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Abstract: Persimmon wine has various nutritional elements and high commercial potential. However,
the high content of methanol, which is derived from the fruit’s pectin, always hinders persimmon
wine production. To reduce the methanol level in the wine, the effects of persimmon cultivar, starter,
pectinase, and pretreatment methods were investigated via single-factor and orthogonal experiments.
The persimmon cultivar ‘MaoKui’ was finally used throughout the study owing to its lowest pectin
concentration (24.5 g/kg). The best treatment conditions against the persimmon pulp were pectinase
(0.04 g/kg) at 30 ◦C for 4 h, then boiled at 115 ◦C for 15 min before fermentation started. The
optimized fermentation conditions for wine production were pectinase (0.03 g/kg), 250 mg/kg starter
(BO213 and SPARK with equal amounts), at 28 ◦C for 6 d. The obtained wine had 77.7 mg/L methanol
and a 68.4% raw juice yield. The fruit wine had 111.4 mg/L methanol and a 90.6 sensory evaluation
score. Forty-nine volatile aromas were identified. Ethyl acetate content was the highest, followed by
3-methyl-1-butanol, 2,3-butanediol, and lactate ethyl ester. The persimmon wine had a unique style
with transparent color, elegant aroma, and pure taste.

Keywords: persimmon wine; low methanol; fermentation technology; methanol; pectinase

1. Introduction

Persimmon (Diospyros spp.) is a health-promoting fruit that is rich in phenolic com-
pounds, carotenoids, fiber, vitamins, and minerals. Over 350 species of persimmon are
distributed in tropical and subtropical regions, and the global production of persimmon
surpasses 5.75 million tons annually [1,2]. Due to its nutritional compositions, persimmon
has a strong antioxidant capacity [3–5]. As one of the largest planting regions, Shaanxi
produced over 330 thousand tons of persimmons in 2022 according to data released by the
Bureau of Statistics of the province.

The marketing of huge amounts of fresh persimmon fruit is hindered by its limited
shelf-life, and the insufficient demand results in about half of the fresh persimmon fruit
spoiling in the orchards. To avoid potential economic loss, the fresh fruits can be processed
in several accessible approaches to produce value-added products, such as jams, persim-
mon cake, juice, vinegar, and wine. The fermented persimmon beverages also contain
significant quantities of organooxygen compounds, prenol lipids, fatty acyls, flavonoids,
carboxylic acids, and derivatives [6]. However, persimmon beverage production is usually
characterized by a poor juice yield. Owing to the presence of quantitative pectin, the
crushed persimmon pulp exhibits a highly viscous state quite different from the liquid
states of grapes and apples [2,7].

The use of pectinase can enhance the juice yield by decomposing the pectin, but it will
significantly increase the methanol level in the resultant pulp and the final products like
wine. Methanol possesses a clear anesthetic impact on the human neurological system,
leading to disruptions in blood circulation within brain tissue, widespread damage to brain
tissue, and potentially fatal central respiratory failure [8]. The methanol concentration in
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fruit wines can be affected by several aspects including the pectin content and esterification
level in the fruits, the glycine metabolic activity of the chosen starter, the enzymatic hydrol-
ysis of pectin by pectinase, and the fermentation process [9,10]. Although the fermentation
process for persimmon wine production has been optimized before, the content of methanol
in persimmon wine was not given special attention [2,5,6].

Considering the potential health risk, the production of persimmon wines with low
methanol levels, high juice yields, and distinctive flavors is crucial for the sustainable devel-
opment of the industry. In the present study, the effects of feedstock, starters, pectinase, and
treatments on persimmon wine production, especially methanol levels, were investigated
based on single-factor and orthogonal experiments. The results showed that the feedstock,
starter, and pectinase had significant impacts on methanol production, juice yield, and
sensory flavors. The results should thereby offer theoretical and technical assistance for
producing favorable persimmon wine.

