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Abstract: Hafnia alvei, a specific spoilage microorganism, has a strong capacity to destroy food protein
and lead to spoilage. The aim of this study was to evaluate the phase-dependent regulation of
lux-type genes on the spoilage characteristics of H. alvei H4. The auto-inducer synthase gene luxI and
a regulatory gene luxR of the quorum sensing systems in H. alvei H4 were knocked out to construct
the mutant phenotypes. On this basis, the research found that the luxI and luxR genes had a strong
positive influence on not only flagella-dependent swimming ability and biofilm formation but also the
production of putrescine and cadaverine. The luxR gene could downregulate putrescine production.
The maximum accumulation of putrescine in wild type, ∆luxI, ∆luxR and ∆luxIR were detected
at 24 h, reaching up to 695.23 mg/L, 683.02 mg/L, 776.30 mg/L and 724.12 mg/L, respectively.
However, the luxI and luxR genes have a potential positive impact on the production of cadaverine.
The maximum concentration of cadaverine produced by wild type, ∆luxI, ∆luxR and ∆luxIR were
252.7 mg/L, 194.5 mg/L, 175.1 mg/L and 154.2 mg/L at 72 h. Moreover, the self-organizing map
analysis revealed the phase-dependent effects of two genes on spoilage properties. The luxI gene
played a major role in the lag phase, while the luxR gene mainly acted in the exponential and
stationary phases. Therefore, the paper provides valuable insights into the spoilage mechanisms of H.
alvei H4.

Keywords: quorum sensing; spoilage; biogenic amines; self-organizing map analysis

1. Introduction

Food spoilage is mainly a consequence of the degrading enzymatic activity triggered
by some spoilage microorganisms. For the spoilage microorganism, its excellent flagella-
dependent swimming ability could help access an appropriate niche inside food, and strong
biofilm formation could enhance the bacterium’s ability for colonizing a food surface,
leading to resistance to antibacterial agents and food processing conditions [1]. Moreover,
the spoilage microorganism has a potential ability to produce massive metabolic end
products, such as saccharolytic, proteolytic, pectinolytic and lipolytic enzymes, leading to
food spoilage [2]. Generally, decarboxylase-positive microorganisms are mainly involved in
the decarboxylation of amines to produce biogenic amines (BAs), giving food an undesirable
taste and “putrid odor” and affecting public health [3,4].

Hafnia alvei, a specific spoilage microorganism, has a strong capacity to destroy food
protein, leading to spoilage. It is a Gram-negative bacterium with lux-type quorum sensing
(QS) systems. Most genetic strains can grow over a wide range of temperatures, even
at a minimum temperature of 0.2 to 3.7 ◦C [5]. With a psychrotrophic attribute, H. alvei
has the opportunity to be dominantly found in spoiled food, including vacuum and air-
conditioned packaged food and cryopreservation food, such as dairy [6], fish [7,8], meat [9]
and other protein-rich food. Although many studies have shown that H. alvei is considered
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to be a typical contributor to spoilage with the production of BAs [10], the self-regulating
mechanisms of spoilage characteristics in H. alvei are still in their infancy.

QS is a common regulatory mechanism of biological functions in the microorganism
kingdom [11,12]. QS plays a key role in coordinating group behavior and addressing
changes in external and internal environments [13,14]. That is to say, QS is a comprehensive
regulator of various biological aspects of microbe metabolism processes [15]. The lux-type
system is a typical kind of QS system with an auto-inducer (AI) signaling molecule for
mediating intracellular signal recognition and is commonly found in H. alvei [16]. Two
essential genes mainly accomplish the pathways of QS regulation: luxI, an AI synthase
gene; and luxR, a regulatory gene [17]. The luxI gene can regulate the synthesis of AI and
luxR can regulate reception with AI, which has an important influence on the expression of
the target functional genes, including virulence modulation, exoenzyme enzyme synthesis
and biofilm formation [18]. Therefore, we supposed that the luxI and luxR genes also have
the potential ability to regulate spoilage behaviors.

