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Abstract: In this study, an Artificial Neural Network (ANN) model is used to solve the complex task
of producing fresh cheese with the desired quality parameters. The study focuses on kombucha fresh
cheese samples fortified with ground wild thyme, supercritical fluid extract of wild thyme, ground
sage and supercritical fluid extract of sage and optimizes the parameters of chemical composition,
antioxidant potential and microbiological profile. The ANN models demonstrate robust general-
ization capabilities and accurately predict the observed results based on the input parameters. The
optimal neural network model (MLP 6-10-16) with 10 neurons provides high r2 values (0.993 for
training, 0.992 for testing, and 0.992 for validation cycles). The ANN model identified the optimal
sample, a supercritical fluid extract of sage, on the 20th day of storage, showcasing specific favorable
process parameters. These parameters encompass dry matter, fat, ash, proteins, water activity, pH,
antioxidant potential (TP, DPPH, ABTS, FRAP), and microbiological profile. These findings offer
valuable insights into producing fresh cheese efficiently with the desired quality attributes. Moreover,
they highlight the effectiveness of the ANN model in optimizing diverse parameters for enhanced
product development in the dairy industry.

Keywords: antimicrobial potential; antioxidant activity; Salvia officinalis; Thymus serpyllum L.; ANN
modeling; optimal formulation; kombucha; fresh cheese; extracts

1. Introduction

Artificial Neural Networks (ANNs) are among the most remarkable predictive meth-
ods with the ability to learn from examples, with imperfection tolerance, to operate under
real-time conditions and to predict non-linear data, making them a regularly used statistical
tool in various scientific fields, including cheese production [1–3].

According to the literature, ANN has been effectively used for predicting the shelf life
of processed cheese [4], vacuum-packed soft cheese [5], French cheeses [6], white brined
cheese [7], and Gouda cheese [1].

Furthermore, Horiuchi et al. [8] used an ANN equipped with a culture database to
forecast the behavior of the cheese production process. The research revealed that the
precise determination of the final process time during the acidification step, which precedes
the addition of rennet, is crucial for the successful completion of cheese processing.

On the other hand, Cevoli et al. [9] employed an electronic nose and an ANN approach
to categorize Pecorino cheeses based on their ripening time and manufacturing methods.
The diverse ANN models, each using different pre-treatment methods, demonstrated
varying capabilities in predicting the categories of Pecorino cheeses.
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Research conducted by Soto-Barajas et al. [10] predicted the ripening time and milk mixture
types in cheeses with varying compositions using ANN. The most effective neural network model
for identifying milk mixture types utilized information on fatty acid concentration, achieving
80% accuracy in the training phase and 75% in the validation phase. Another neural network,
incorporating near-infrared spectroscopy spectra information, accurately predicted cheese ripening
with 100% accuracy in both the training and validation phases.

Ebrahimpour et al. [11] investigated various models for predicting the pH value in
fresh cheese production, utilizing laboratory and industrial-scale data in the presence of
disturbances. The ANN model, configured with optimal feedback and time intervals using
experimental pH data, successfully predicted the pH dynamics of industrial fermentation
and provided reliable predictions at both laboratory and industrial scales.

In Santos et al.’s study [12], artificial neural networks and linear discriminant functions
were generated using literature data. These models demonstrated the ability to classify
100% of cheeses from various regions based on their physicochemical composition.

All these findings indicate that ANN is a valuable tool for efficient and effective characteriza-
tion of various cheeses from different regions using readily available physicochemical data.

While the remarkable capabilities of ANN in predicting various parameters of cheese
production have been extensively explored, the synergy between predictive modeling and
the incorporation of natural plant additives introduces a new dimension in improving the
quality and characteristics of cheese products.

Natural plant additives (herbs or their extracts, condiments, vegetables, and other
seasonings) are typically flavoring agents included in cheese production to modify its taste
and increase its storage shelf life [13,14]. These supplements also change the color of the
cheese and enhance its appearance and attractiveness. Furthermore, numerous common
herbs traditionally used have both antioxidant and antimicrobial activities [13,15,16]. Herb
cheese commonly may include green chili pepper [17], hot pepper [18], Jalapeno red
pepper [19], pepper, parsley, dill [20], black peppercorns [21], horseradish [22], ginger,
clove, and thyme essential oils [23], black cumin [24], caraway [25] parsley and ginger
essential oil [26], tarragon essential oil [27], nutmeg, basil, majoran and oregano essential
oil [28], garlic [29], wild onion [30], and tomato powder [31].

To identify trends in scientific papers dealing with herbal cheese production, the VOSviewer
program was used to represent the author and index keywords. To perform a general analysis, a
search was conducted 60 times in the abstracts. As can be seen in Figure 1, co-occurrence analysis
of metadata on herbal cheese was distributed in four different groups.