2. Materials and Methods
2.1. Starters and Activation

The starters used in the study were BO213, SPARK, and CH9 from Laffort Co. (Euro-
pean Union), bought from the local distributor. The freeze-dried starters were activated by
adding 10 times distilled water (w/v), placing in a water bath at 37 ◦C, and stirring gently
for 20 to 30 min until abundant small bubbles formed.

2.2. Raw Material Heat Treatment

The raw materials were treated by two different heat treatments: microwave treatment,
which involved heating in a microwave (LG, Shanghai, China) oven for 3 min under
medium fire (power output 350 watts, oven volume 20 L, sample volume 200 mL, with
a final temperature for the microwave oven of 60–70 ◦C), and cooking treatment, which
involved treating at 115 ◦C for 15 min under a steamer (LDZF-50KB-II, Shanghai, China).
When the temperature naturally decreased to 30 ◦C, starters were added to the persimmon
pulp to initiate fermentation at 28 ◦C.

2.3. Persimmon Winemaking

Firstly, persimmon fruits from five cultivars were analyzed for their basic charac-
teristics, and the one with the least pectin was selected for subsequent wine-making.
Briefly, persimmon fruit was manually sorted, cleaned, and crushed. Then, the potassium
metabisulfite (0.2 g/kg) was added to the pulp. Prior to heat treatment, the slurry was
treated with pectinase (0.03 g/kg, w/w) at 30 ◦C for 4 h. If not stated especially, fermen-
tation was initiated by an inoculating activated starter in 500 mL glass bottles containing
200 g of persimmon pulp throughout the present study. Sucrose was added to the pulp
during vigorous fermentation. The weight loss of CO2 of the fermentation broth was
measured at intervals of 24 h until no gas was produced. The fermentation was ended
when the total sugar was below 2 g/L. The obtained persimmon wine was supplemented
with sulfurous acid (1%, v/v) and stored at 4 ◦C for further analysis.

2.4. The Effects of Critical Factors on Persimmon Wine

A preliminary study was undertaken to investigate several elements that influence the
sensory evaluation, methanol content, and alcohol content of fermented persimmon wine.
The factors examined included fermentation temperature, sucrose addition, pectinase
addition, and starter addition. The factors chosen were the starters inoculation (150,
200, 250, and 300 mg/kg), pectinase dosage (0.02, 0.03, 0.04, and 0.05 g/kg), sucrose
addition (13.2, 14.9, 16.8, and 18.3%), and temperature (22, 25, 28, and 31 ◦C). Three starters,
namely BO213, SPARK, and CH9, and their mixtures (BO213+SPARK, BO213+CH9, and
SPARK+CH9) were used for persimmon wine fermentation, and their effects on sensory
evaluation, methanol content, and alcohol content were evaluated. The combined yeasts
were added at 75 + 75 g/kg. Then, the effects of four pectinases (PSoleibo, Soleibo Co., Ltd.



Foods 2024, 13, 748 3 of 12

(Beijing, China); PZhejiang, Zhejiang Industrial Trade Co., Ltd. (Hangzhou, China); PLaffort,
Laffort, Spanish; and PBioduly, Bioduly Co., Ltd. (Nanjing, China) on persimmon wine were
evaluated. Finally, the effects of pretreatment on persimmon wine also were investigated:
1. microwave treatment followed by pectinase hydrolyzation, 2. cooking treatment followed
by pectinase digestion, 3. pectinase pretreatment by cooking treatment, and 4. pectinase by
microwave treatment. Based on single-factor experiments, orthogonal experiments were
performed to obtain the optimal fermentation conditions of persimmon wine.

At the end of fermentation, ethanol, methanol, and the sensory evaluation scores (SES)
of the persimmon wine were measured to determine the appropriate fermentation process.