The aim of this study was to determine the phase-dependent effect of luxI and luxR
genes on spoilage characteristics in H. alvei H4. Through luxI and luxR gene knockouts,
mutant phenotypes were constructed. Furthermore, growth ability, swimming motility,
biofilm formation and BA formation capacity between wild and mutant strains were
comparatively studied by self-organizing map (SOM) analysis.

2. Materials and Methods
2.1. Bacterial Strains and Reagents

Bacterial strains and plasmids used in this study are listed in Table 1. H. alvei H4 was
cultured in Luria–Bertani (LB) (10 g tryptone, 5 g yeast extract power, 10 g NaCl, dissolved
in 1 L deionized water) agar plates at 37 ◦C. The molecular biology reagents and precursor
amino acids including L-histidine monohydrochloride monohydrate, L-tyrosine disodium
salt hydrate, L-ornithine monohydrochloride, L-lysine monohydrochloride, L-tyrosine
disodium salt hydrate, L-arginine monohydrochloride, L-phenylalanine hydrochloride
and L-tryptophan hydrochloride were obtained from Sangon Biotech (Shanghai) Co., Ltd.
(Shanghai, China). Acetonitrile used for high-performance liquid chromatography (HPLC)
was chromatographically pure, and other chemical reagents used in this study were of ana-
lytical grade; all of them were purchased from Bonuo biochemical reagent Co., Ltd. (Dalian,
China). Tryptone, yeast extract power, NaCl, agarose, glucose, Tween-80, MgSO4, MnSO4,
FeSO4, ammonium citrate, thiamine, K2PO4, CaCO3, pyridoxal-5-phosphate and bromocre-
sol purple were also purchased from Bonuo biochemical reagent Co., Ltd. (Dalian, China).

Table 1. Bacterial strains and plasmids used in this study.

Bacterial Strain or Plasmid Relevant Genotype or Description Reference or Source

H. alvei H4 Genbank ID: GCA_008362885.1, wild-type strain Isolated from spoiled instant sea
cucumber by our lab [19]

∆luxI H. alvei H4 derivative, luxI mutant strain This study
∆luxR H. alvei H4 derivative, luxR mutant strain This study
∆luxIR H. alvei H4 derivative, luxIR mutant strain This study

comI luxI complementation strain, luxI- containing pUC19 This study
comR luxR complementation strain, luxR-containing pUC19 This study
comIR luxIR complementation strain, luxIR-containing pUC19 This study

E.coli TOP10 DH10b derivative of MG1655 (Genbank ID: GCA_000005845.2),
recipient strain Purchased from Takara

E. coli β2155
thrB1004 pro thi strA hsdS lacZ1M15 (F′ lacZ1M15 laclq traD36 proA+
proB+)1dap:: erm (Ermr))recA:: RPA-2-tet(Tcr)::Mu-km (Kmr) λpi [20]

chloramphenicol resistance gene cassette (CmR)
Purchased from Takara

PCVD442 Suicide plasmid, SacB, oriT, ampicillin resistance gene cassette (AmR) Purchased from Songon
pUC 19 GenBank ID: M77789, AmR Purchased from Takara

pET28a(+)/FaGH17A GenBank ID: CDF79584.1, kanamycin resistance gene cassette (KmR) Purchased from Takara
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2.2. Construction of luxI and luxR Mutants and Complemented Strains