Material and storage-related words were collected in the red cluster (relating to herbal
cheese), with the words “milk”, “extract”, “storage” and “essential oil’ being the most
frequently mentioned in the summaries analyzed. The green cluster included process
parameters applied in herbal cheese production. The most frequent terms in the green
cluster were “process”, “addition”, “protein”, “amount”, and “food fiber”. The yellow
cluster summarized herbal additives for cheese, and most frequently used terms were
“plant”, “seed”, “fruit” and “treatment”. The blue group covered antioxidant activity,
ginger addition, year, risk and women as the most frequently used terms.

The size of the circle represents the frequency of occurrence beneath each word.
Various colors were employed to illustrate different clusters of highly interconnected
keywords, enabling their categorization. The VOSviewer software ver. 1.6.20 was utilized
to describe the phrase structure, with data gathered from the Scopus database. Current
research usually lacks a comprehensive investigation into the complex relations within
herbal cheese production. There is a requirement for in-depth research into the effects
of herbal cheese production parameters on the quality and safety of the final products.
Moreover, the optimization of herbal cheese production processes using mathematical
models for diverse herbal materials and cheese types remain areas that warrant further
attention. Overcoming these knowledge gaps is the key to progress in this field and to
unlocking the full potential of mathematical modeling in optimizing the performance of
herbal cheese production.
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Figure 1. Co-occurrence analysis of herbal cheese meta data abstracts from Scopus.

Recent research successfully demonstrated the creation of a novel product—kombucha
fresh cheese—by employing kombucha inoculum as a non-conventional starter culture.
This approach led to a notable reduction in fermentation time, elevated antimicrobial
activity and increased total phenols content [32]. Furthermore, kombucha fresh cheese was
fortified with sage herbal dust [33] and wild thyme [34], which resulted in changes in the
physicochemical properties, antioxidant activity, sensory characteristics, and shelf life of
cheese samples.

The quality of cheese during production is influenced by a range of critical parame-
ters [35]. These include factors related to milk composition and quality, the use of cultures
and starter bacteria [36], coagulation conditions [37], cutting and stirring of curds [38],
draining and pressing methods [39], salting techniques [40], maturation and aging condi-
tions [41], microbial activity [42], pH levels [43], temperature control [44], moisture content,
storage conditions, sanitation practices, and careful cheese handling [45]. Managing these
parameters is essential for ensuring the consistent production of high-quality cheese.

Obtaining fresh cheese with desirable quality parameters is a challenging modelling task;
therefore, in this study, the ANN model was employed to provide reliable predictions and optimize
the selected parameters of chemical composition (dry matter, fat, ash, proteins in dry matter, and
proteins content), aw, pH, antioxidant potential parameters (total phenols (TP), DPPH, ABTS
and FRAP) and the selected parameters for microbiological profile (the total number of aerobic
mesophilic bacteria, Escherichia coli, Listeria monocytogens, Staphylococcus aureus and lactic acid
bacteria) of the tested kombucha fresh cheese samples fortified with ground and supercritical fluid
extract of wild thyme, as well as ground and supercritical fluid extract of sage. For developing an
artificial neural network model, all data were taken from our previously published research articles,
in which we analyzed the produced samples in detail [32–34]. In the stated research, kombucha
fresh cheeses were produced using preparations from two plants: thyme (Thymus serpillum) and
Salvia (Salvia officinalis). The produced cheeses were intentionally contaminated with the selected
pathogenic bacteria in order to examine the influence of enriched cheeses with herbs under such
conditions. The ANN modeling and optimization is a logical step in continued research in order to
define optimal quality parameters in herb-fortified fresh kombucha cheese production.

2. Statistical Analysis

The experimental data underwent chemometrical analysis, including color correlation
analysis, principal component analysis (PCA), cluster analysis, and artificial neural network.
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These analyses were conducted using StatSoft Statistica 10.0® software. Additionally, a
color plot diagram was created using R software version 4.0.3 (64-bit), employing the
“circle” method with an upper-type configuration.

2.1. ANN Modeling

A multi-layer perceptron (MLP) structural model, consisting of three layers (input,
hidden, and output) was implemented for modelling the artificial neural network model
(ANN) for prognostication the chemical composition (dry matter, fat, ash, proteins in
dry matter, and proteins content), aw, pH, antioxidant potential (TP, DPPH, ABTS and
FRAP) and the microbiological profile (the total number of aerobic mesophilic bacteria,
E. coli, L. monocytogens, S. aureus and lactic acid bacteria) of kombucha fresh cheese samples
according to the day of storage, type of herb used (sage and wild thyme), and the type
of the cheese sample (KC—kombucha fresh cheese control sample; KG—kombucha fresh
cheese with the addition of ground herb, and KSFE—kombucha fresh cheese with the
addition of herbal supercritical fluid extracts).