2.5. Analysis of Basic Physicochemical Properties

The pH was measured using a pH meter (HI99163, Shanghai, China). The ethanol was
determined using a biochemical sensor (SBA-90, Institute of Biology, Shandong Academy of
Sciences, Ji’nan, China). Reducing sugars was determined by the Fehling titration method.
Total acidity (TA) was titrated with 0.1 mol/L NaOH and expressed as the equivalent of
tartaric acid. The methanol was determined using GC the GB/T 15038-2006 (China).

The Folin–Ciocalteu (FC) method was employed to determine the total polyphenols,
with gallic acid serving as the standard compound [11,12]. Briefly, 20 µL of wine was
mixed with distilled water to make 1 mL of the final volume, and then 0.1 mL of Folin–
Ciocalteu’s reagent was added. After 5 min, 0.2 mL of sodium carbonate (35% w/v) was
added. The final volume was adjusted to 2 mL with distilled water. Absorbance at 765 nm
was measured in the absence of light for one hour using a suitable baseline reagent. The
results were presented as mg/mL gallic acid in the wine.

The colorimetric method was used to determine flavonoids, and catechin was used as
a standard [13,14]. Briefly, 0.25 mL of wine was mixed with distilled water to 1.5 mL. Then,
75 µL of 5% NaNO2 solution was added. After 6 min, 150 µL of 10% AlCl3 hexahydrate
was added. It was left alone for another 5 min, and then 0.5 mL of 1 M NaOH was added.
The mixture was adjusted to 2.5 mL with distilled water, mixed, and measured at 510 nm.
Results are expressed by referring to the calibration curve of catechin.

The total pectin in the persimmon wine was quantified via the McCready and McComb
method [15]. Pulp (5 g) was transferred into a 50 mL centrifuge tube, followed by the
addition of 35 mL of a 95% ethanol solution. The mixture was subjected to thorough
agitation while being heated in a water bath at 85 ◦C for 10 min. Subsequently, 95% ethanol
was added until the volume of the solution was approximately 50 mL. The precipitate was
collected via centrifugation at 3000 r/min for 15 min; it was subsequently dissolved in
a 100 mL volumetric vial containing 63% ethanol. Next, 5 mL of a NaOH solution with
a concentration of 1 mol/L was added. The volume was then adjusted to the desired
level using distilled water and well-mixed. The pectin compounds were isolated and
then combined with carbazole under acidic conditions. The measurement of the colored
solution’s absorbance was taken at a wavelength of 525 nm. The galacturonic acid (GA)
was used as the standard for pectin determination, and the calibration range of GA was
20–100 g/L. Compounds of chromatographical purity from Sigma-Aldrich (Shanghai,
China), including alcohols and aroma compounds such as methanol, ethanol, ethyl acetate,
isobutyl acetate, isoamyl acetate, hexyl acetate, ethyl butyrate, ethyl octanoate, n-pentyl
acetate, and 2-octanol, were used as an external standard for identification and quantitation
of aroma compounds in persimmon wine. To be noted, if the vendor information for a
chemical was not specified, it was of analytical grade and bought locally.

2.6. Analysis of Volatile Aromas

The GC–MS analysis was performed as described by Li et al. [16]. GC-MS-QP2020
(Shimadzu Corporation, Shanghai, China) was coupled in series with an olfactory detector
OPV 275 (Shimadzu Corporation, Shanghai, China) and a DB-WAX capillary column
(60 m × 0.25 mm × 0.25 µm; Agilent J&W, Santa Clara, CA, USA). The temperature of the
GC column was kept as follows: 40 ◦C for 3 min, increase to 160 ◦C at a rate of 4 ◦C/min,
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followed by an increase to 220 ◦C at a rate of 7 ◦C/min, and then kept for 10 min. Electron
ionization mass spectrometric data were acquired within the mass range 35–350 m/z at
0.2 s intervals combined with the selected ion monitoring mode for quantitative analysis.
Aroma compounds were identified by comparing retention times, retention indexes, aroma
characteristics, and mass spectra with those of standards available in the NIST 17.0 mass
spectral library. The concentration of aroma compounds was quantitated by interpolating
the relative area of the sample versus the area of the internal standard using calibration
curves previously established for pure standards.