For characterizing the QS system in H. alvei H4, the luxI, luxR and luxIR gene knockout
mutants and their complemented strains were constructed according to a report by Zhu
et al. [21]. The luxI-F/R and luxR-F/R primers were designed as in Table 2 by Primer
3.0. The flanking regions of luxI and luxR were amplified by PCR with the primer pairs
using pfu DNA polymerase. After confirming the sequence, the upstream and downstream
regions of luxI with 628 bp and 654 bp, as well as luxR with 608 bp and 659 bp were digested
by EcoRI/BamHI and BamHI/SphI, respectively, cloned into the plasmid pUC19 to create
pUC19-∆luxI, pUC19-∆luxR and pUC19-∆luxIR, and then introduced into E. coli TOP10
for identification by PCR. Subsequently, the plasmids were linked by a BamHI restriction
site and the luxR, luxI and luxIR gene regions were replaced with a chloramphenicol
resistance gene cassette (CmR) (1048 bp) previously amplified from the donor plasmid
pKD3 using primers Cm-F/R, respectively. The plasmids including pUC19-∆luxI::Cm,
pUC19-∆luxR::Cm and pUC19-∆luxIR::Cm were created, then the target fragments, such
as luxI::Cm, luxR::Cm and luxIR::Cm, were digested by SalI and inserted into the same
sites of the suicide plasmid pCVD442 to acquire the recombinant plasmids pCVD442-
∆luxI::Cm, pCVD442-∆luxR::Cm and pCVD442-∆luxIR::Cm. The recombinant plasmids
were introduced into E. coli β2155 (donor strain) by electroporator. E. coli β2155 harboring
three different plasmids as pCVD442-∆luxI::Cm, pCVD442-∆luxR::Cm and pCVD442-
∆luxIR::Cm were conjugated with wild-type H. alvei H4, respectively. Recipient cells were
plated on LB supplemented with 50 µg/mL Amp, 0.5 mM DAP and 10 µg/mL antibiotic
chloramphenicol to select the successful clone recombinant plasmids that had integrated the
vector by a single crossover of allelic exchange. Antibiotic-resistant colonies were selected
and confirmed by PCR. The luxR, luxI and luxIR gene knockout mutant phenotypes were
named as ∆luxI, ∆luxR and ∆luxIR, respectively.

Table 2. Primers used for construction of mutant and complemented strains.

Sequence (5′-3′, Restriction Enzyme Sites are Underlined) Restriction Enzyme

ATAGAATTCGTCGACATCACATTGATGTCAGACCTCAAGATTTC EcoRI-SalI
ATAGGATCCATATCTGAGTGAGGATGAGCGAATTTATC BamHI

TATGAATTCGTCGACATCAACATGCTCCCAATATCGCAC EcoRI-SalI
TATGGATCCTTGGGCTCCTAGACGTTCAATTTCC BamHI

ATAGGATCCATATGAATATCCTCCTTAGTTCCTATTC BamHI
ATAGGATCCGAGCTGCTTCGAAGTTCCTA BamHI

The underlined are restriction sites.

To build the corresponding complementary plasmids for the ∆luxI, ∆luxR and ∆luxIR
mutants, the luxI and luxR genes were amplified by primers as before, and then the frag-
ments were cloned into plasmid pET28a(+)/FaGH17A with kanamycin resistance to con-
struct pET28a(+)/FaGH17A-∆luxI, pET28a(+)/FaGH17A-∆luxR and pET28a(+)/FaGH17A-
∆luxIR. The plasmids were primarily transformed into E.coli TOP10 and plasmid DNA
was isolated and then transformed into the ∆luxI, ∆luxR and ∆luxIR mutants to produce
the complementary strains comI, comR and comIR whose presence were confirmed by PCR
analysis and sequencing.

2.3. Growth Curve

The growth of wild, mutant and complementation phenotypes was measured by
optical density at OD600 nm every 6 h via an ultraviolet spectrophotometer. For comparative
analysis of growth kinetics, the Gompertz model [22] was applied to fit the OD600 data. Per
the parameters including maximum specific growth rate (Vmax), lag time (Lag) and maximal
OD600 at stationary phase (Amax), the growth abilities of different strains were compared.
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2.4. Swimming Motility Assay

As in a previous report [23], the swimming motility of wild, mutant and complemen-
tation phenotype strains were measured with some modifications. Briefly, 3 µL of the
overnight cultured strain was placed in the center of a swimming agar plate including
1% tryptone, 0.5% NaCl and 0.3% agarose. After incubating at 30 ◦C for 48 h, the migra-
tion distances of different phenotypes were recorded by measuring the diameters of the
colony zones.