Considering the literature references, the ANN models were widely accepted as
comprehensively suitable for the solution of nonlinear problems [3,45,46]. Prior to the
ANN model building, input and output variables were standardized to augment the
exactness of ANN model’s results. Throughout the iterative process, input data were
consistently submitted to the ANN network [47,48]. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm was employed as an iterative tool for solving unconstrained
nonlinear optimization in the course of ANN model building.

Figure 2 shows the flowchart of the research conducted with the aim of determining
the most appropriate ANN model in terms of predictive ability, but also in terms of the
error rate of each model.
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The collected data for ANN modelling were randomly partitioned into training, cross-
validation, and testing data (with shares of 70%, 15%, and 15% of collected data, respec-
tively). A series of 100,000 different MLP configurations were studied, through the training
cycle, by changing the number of neurons in hidden layer (between 5 and 10) applying
random preliminary values of weights and biases for the ANN model, and testing different
activation functions for the hidden and the output layer (such as hyperbolic tangent, logistic
sigmoidal, exponential or identity). Using the identity function, the activation level of
the input is passed on directly as the output of the neurons. Logistic uses the logistic
sigmoid S-shaped function, with an output in the range from 0 to +1. The hyperbolic
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tangent function (tanh) is a symmetric S-shaped (sigmoid) function, whose output lies in
the range from −1 to +1. It often performs better than the logistic sigmoid function due to
its symmetry. Exponential uses the negative exponential activation function.

The optimization setup included the minimization of the square error. It is assumed that the
successful training was reached when learning and cross-validation curves approached zero.

The coefficients involved with the hidden layer (weights and biases) were split up in
matrices W1 and B1. Moreover, coefficients connected to the output layer were combined
with matrices W2 and B2. It is feasible to describe the neural network models by utilizing
matrix record (Y is the matrix of the output variables (the dry matter, fat, ash, proteins
in dry matter, and proteins content, aw, pH, TP, DPPH, ABTS, FRAP, the total number of
aerobic mesophilic bacteria, E. coli, L. monocytogens, S. aureus and lactic acid bacteria), f1 and
f2 are transfer functions in the hidden and output layers, accordingly, and X is the matrix
of input variables (the day of storage, type of herb used (salvia and wild thyme), and the
type of the cheese sample (KC—kombucha fresh cheese control sample; KG—kombucha
fresh cheese with the addition of ground herb, and KSFE—kombucha fresh cheese with the
addition of herbal supercritical fluid extracts [49,50]:

Y = f1(W2· f2(W1·X + B1) + B2) (1)

Weight coefficients in the Artificial Neural Network (ANN) models, represented
by elements in matrices W1 and W2, as well as vectors B1 and B2, were established by
determining the ANN model [47]. The widely used BFGS algorithm was employed to
ensure convergence and resolve the solution of the nonlinear problem [3].

2.2. Global Sensitivity Analysis

Yoon’s interpretation method was utilized to determine the relative influence of the
day of storage, type of herb used (sage and wild thyme), and the type of the fresh cheese
sample (KC—kombucha fresh cheese control sample; KG—kombucha fresh cheese with the
addition of ground herb, and KSFE—kombucha fresh cheese with the addition of herbal
supercritical fluid extracts) on the selected parameters of chemical composition, antioxidant
potential, and microbiological profile of kombucha fresh cheese. This calculation was
performed according to the weight coefficients of the erected ANN model [40].

The provided equation was employed to assess the direct impact of the input parame-
ters on the output variables, considering the weighting coefficients embedded within the
Artificial Neural Network (ANN) model [50]:

RIij(%) =
n

∑
k=0

(
wik·wkj

)
/

(
m

∑
i=0

∣∣∣∣∣ n

∑
k=0

(
wik·wkj

)∣∣∣∣∣
)
·100% (2)

where w—presents the weights of the ANN model, i—input variable, j—output variable,
k—hidden neuron, n—number of hidden neurons, m—number of inputs.

2.3. The Accuracy of the Model

The statistical validation of the formulated non-linear models was investigated employ-
ing standard computational tests, which encompassed the coefficient of determination (r2),
reduced chi-square (χ2), mean bias error (MBE), root-mean-square error (RMSE), and mean
percentage error (MPE). These metrics were evaluated using the following equations [48]:

χ2 =
N

∑
i=1

(
xexp,i − xpre,i

)2/(N − n) (3)

RMSE =

[
1
N
·

N

∑
i=1

(
xexp,i − xpre,i

)2
] 1

2

(4)
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MBE =
1
N
·

N

∑
i=1

(
xpre,i − xexp,i

)
(5)

MPE =
100
N

·
N

∑
i=1

(∣∣xpre,i − xexp,i
∣∣

xexp,i

)
(6)

where xexp,i were collected values and xpre,i were the model anticipated values; N and n are
the number of observations and constants, accordingly.