2.7. Statistical Analysis

All the experiments were conducted in triplicate. One-way ANOVA (Analysis of
variance) and Tukey’s test with a confidence level of 95% (SPSS Inc., Chicago, IL, USA) were
conducted with SPSS 25.0 software for Windows. The results were considered statistically
significant when p < 0.05. Data were presented as mean ± standard deviation.

3. Results
3.1. Basic Characteristics of the Chosen Persimmon Fruits

The quality of wines is highly dependent on the materials [17]. To determine a
suitable raw material, the five most planted persimmon cultivars in Shaanxi province were
evaluated for their basic characteristics (Table 1). The total sugars and reducing sugars
ranked consistently among the five persimmon varieties. Tishi persimmon exhibited the
highest sugar content (33.2%, w/w), followed by Huojing and Jianshi. In contrast, Maokui
and Huoguan persimmons contained the least sugars (15.4% and 14.2%, respectively).

Table 1. Basic characters of different persimmon cultivars.

Entrys Total Acidity
(%, w/w) pH Total Flavonoids

(mg/g)
Total Phenols

(mg/g)
Reducing Sugar

(%, w/w)
Total Sugars

(%, w/w) Pectin (g/kg)

Huojing 0.20 ± 0.00 b 5.8 ± 0.0 d 3.0 ± 0.1 a 3.6 ± 0.0 a 22.3 ± 0.2 d 30.6 ± 1.4 d 32.1 ± 0.0 bc
Huoguan 0.29 ± 0.00 e 5.1 ± 0.0 a 49.4 ± 0.4 c 41.2 ± 0.7 d 12.8 ± 0.0 a 14.2 ± 0.6 a 27.8 ± 0.7 ab
Maokui 0.24 ± 0.00 d 5.3 ± 0.0 b 13.9 ± 0.7 b 10.1 ± 0.2 b 13.3 ± 0.3 b 15.4 ± 0.9 b 24.5 ± 0.4 a
Jianshi 0.22 ± 0.00 c 5.4 ± 0.0 c 50.0 ± 0.2 c 34.7 ± 0.5 c 19.6 ± 0.0 c 25.8 ± 1.0 c 25.2 ± 1.2 a
Tishi 0.19 ± 0.00 a 6.1 ± 0.0 e 62.9 ± 0.3 d 46.2 ± 2.0 e 22.9 ± 0.1 e 33.2 ± 2.4 e 36.8 ± 3.7 c

Notes: Values are given as the means ± standard deviations (n = 3), and the different letters within the same
column are significantly different (p < 0.05).

In terms of acidity among the persimmon fruits (Table 1), Huoguan had the highest
acidity (0.29%), followed by Maokui (0.24%), Jianshi (0.22%), Huojing (0.2%), and Tishi
(0.19%). The pH of the obtained pulp ranged from 5.1 to 6.1. For the total phenol contents,
Tishi had the highest (46.2 mg/g), followed by Huoguan and Jianshi (both 41.2 mg/g),
Maokui (10.1 mg/g), and Huojing (3.6 mg/g). The content of flavonoids ranked similarly
to the total phenolic content of the persimmon varieties. The pectin contents ranged from
25.2 to 36.8 g/kg. Tishi had the highest pectin content at 36.8 g/kg, followed by Huojing
(32.1 g/kg), Huoguan (27.8 g/kg), Jianshi (25.2 g/kg), and Maokui (24.5 g/kg). Considering
sugar content, reduced acidity, and particularly, the methanol content, which is closely
related to the pectin content, Maokui was used for subsequent experiments.