2.5. Biofilm Formation Assay

According to the experimental method reported by Liu et al. [24], the biofilm forma-
tion abilities of H. alvei H4 strains were evaluated. Briefly, 200 µL of wild, mutant and
complementation phenotypes were incubated at 30 ◦C for 48 h in a 96-well plate. Then the
culture suspension was removed and the plate was rinsed thrice with PBS (pH 7.4, 0.01 M)
and 200 µL methanol and 200µL of 0.1% crystal violet were added for immobilization
and as dye. The plate was again rinsed thrice with deionized water and dried at 60 ◦C.
The biofilm was extracted using 200 µL 33% acetic acid followed by a 20 min incuba-
tion at room temperature. The absorbance was recorded at 590 nm with an ultraviolet
spectrophotometer.

2.6. Decarboxylase Detection

Based on Chang’s work [25], the decarboxylase production abilities of H. alvei H4
strains were estimated with some modifications. Briefly, one colony of wild-type, ∆luxI,
∆luxR and ∆luxIR strains were cultivated overnight in 5 mL of LB broth. Then 1 mL of
culture was added to 9 mL of the decarboxylase media (LB supplemented with 0.05%
glucose, 0.1% Tween-80, 0.02% MgSO4, 0.005% MnSO4, 0.004% FeSO4, 0.2% ammonium
citrate, 0.001% thiamine, 0.2% K2PO4, 0.01% CaCO3, 0.005% pyridoxal-5-phosphate, 0.006%
bromocresol purple, 2% aga) in a screw-cap test tube containing 0.1% precursor amino acid
and cultivated for 24 h. Then the chromogenic reaction of the mixture was observed.

2.7. HPLC Analysis of BA Production

The determination of BAs was conducted based on the work of Wang et al. [26]. H.
alvei H4 strains (wild type, ∆luxI, ∆luxR and ∆luxIR) were cultivated in LB supplemented
with 0.005% pyridoxal-5-phosphate and 0.1% precursor amino acid for 24 h. Then 1 mL
of culture was mixed with 9 mL 10% trichloroacetic acid in a centrifuge tube. After
standing for 2 h at 4 ◦C, the mixture was homogenized for 10 min (3000× g). A 200 µL
volume of supernatant was derivatized using 80 µL 2 mol/L NaOH and 800 µL 10 mg/mL
dansyl chloride dissolved in acetone. After water-bath heating at 45 ◦C for 40 min, 50 µL
ammonium hydroxide and 550 µL acetonitrile were added into the dansyl derivatives,
homogenized for 5 min (3000× g) and filtrated through a 0.22 µm filter. Finally, 10 µL
aliquots were injected for HPLC analysis.

The concentrations of BAs were determined by an HPLC system (ZORBAX, Agilent,
Tokyo, Japan). An SB-C18 reversed-phase column (5 µm, 4.6 mm × 125 mm; Agilent,
Tokyo, Japan) was used for chromatographic separation. The gradient elution program
was operated with acetonitrile/water as the mobile phase.

2.8. Statistical Analysis

Each sample was subjected to three replicate trials, and all experiments were repeated
three times. Results were presented as mean standard deviation (SD) and analyzed by t-test
using SPSS 16.0 software, assuming statistical significance at p < 0.05. The Self-Organizing
Map (SOM) was established by HMM toolbox (MATLAB7.8, The Math Works, R2009) to
classify data patterns of the putrescine and cadaverine productivity of wild type, ∆luxI,
∆luxR and ∆luxIR. All of the graphs were made by origin version 8.0.



