedimentation compared with those under
20~40 MPa. The highest sedimentation rate of the sample under 0 MPa was 18%, measured
after 0 h of storage (Figure 6a). A clear stratification between the supernatant and turbidity
could be observed after 48 h of storage (Figure 7), in which the sample supernatant under
0 MPa was clear, and the most sediment was 21% (Figure 6b). While the supernatant of
the samples under 20~100 MPa was translucent, the turbidity or sediment stratification
was not apparent, the overall turbidity was higher, and the sedimentation rate was lower
compared with the sample under 0 MPa. It might be due to the fact that pectin, cellulose,
hemicellulose, proteins, and other components of fruits and vegetables were broken down
into small particles through homogenisation, forming smaller particles and tending to be
more suspended as the rotational speed increased [52]. The IS of each treatment tended to
stabilise after 96 h, with the highest sedimentation rate being 25% for the sample under
0 MPa and the least sedimentation being 9% for those under 40~80 MPa. In contrast, the
sedimentation rate of the samples gradually increased when the pressure exceeded 60 MPa
(Figure 6c). The same result was verified in the sedimentation rate test, with significant
differences (p < 0.05) between samples under 20 to 100 MPa and the sample under 0 MPa
(Figure 6d). Similar results were found by Silva et al. in the homogenisation effect on the
stability of pineapple pulps, in which only the unhomogenised samples showed phase
separation during the first 24 h of the sedimentation test [9].
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Figure 7. Lotus seed and lily bulb beverage samples (different homogenisation pressures: 0 MPa,
20 MPa, 40 MPa, 60 MPa, 80 MPa, and 100 MPa) were stored at 0 h, 48 h, and 96 h.

On the other hand, we observed that the sample under 0 MPa had the highest sed-
imentation rate within 96 h, with the sediment increasing from 18% to 25%, while the
high-pressure-treated samples had a lower sedimentation rate, with an increase of only 5%
in the precipitation rate of the samples under 60 MPa, suggesting that the samples treated
by homogenisation had better stability. According to Stokes’ Law, the sedimentation rate of
ions is proportional to the diameter of the particles and the density difference between par-
ticle density and fluid, which is inversely proportional to the fluid viscosity [23]. Therefore,
the changes in IS during homogenisation are related to the particle size and stability of the
homogenised samples. These results are consistent with the sedimentation law of cashew
apple juice in a study by Leite et al. [53].

3.5. Turbidity

Turbidity reflects the stability of a beverage, which means that the mouthfeel and
appearance of beverages with high turbidity are relatively good and more easily accepted
by consumers [49]. The turbidity of the sample under 0 MPa was the lowest (1.06%), and
that of the sample under 60 MPa was the highest (9.08%). In addition, it showed an upward
trend when the homogenisation pressure was between 20 and 60 MPa, while it gradually
decreased when the pressure exceeded 60 MPa (Table 2), probably because smaller particles
were lighter to pass through the samples as the pressure increased [54]. Studies have
shown that homogenisation treatment has an impact on beverage turbidity; the turbidity
change in beverages is mainly due to the fact that during the homogenisation process, the
particulate matter in the beverages composed of pectin, fat, cellulose compounds, proteins,
and their complexes with various substances are broken down into micron sizes to produce
a stable dispersion, thus giving the juices higher turbidity [55]. The results of our study
are similar to those of Tian et al., indicating that the turbidity of juices can increase after
homogenisation treatment and thus improve stability [56].
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Table 2. Other physicochemical characteristics and physical properties of lotus seed lily bulb beverage.
Different letters in the same row indicate significant differences (p < 0.05) between the means.

Homogenisation
Pressure

Relative
Turbidity (%) PH TSS (◦Brix) Ascorbic Acid

(mg·100 mL−1)