3.2. Starter Choice Influences Methanol Content in Persimmon Wine

The use of starters has a great influence on the wine fermentation process and the
resultant wine quality [16,18,19]. Thus, three commercialized starters and their mixtures
were directly inoculated into the Maoqui pulp to investigate their influence on methanol
and ethanol production (Figure 1). The results showed that significant differences in alcohol
levels were observed among the produced wines (p ≤ 0.05, Figure 1). The persimmon wine
fermented by CH9 had the highest methanol content and was significantly higher than
others (401.5 mg/L, p ≤ 0.01). The inoculation of CH9 alone or with others would enhance
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the generation of methanol (Figure 1). The results showed that the wine produced by
BO213+SPARK yielded the lowest methanol (81.63 mg/L). The persimmon wine fermented
by BO213+CH9 had the highest ethanol (7.4%, v/v), followed by BO213+SPARK, SPARK,
BO213 6.3%, CH9 6.1% and SPARK+CH9 5.8%. In terms of colors, the wines showed the
least difference. In aroma and taste evaluation, the wine from BO213+SPARK scored the
highest for both (Figure S1). However, there were slight differences in those fermented
by other starters or combinations. Especially, the wine by BO213+SPARK generated a
relatively lower alcohol content. Considering the overall performance, the wine produced
by BO213+SPARK displayed strong competition in color, aroma, and taste. Consequently,
the starter combination BO213+SPARK was employed in the following studies.
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3.3. Pectinase Choice Impacts Methanol, Juice Yield and Ethanol Level

Persimmon wine’s production is retarded by the high content of pectin and the result-
ing low juice yield, which can be improved by the utilization of pectinase [3,9,20]. Further,
the enzymatic treatment would also facilitate the extraction of antioxidant phenols from the
persimmon pomace [21]. However, the enzymatic treatment of persimmon pulp usually
causes the overproduction of methanol, which is toxic to people. Therefore, it is important
to fine-tune the usage of the pectinase for controlling the methanol production. In the
present study, four commercially available pectinases were employed to evaluate their
effects on fermented wine production (Figure 2). The results showed that the methanol
and juice yield were both significantly elevated (Figure 2). Among the various persim-
mon samples, the juice yield of persimmon wine with pectinase was significantly higher
(p < 0.05) compared to that (55.8%) without pectinase. The wine treated by PSoleibo had the
lowest content of methanol (622.4 mg/L), and its juice yield was 65.0%. The wine treated
by PLaffort had the highest juice yield (71.9%), and its methanol content was 663.1 mg/L.
Therefore, to achieve a relative balance between liquor yield and methanol content, PSoleibo
and PLaffort were selected for further research.
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3.4. Effect of Pretreatment on Persimmon Wine

Pretreatment strategies can influence the qualities of fruit wines [22]. The results of
alcohol, sugar, methanol, liquor yield, total phenolic, and total flavonoid content of the
Maokui persimmon wine obtained by adopting different treatments are shown in Table 2.
Compared with the M(C)T-P1(3) wine (417.5~597.1 mg/L), the wine made with P1(3)-
M(C)T had a lower content of methanol (77.7~280.1 mg/L), and the two different measures
exhibited minor effects on the liquor yield.

Table 2. Effect of pretreatment on the physical and chemical indexes of persimmon wine.

Heat Treatment Reducing
Sugar (g/L)

Ethanol
(%, v/v)

Methanol
(mg/L)

Juice Yield
(%, w/w)

Total Phenolic
(mg/L)

Total Flavonoid
(mg/L)

P-Soleibo (P1)
MT-P1 4.5 ± 0.4 c 6.8 ± 0.1 c 597.1 ± 18.4 f 65.3 268.7 ± 12.4 a 252.3 ± 4.3 a
CT-P1 6.1 ± 0.1 d 6.2 ± 0.1 b 538 ± 42.9 e 55.6 1684.7 ± 22.6 c 2456.5 ± 128.6 e
P1-MT 3.7 ± 0.2 a 6.9 ± 0.2 b 280.1 ± 29.3 c 65.0 399.6 ± 19.2 b 640.4 ± 64.3 b
P1-CT 4.7 ± 0.0 c 6.6 ± 0.1 b 135 ± 5.3 ab 58.7 2146.6 ± 46.3 e 2150.3 ± 287.3 d