Foods 2024, 13, 688 5 of 12

3. Results
3.1. Mutant and Complementation Strains Construction

H. alvei coordinates communal behavior as a function of population density by lux-type
QS systems. This mechanism typically involves N-acyl homoserine lactones (AHLs), a kind
of AI signaling molecule, described as a “language” of cell-to-cell communication, which
is used by H. alvei to understand changes in its environment and consequently to apply
specific strategies that allow adaptation to environmental stress in space and time [27].
The synthesis of AHLs is regulated by luxI, an AHL synthases gene. The sense of AHLs is
regulated by luxR, a response transcriptional regulator gene. This could potentially lead to
multiple target spoilage behaviors being regulated. For characterizing the QS system in H.
alvei H4, the luxI, luxR and luxIR gene knockout mutants and their complemented strains
were constructed. Through PCR analysis (Figure 1), the bands corresponding to the luxI,
luxR and luxIR genes in the ∆luxI, ∆luxR and ∆luxIR mutant phenotypes, respectively, were
not detected due to the target fragment being replaced with chloramphenicol. Furthermore,
the corresponding lost bands recurred in the complementation strains, comI, comR and
comIR, which is attributed to the recovery of the luxI, luxR and luxIR genes.
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3.2. Growth Ability, Swimming Motility and Biofilm Formation

The luxI, luxR and luxIR gene knockout mutant phenotypes of H. alvei H4 were
successfully constructed and their growth ability, swimming motility and biofilm formation
were investigated (Figure 2). As shown in Figure 2A, the growth curves of H. alvei H4
including wild, mutant and complementation phenotypes were obtained and fitted by
Gompertz model. In wild-type H. alvei H4, the growth ability is extremely strong. After
the lag time of 1.01 h, it quickly enters the exponential phase with a maximum specific
growth rate at 0.26. Through the knockout of the luxI and luxR genes, it is found that the
growth ability was not obviously affected in the lag phase. However, the luxI and luxR
genes had an influence on growth rate in the exponential phase and maximal biomass in
the stationary phase. The Vmax of mutants (around 0.21 h−1) was lower than wild and
complementation types (0.26 h−1), especially the ∆luxI strain with a 23% descent rate. This
result indicated that the QS system can only be triggered in the exponential phase when the
microbial population density in the environment reaches the “quorum” threshold. H. alvei
H4 also has a strong flagellar-dependent swimming ability and biofilm formation to ensure
that it can move to seek a good nutritional matrix, excellently adhere to the food surface
and resist antimicrobial substances. As shown in Figure 2B, H. alvei H4 flagella-dependent
swimming is regulated by the luxI and luxR genes. The migration distance of the wild type
increased rapidly with incubation time within 48 h and then remained constant by plate
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restriction, indicating that H. alvei H4 has a strong flagella-dependent swimming ability,
while the strains without luxI or luxR genes were slightly inferior. Compared with the wild
type, the migration distances of the ∆luxI, ∆luxR and ∆luxIR strains at 24 h were reduced
by 50.0%, 64.3% and 54.3%, respectively. Furthermore, the biofilm formation ability of
different phenotypes was evaluated by the crystal violet assay (Figure 2C). At 24 h, the
biofilm yield of the H. alvei H4 mutant was significantly lower than that of the wild type.
This phenomenon is similar to Pseudomonas aeruginosa [28] and Acinetobacter baumannii [29].
As the culture time prolonged, the differences between the wild type and the mutants in
biofilm formation gradually increased. Thereby, the QS system is involved in the regulation
of flagellar-dependent swimming ability and biofilm formation. These results also agree
with Li’s work [30], where it is found that biofilm formation and swinging motility of H.
alvei are regulated by the lux-type QS system.
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3.3. Decarboxylase Detection