0 MPa 1.06 ± 0.16 c 4.61 ± 0.03 a 4.98 ± 0.31 c 13.88 ± 1.78 a

20 MPa 5.15 ± 0.11 b 4.55 ± 0.05 b 5.63 ± 0.31 b 13.60 ± 1.76 a

40 MPa 5.29 ± 0.20 b 4.54 ± 0.04 b 5.73 ± 0.25 b 13.32 ± 1.28 a

60 MPa 9.08 ± 1.09 a 4.51 ± 0.04 b 6.27 ± 0.15 a 13.03 ± 1.08 a

80 MPa 8.88 ± 0.76 a 4.49 ± 0.05 b 6.30 ± 0.26 a 12.47 ± 0.88 ab

100 MPa 8.73 ± 0.29 a 4.48 ± 0.03 b 6.33 ± 0.25 a 11.05 ± 0.69 b

3.6. Colour Value

Colour is one of the important factors affecting consumers’ acceptance of food, which
reflects the maturity and freshness of vegetable beverages as an indicator of food safety [57].
Table 3 shows the variations in the parameters L* (lightness), a* (redness: green to red), b*
(yellowness: yellow to blue), and ∆E (total colour change) under homogenisation pressure.
With an increase in pressure, the value of L* showed a continuous upward trend within the
range of 0~60 MPa, with the brightness reaching a maximum of 37.23 at 60 MPa. However,
when the pressure increased to 80 MPa, the L* parameter realised a slight decrease, but the
brightness was still significantly higher than that of the sample under 0 MPa (p < 0.05). This
result is consistent with that of Vasquez-Rojas’ study, where it is stated that lily bulbs and
lotus seeds are broken into smaller particles through homogenisation treatment, making
these particles more light-scattered and reflective [58].

Table 3. L*, a*, b*, and ∆E of lotus seed lily bulb beverage. Different letters in the same row indicate
significant differences (p < 0.05) between the means.

Homogenisation
Pressure L* a* b* ∆E

0 MPa 32.73 ± 0.54 d −0.58 ± 0.35 a −3.79 ± 0.02 a 0.00 ± 0.00 d

20 MPa 35.88 ± 0.02 b −0.77 ± 0.02 bc −4.34 ± 0.08 b 3.20 ± 0.03 b

40 MPa 36.31 ± 0.45 b −0.73 ± 0.02 b −4.30 ± 0.02 b 3.62 ± 0.45 b

60 MPa 37.23 ± 0.51 a −0.83 ± 0.02 e −4.59 ± 0.05 c 4.47 ± 0.50 a

80 MPa 36.44 ± 0.04 ab −0.79 ± 0.02 de −4.51 ± 0.04 c 3.79 ± 0.05 b

100 MPa 35.09 ± 0.41 c −0.73 ± 0.02 bc −4.34 ± 0.10 b 2.42 ± 0.41 c

In addition, the brightness of the LLBs gradually decreased when the pressure was
higher than 60 MPa, probably due to the increase in temperature resulting from the ex-
cessive homogenisation pressure, which led to the formation of the Maillard reaction and
browning compounds as well as a colour change in the beverages. The results are similar to
those of a study by Xia et al. [59]. On the other hand, all LLB samples had negative values
with the parameters a* and b*, indicating that green and blue were the primary sources of
the colour parameters of LLBs, and as the homogenisation pressure increased, the a* and b*
values were significantly lower compared to those of untreated samples (p < 0.05). ∆E is
an important parameter for colour difference analysis. Consistent with the parameters L*,
a*, and b*, the maximum colour difference of 4.47 was observed at a pressure of 60 MPa,
which was significantly higher compared to 0 MPa (p < 0.05).

In conclusion, the homogenisation treatment effectively changed the colour value of
LLBs and enhanced the brightness of the samples in the low-pressure range. However,
excessive pressure may cause mechanical damage and destroy the cell structure, and due to
the increase in pressure, the particles within beverages are broken into smaller diameters,
resulting in excessive contact of the particles with oxygen. In contrast, the increase in
pressure leads to an increase in the temperature of the beverages, producing non-enzymatic
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browning, which is not conducive to the enhancement of brightness and ultimately affects
the change in colour value.

3.7. pH and TSS

The pH value is an important parameter for assessing the quality of beverages, which
directly affects the storage conditions and preservation methods. The results showed that
the pressures of all samples treated through homogenisation were significantly lower than
0 MPa (p < 0.05), and the pH value was the lowest at 100 MPa, which was 0.13 lower than
that of the sample under 0 MPa (Table 2). Due to the pressure generated during homogeni-
sation, the particle size of the beverages is reduced, resulting in an increase in the exposed
surface area of the particles and a change in pH, which is influenced by charged molecules.
On the other hand, homogenisation pressures and the accompanying high temperatures
may change the conformation of proteins, affecting the charge or solubility and leading to
a change in the pH value of the beverages [60]. Gul and Saricaoglu et al. studied the pH of
hazelnut beverages and found that the pH was reduced after homogenisation treatment,
which they attributed to changes in the dissociation constants of acids and bases to the
applied homogenisation pressure [33]. Homogenisation significantly affected the TSS of
LLBs (p < 0.05), and the TSS content gradually increased with homogenisation pressure.
The highest TSS content was 6.33 ◦Brix at 100 MPa, which was 1.35 ◦Brix higher than that at
0 MPa. Similar results were obtained in a previous study on hazelnut milk, and the increase
in sugar content might be due to the release of starch granules under mechanical pressure
or an increase in the proportion of soluble protein in the homogenisation treatment [46].
The effect of the homogenisation pressures of 0, 20, 40, 60, 80, and 100 MPa on lily pulps
was investigated by Liu et al. [30]. Lily pulps were reported to be a composite suspension
system consisting of starch-filled cells, parenchymal cells, or aggregates of cells dispersed in
liquids. Stress and high-temperature cracking of these cells during homogenisation resulted
in an increased starch grain expansion and gelatinisation degree, with a corresponding
increase in the TSS content.