P-Laffort (P3)
MT-P3 4.2 ± 0.0 bc 6.5 ± 0.1 b 446 ± 43.7 d 68 244.8 ± 7.9 a 73.4 ± 25.7 a
CT-P3 6.3 ± 0.0 d 7.2 ± 0.1 c 417.5 ± 12.8 d 61.9 1948.8 ± 16.9 d 2929.5 ± 128.6 f
P3-MT 3.7 ± 0.4 ab 6.5 ± 0.2 a 149.1 ± 6 b 69.7 393.2 ± 25.9 b 1319.5 ± 72.9 c
P3-CT 4.5 ± 0.2 c 6.6 ± 0.1 b 77.7 ± 1.3 a 65.4 2246.3 ± 29.3 f 2926.5 ± 30.0 f

Notes: Pretreatment includes microwave treatment (MT) and cooking treatment (CT) of raw materials; P1 and P3
represent pectinase from Soleibo and Laffort, respectively. M(C)T-P1(3), pectinase 1(3) was added to fruit pulp
after microwave or cooking treatment; P1(3)-M(C)T represents fruit pulp which was first treated by pectinase
1(3) and then by microwave or cooking treatment, respectively. Lowercase letters indicate significant differences
between samples (p < 0.05). Values are given as the means ± standard deviations (n = 3), and the significance is
expressed within the same column (p < 0.05).

The liquor yield of persimmon wine made with microwave treatment (MT) was higher
than that with cooking treatment (CT), but the methanol content of persimmon wine (CT)
was much lower than that with microwave treatment (MT), indicating that CT was a
more effective method for reducing methanol. Among wines made with P1(3)-MT, the
methanol content of the persimmon wine with PLaffort (P3-MT, 149.1 mg/L, Table 2) was
lower than that with PSoleibo (P1-MT, 280.1 mg/L), and the liquor yield of the persimmon
wine made with PLaffort (P3-MT) was relatively higher. Among wines, the methanol content
of the persimmon wine (PLaffort-CT) had the lowest methanol content (77.7 mg/L), and
the liquor yield of the persimmon wine (P3-CT) was relatively higher. Compared with
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P1(3)-MT, the liquor yield of wine made with P1(3)-CT decreased, while the total active
substance content of wines with P1(3)-CT showed a great enhancement. The results above
indicated that PLaffort-CT (pectinase was added and maintained for 4 h at 30 ◦C before steam
treatment) was an effective method for balancing the wine yield and methanol content of
persimmon wine.

3.5. Optimal Fermentation Conditions for Persimmon Wine
3.5.1. The Effects of Starter, Pectinase and Sucrose Dosage, and Temperature