Wild and mutant phenotypes of H. alvei H4 strains were cultivated with a variety of
precursor amino acids. A chromogenic reaction can distinguish whether the strain produces
decarboxylase [31]. As shown in Figure 3, both mediums with L-ornithine and L-lysine
precursors changed color from orange to deep red, while the color of other mediums
did not change significantly, indicating H. alvei H4 has an ability to produce putrescine
and cadaverine. Unfortunately, through this experiment, the difference in the yield of
decarboxylase between the mutant strains and the wild strain cannot be discriminated by
the decarboxylase chromogenic reaction. Therefore, HPLC experiments were carried out
for further study.
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3.4. Putrescine and Cadaverine Production

HPLC was applied to further quantitatively analyze the influence of luxI and luxR
genes on putrescine and cadaverine production. As shown in Figure 4, two distinct high
absorption peaks based on putrescine and cadaverine were found in the HPLC spectrum
of biogenic amine production for each phenotypic strain of H. alvei H4. Through Figure 3
(Insert), it can be observed that the yield of the mutant strains of putrescine and cadaverine
is significantly different from that of the wild type, especially cadaverine.
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The concentrations of putrescine were specifically analyzed in Figure 5A. All strains
produced a large amount of putrescine in culture for 6–12 h. Compared with 6 h, the
concentrations of putrescine in wild-type, ∆luxI, ∆luxR and ∆luxIR strains at 12 h increased
by 19.7, 14.1, 8.44 and 10.8-fold, respectively. The maximum production and accumulation
of putrescine in wild type, ∆luxI, ∆luxR and ∆luxIR were detected at 24 h, reaching up to
695.23 mg/L, 683.02 mg/L, 776.30 mg/L and 724.12 mg/L, respectively. For an in-depth
analysis of the influence of luxI and luxR genes on putrescine productivity through data
analysis, an identification model SOM including input layer and output layer was estab-
lished. The input layer is a two-dimensional node matrix, where each node corresponds to
a neuron representing the putrescine concentration of wild type, ∆luxI, ∆luxR and ∆luxIR
throughout the culture (0–96 h). As shown in Figure 5B, the samples in the output layer
were distinctly divided into four categories, and each category consisted of three sam-
ples belonging to wild type, ∆luxI, ∆luxR and ∆luxIR, respectively, without misclassified
phenomena; hence, the accuracy rate of the prediction set was 100%. This demonstrated
a significant difference in the production of putrescine between the various phenotypes.
In Figure 5C, the topological function and distance function of the SOM are applied in
1000 iterations to describe the gap between the various phenotypic strains. The distance
between wild type and ∆luxI and ∆luxR was bright yellow and dark yellow, respectively.
The distance between ∆luxIR and ∆luxR is red, and the distance between ∆luxIR and ∆luxI
is black, indicating that the ∆luxR phenotype is more distinct from the wild type in the
putrescine accumulation process than the ∆luxI phenotype. In Figure 5D, the putrescine
concentration profile is set to the modeled input, each neuron in the input layer is compared
to each other neuron in the output layer by weight, and the dark to light color is applied
depending on the magnitude of the weight [32]. Compared to the wild-type cluster, the
∆luxI cluster with the highest weight was black in the lag phase (6 h). After that, the weight
of the ∆luxR cluster increased, replacing the ∆luxI cluster and turning into black from 12 h.
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Likewise, the influence of the luxI and luxR genes on cadaverine production was specif-
ically analyzed. As shown in Figure 6A, after 72 h of culture, the maximum concentration of
cadaverine produced by wild strains was 252.7 mg/L, while the cadaverine concentrations
of ∆luxI, ∆luxR and ∆luxIR were 194.5 mg/L, 175.1 mg/L and 154.2 mg/L, respectively,
indicating that the luxI and luxR genes have a potential upregulation on the production
of cadaverine. According to Wang’s work [26], similar results were obtained, where the
amounts of putrescine and cadaverine of ∆luxI strains were always lower (p < 0.05) com-
pared with wild-type H. alvei H4. The cadaverine concentrations of different phenotypic
strains at 0–96 h were used as the basis neuron for SOM analysis in Figure 6B. According to
the clustering property, it can be divided into four categories: wild type, ∆luxI, ∆luxR and