3.8. Ascorbic Acid Content

The stability of ascorbic acid is susceptible to degradation by high temperature, light,
and oxygen. Table 2 shows the AAC of LLBs. The sample under 0 MPa (13.88 mg·100 mL−1)
is significantly higher than the treatment groups under 100 MPa (11.05 mg·100 mL−1);
however, when the homogenisation pressure is in the range of 20~80 MPa, the AAC is
only slightly reduced, which shows no significant difference from the sample under 0 MPa
(p > 0.05). Similar results were reported by Pérez-Conesa et al., who treated tomato puree
using a homogeneous pressure of 10~20 MPa, and the AAC did not reduce obviously,
probably due to the low pressure used for the homogenisation treatment [61]. Saricaoglu
et al. reported that the AAC of rosehip nectar was significantly reduced when homogenised
thrice under 75 MPa or once under 155 MPa [24]. Velázquez-Estrada et al. found that the
AAC of orange juice was reduced under a homogenisation pressure of 100~200 MPa and
that the degree of oxidation of ascorbic acid was directly proportional to the homogenisation
pressure [62]. It is well known that the high temperature generated by homogenisation
pressure accelerates the oxidation of ascorbic acid [40]. However, the temperature might
not be the only factor affecting the reduction of ascorbic acid in this experiment, as relevant
studies have shown that heavy metal cations in the homogeniser also accelerate its oxidative
degradation [63].

3.9. Sensory Evaluation

Sensory evaluation is a qualitative and quantitative measurement as well as analysis
of food products with the help of people’s five senses, psychology, and physiology, which
helps to ensure consumer acceptance and satisfaction with product quality. The related
attributes of appearance, colour, aroma, taste, mouthfeel, and overall acceptability were
included in the sensory evaluation of the LLB (Figure 8). Appearance and colour are
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important aspects in evaluating beverages. Samples homogenised at 20~100 MPa were all
significantly different (p < 0.05) compared to the sample under 0 MPa, which was consistent
with the results of turbidity and IS, indicating that the sample under 0 MPa simply flowed
through the homogeniser without producing changes in its stability. Aroma is an important
part of sensory evaluation—the changes that will affect the acceptance of consumers. Our
results showed no significant difference among the aromas of the homogenised samples
(p > 0.05), probably due to the fact that the two vegetables, lotus seeds and lily bulbs,
had less pronounced aromas of their own. Mouthfeel and taste scores indicate whether a
beverage has a balanced sugar/acid ratio and a pleasant fruit or vegetable flavour. The
homogenised samples had a significantly better (p < 0.05) mouthfeel compared to the
sample under 0 MPa, indicating that the homogenisation treatment had a positive effect
on the mouthfeel of LLBs. However, homogenisation had an insignificant effect on taste,
and there was an insignificant difference between samples under 20 to 100 MPa compared
with the sample under 0 MPa (p > 0.05). Regarding the overall receptivity, the judges were
satisfied with the LLB samples, with the highest receptivity in the samples under 60 and
80 MPa.
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4. Conclusions

In this study, we compared a LLB treated under different homogenisation pressures
(0~100 MPa) to assess the effect of homogenisation on its physical properties and sensory
quality. Several assays were performed, including PSD, microstructure, rheological be-
haviour, IS, turbidity, and sensory evaluation. In conclusion, the homogenisation treatment
caused the suspended particles in the beverages to be strongly decomposed under high
pressure, increasing the viscosity of the samples and causing the beverages to appear to
have weak gel properties. At the same time, homogenisation improved the turbidity and
stability of the LLB, which had a positive effect on IS. The overall acceptance of the LLB
sample under 60 MPa by the judges was the highest in the sensory evaluation. Homogeni-
sation did not disturb the original PH, TSS, or AAC in LLBs. Thus, homogenisation is a
quite suitable pretreatment technology for enhancing the physical properties and sensory
quality of LLBs. It should be noted that there were some limitations in this study; we only
investigated the effect of different pressures on the physical properties of LLBs. Further
investigations of the enzyme activities, bioactive substances, and shelf life under different
homogeneous conditions are recommended.
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