The amount of starter added can affect the quality of the wine [23]. When the starter
addition is appropriate, the sugars can be efficiently converted to alcohol and other metabo-
lites. When the starter addition is too low, the fermentation process would be greatly
retarded, and increased production cost and risk of microbial contaminants can be expected.
Conversely, an excessive amount of starter remaining in the wine would affect the aroma
and clarity of the wine. Since the starter BO213 + SPARK had been identified as the best
combination, the effects of starter dosage on the sensory evaluation score (SES) and the
ethanol and methanol level of persimmon wine were investigated, with the temperature
fixed at 28 ◦C and the pectinase addition at 0.03 g/kg (Figure 3A). The methanol content
elevated significantly when the starter addition was 250 mg/kg (Figure 3A), which might
be owing to the enhanced glycine metabolic activity of the starter. The ethanol content
exhibited little difference (p > 0.05). As the amount of starter increased, the sensory evalua-
tion scores of the persimmon wine initially rose and then decreased, reaching a maximum
of 88.6 at the starter addition of 200 mg/kg (Figure 3A), which was adopted in the rest of
the study.
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(A). starters; (B). pectinase addition; (C). sucrose addition; (D). temperature. Lowercase letters
indicate significant differences between samples (p < 0.05). Note: It took 8 days for complete
fermentation at 22 ◦C while 6 days were used for other groups.
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Next, the effects of pectinase dosage on the sensory evaluation scores and the alcohol
content were investigated with starter use of 200 mg/kg at 28 ◦C (Figure 3B). As the
amount of pectinase increased, the ethanol content of the persimmon wine first increased
and then slowly decreased. When the pectinase addition was 0.03 g/kg, the highest ethanol
content was observed, 6.96%(v/v). The methanol content in the persimmon wine showed
no obvious difference as the pectinase addition increased, indicating that 0.03 g/kg was
enough, and excessive pectinase addition had no significant impact (p > 0.05) on the sensory
properties of persimmon wines.

An appropriate ethanol level is inevitable to maintain the stability and flavor of fruit
wine [24]. Considering the low sugar content of Maokui, the effects of additional sugar
supplements were investigated by fixing the starter and pectinase usage at 200 mg/kg and
0.03 g/kg, respectively, at 28 ◦C (Figure 3C). The ethanol content in the wine increased as
the total sugar elevated, and the highest ethanol content (9.42%, v/v) was obtained when
the sucrose level was 18.3% (w/v). The methanol content remained almost unchanged
when the total sugar was 14.9%. However, further sugar addition resulted in significant
methanol elevation. The highest methanol content (227.8 mg/L) was observed when the
total sugar was increased to 18.3%(w/v). In terms of SES, a remarkable difference was
observed (p < 0.05) for sucrose addition.

The temperature has an important influence on the fermentation process via modu-
lating yeast metabolism, enzyme activity, mass transfer, and the final quality of wine [25].
With a fixed amount of starter added of 200 mg/kg, with no sucrose addition, and with
pectinase addition added of 0.03 g/kg, the results of the sensory evaluation scores and the
alcohol and methanol content of the persimmon wine obtained by changing the fermenta-
tion temperature are shown in Figure 3D. The ethanol content in the tested samples slightly
decreased with the fermentation temperature from 22 to 25 ◦C and gradually increased
between 25 and 31 ◦C. The methanol content was 109.2 mg/L at 22 ◦C, the highest among
the group. In summary, temperature within the tested range had obvious effects on the SES
of persimmon wines.

3.5.2. Optimization of Persimmon Wine Production via Orthogonal Experiments

To optimize the fermentation conditions, orthogonal experiments were subsequently
conducted, based on the results of single-factor experiments with starter addition, sucrose
addition, and temperature as significant influence factors (Table 3). Factor levels for
orthogonal experiments were set as follows: factor A was starter addition set at four levels
(150, 200, 250, and 300 mg/kg), factor B was sucrose addition (13.2, 14.9, 16.6 and 18.3%,
w/w), and factor C was fermentation temperature (22, 25, 28 and 31 ◦C).

The orthogonal experiment results confirmed that starter usage, sucrose addition, and
temperature could impact the methanol level in persimmon wine (Table 4). In terms of SES
(Table 5), the most important factor was starter addition (factor A), followed by sucrose
addition (factor B), and temperature (factor C). Moreover, by comparing the k1, k2, and
k3 values of three factors, the best combination was A3B4C4, revealing that the optimal
fermentation conditions for persimmon wine were starter addition of 250 mg/kg, sucrose
addition of 10.2 g, and fermentation temperature of 31 ◦C. Under these conditions, the
methanol content of persimmon wine was 111.4 mg/L and the sensory score of persimmon
wine was 90.6.
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Table 3. Results and analysis of orthogonal experiments for persimmon wines.