∆luxIR. The total identification accuracy is 100%. Through the self-organizing competition
of the SOM network, the adjacent neurons were quantified. As shown in Figure 6C, the
weight distances between neuron 1 of ∆luxIR and neuron 2 of ∆luxI was closest, suggesting
that the cadaverine production process of the two is most similar. The weight distances
between neuron 1 of ∆luxIR and neuron 4 of ∆luxR was most dissimilar. Moreover, the
weight distance between wild type and ∆luxI was lighter than between wild type and
∆luxR, implying that luxR plays a more important role than luxI during the cadaverine pro-
duction process. In further SOM analysis of different culture times as shown in Figure 6D,
luxI plays a major role in the early stages of cadaverine production (6 h), and as the culture
time prolongs (12–96 h), the role of the luxR gene gradually emerges.
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In wild-type H. alvei H4, putrescine and cadaverine were mass-produced and accu-
mulated during the exponential phase until the maximum was reached in the stationary
phase. After that, putrescine and cadaverine were gradually consumed as available nitro-
gen sources, which may be due to a lack of nitrogen in the culture medium at the end of
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the culture period. Through comparative analysis of mutant and wild strains using SOM,
it is not difficult to find that the knockout of any gene of luxI and luxR may significantly
affect the production of putrescine and cadaverine, and the luxR gene has a greater impact.
Similar to other corruption characteristics, the influence of the luxI gene on putrescine
and cadaverine is mostly reflected in the lag phase, while the effect of the luxR gene is
mainly concentrated in the exponential phase and stationary phase with a high density of
bacteria. These results also agree with Yan’s work [33], where amino acid metabolism was
associated with the luxI/R gene, which was also co-regulated in a growth phase-dependent
manner. Choi et al. [34] also found that anthranilate metabolism was phase-dependently
regulated by las/rhl quorum sensing in Pseudomonas aeruginosa. Anthranilate synthesis was
especially activated by LasR in the log phase and repressed by RhlR; whereas, anthranilate
degradation was repressed by LasR during the log phase and activated by RhlR in the late
stationary phase. Bacterial quorum sensing (QS)-dependent gene expression is a dynamic
response to cell density [35], thereby, it can be demonstrated in the effects of lux-type QS on
spoilage characteristics in H. alvei H4. When H. alvei H4 grows in a lag phase with a slow
growth rate and low cell density, the luxI gene is the main force of the QS system to regulate
spoilage characteristics. According to Zhu’s work [36], the reason for this phenomenon
may be that when the bacteria density is low, LuxI has to continuously strive to synthesize
AHL signal molecules to achieve the threshold concentration and pair with the receptor
protein LuxR to trigger the regulation of spoilage. With the growth of bacteria, the density
of bacteria increases and the amount of AHL signal molecules is sufficient. The key point
affecting QS regulation of spoilage characteristics, including mobility, biofilm formation
and secretion of ornithine and lysine decarboxylase, is no longer the luxI gene but the
luxR gene.

4. Conclusions

In this paper, the effects of the lux-type QS system on the growth characteristics and
BA production of H. alvei H4 was explored. As the functions of the luxI and luxR genes are
different, lux-type QS exhibited phase-differential regulation on growth, flagella-dependent
swimming ability, biofilm formation and putrescine and cadaverine synthesis. In the lag
phase, the population density is low, and luxI is the most critical factor affecting bacterial
growth and BA production. Whereas, the luxR gene plays a major role in regulation of
mobility, biofilm formation and production of putrescine and cadaverine in the exponential
phase and stationary phase with a high density of bacteria. In short, the specific phase-
dependent regulation mechanisms of the lux-type QS system on spoilage characteristics of
H. alvei H4 and the transcriptional changes of luxI and luxR genes in the various growth
phases (or different cell densities) and their functional characterizations will be subjects of
our future research. The association of bacterial metabolism with the luxI and luxR genes
still requires more research to determine the role of QS in H. alvei.
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