No. A B C Sensory Evaluation
Scores

Methanol
(mg/L)

1 1 1 1 80.8 79.3
2 1 2 2 82.9 83.7
3 1 3 3 83.1 138.2
4 1 4 4 84.8 154
5 2 1 2 84.1 139.5
6 2 2 1 84 72.7
7 2 3 4 84.3 154.7
8 2 4 3 85.8 87.5
9 3 1 3 85.4 82.3

10 3 2 4 87.4 91.2
11 3 3 1 87.8 132.8
12 3 4 2 88 95.3
13 4 1 4 87.3 84.1
14 4 2 3 85.6 90.4
15 4 3 2 86 83.3
16 4 4 1 87 106.5
K1 455.2 385.2 391.3
K2 454.4 401.8 401.8 Methanol A4B3C1
K3 401.6 398.4 398.4
K4 364.3 443.3 484
R 22.725 14.525 23.175

K1 331.6 337.6 339.6 SES A3B4C4
K2 338.2 339.9 341
K3 348.6 341.2 339.9
K4 345.9 345.6 343.8
R 4.25 2 1.05

Table 4. The variance analysis of orthogonal experiments with methanol content as the index.

Factor Sum of Squares of
Deviations Free Mean Square F Values p Values

A 1464.597 3 488.199 0.550 0.667
B 4098.467 3 1366.156 1.538 0.299
C 1428.107 3 476.036 0.536 0.675

Error 5330.634 6 888.439

Table 5. The variance analysis results of orthogonal experiments with SES as the index.

Factor Sum of Squares of
Deviations Free Mean Square F Values p Values

s 44.487 3 14.829 17.197 0.002
B 8.487 3 2.829 3.281 0.100
C 2.747 3 0.916 1.062 0.432

Error 5.174 6 0.862

3.6. Basic Chemical Characteristics and Volatile Aromas of the Persimmon Wine

Basic chemical characteristics are crucial to bookmark a specific fruit wine [26]. There-
fore, we analyzed the quantitative compounds in the persimmon wine. The results showed
that the final wine contained 4.4 g/L reducing sugars, 9.3% alcohol (v/v), 111.4 mg/L
methanol, 79.9 mg/L SO2, 15.7 mg/L free SO2, 1338.4 mg/L phenolics, and 2684.4 mg/L
flavonoids (Figure 4). All of them were within the national limits (NY/T 1508-2007 and
GB/T 15037-2006, China).
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Volatile aromas are important characteristics of a specific fruit wine [27]. Usually,
esters, alcohols, and aldehydes are the main contributors to the aroma of fruit wine [28–30].
In the present study, 49 volatile aromas, including 18 esters, 17 alcohols, four ketones,
three aldehydes, three acids, two phenols, one alkane, and one alkene, were detected in
persimmon wine (Table S1). Among these, ethyl acetate was the highest, followed by
3-methyl-1-butanol, 2,3-butanediol, and lactate ethyl ester. They showed different aroma
characteristics and different threshold values. Certain alcohols and aldehydes like 1-hexanol
and 1-nonanal emit a green fragrance. Alcohols and esters such as ethyl caprylate, isoamyl
acetate, and 2-phenethyl alcohol exhibit floral aromas. Elegant aromas were formed via the
combination of numerous flavoring compounds.

4. Conclusions

Persimmon fruit wines with lower methanol and favorable flavors are attractive. The
present study showed that fruit cultivar, starter usage, and pectinase have significantly
more influence on the methanol content and sensory quality of the persimmon wine than
sucrose addition and fermentation temperature. Moreover, our study indicated that all the
factors should be systematically investigated to produce a desirable persimmon wine. This
study should provide useful insights into the processing of persimmon-derived beverages.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13050748/s1, Figure S1: Sensory analysis of persimmon
wines fermented with different starters; Table S1: Volatile aromas in persimmon wine.
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