3. Results and Discussion
3.1. Correlation Analysis

Correlation analysis revealed statistically significant associations (p ≤ 0.05) among
various responses in the examined kombucha fresh cheese samples (Figure 3). The correla-
tion coefficients specify the size and color of the circles presented in Figure 3. A blue circle
implies a positive correlation, while a red circle indicates a negative correlation between
observed responses. Additionally, the size of the circle increases with the absolute value
of the correlation coefficient [51]. The highest positive correlations were found between
Listeria monocytogenes and Staphylococcus aureus (r = 0.909; p ≤ 0.001), and also between
Escherichia coli and Aerobic mesophilic bacteria (r = 0.808, p ≤ 0.001) and Escherichia coli and
Staphylococcus aureus (r = 0.689; p ≤ 0.001). These results indicate that antimicrobial activity
of kombucha fresh cheese is not selective and has a similar impact on all investigated mi-
croorganisms. On the other hand, the highest negative correlations were observed between
the content of total proteins (%) and aw (r = −0.922, p ≤ 0.001). This is the consequence of
amphipathic structure of the casein micelle, that are able to bind water on its surface and
lower the aw value of the cheese [52].
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3.2. PCA and Cluster Analysis

Principal component analysis (PCA) aided in discerning patterns within the analyzed
data by providing insights into identifying variables that exhibit similar behavior [53].
In the PCA plot, closely positioned dots signify similarities in the patterns representing
these samples, according to experimental plan presented in Table 1. The orientation of
vectors in factor space indicates an increasing trend of these factors. Meanwhile, the size
of the vectors is proportional to the squared correlation among the variables. The angles
between corresponding variables reflect the magnitude of their correlations, with sharper
angles indicating higher correlations [54]. Utilizing the experimental findings, samples are
marked as shown in Table 1; principal component analysis (PCA) was conducted as shown
in Figures 4–6.

Table 1. Experimental design—samples of kombucha fresh cheeses used for the analysis fortified
with different herbal preparations: KC—kombucha fresh cheese control sample; KG—kombucha
fresh cheese with the addition of ground herb, and KSFE—kombucha fresh cheese with the addition
of herbal supercritical fluid extracts [32–34].

No Herb Sample Day of Storage

1 thyme KC 0
2 thyme KC 10
3 thyme KC 20
4 thyme KC 30
5 thyme KG 0
6 thyme KG 10
7 thyme KG 20
8 thyme KG 30
9 thyme KSFE 0
10 thyme KSFE 10
11 thyme KSFE 20
12 thyme KSFE 30
13 salvia KC 0
14 salvia KC 10
15 salvia KC 20
16 salvia KC 30
17 salvia KG 0
18 salvia KG 10
19 salvia KG 20
20 salvia KG 30
21 salvia KSFE 0
22 salvia KSFE 10
23 salvia KSFE 20
24 salvia KSFE 30

The PCA biplot of the relationships among the dry matter, fat, ash, proteins in dry
matter, proteins content, aw, and pH of the tested kombucha fresh cheese samples revealed
that the first two principal components explained 78.40% of the total variance in the
observed parameters, as shown in Figure 4. Based the results of the PCA, the dry matter,
total proteins in dry matter (%), aw, and pH, (22.46%, 26.93%, 18.30%, and 14.81% of the
total variance, based on correlations, respectively) showed a positive influence on the first
principal coordinate, while fat (−22.88%), ash (−23.92%), and total proteins (−18.79%),
negatively contributed to the calculation of the PC2. It is notable grouping of the samples
fortified with salvia after 0 and 10 days of storage at the negative values of the PC1. These
samples are characterized by their total protein content in dry matter.

The PCA biplot of the relationships among the antioxidant potential parameters (TP,
DPPH, ABTS and FRAP) of the tested kombucha fresh cheese samples revealed that the
first two principal components explained 75.04% of the total variance in the observed
parameters, as shown in Figure 5.
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Produced chesses were grouped by the type and form of the supplement, rather than
the day of storage. Based the results of the PCA, the TP (−40.82% of the total variance,
based on correlations) showed a negative influence on the first principal coordinate, while
FRAP (45.62%) positively contributed to the calculation of the PC1. On the other hand,
DPPH and ABTS positively influenced PC 2 (56.07% and 22.99% of the total variance, based
on correlations, respectively).
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The PCA biplot of the relationships among the selected responses for microbiological
profile (aerobic mesophilic bacteria, E. coli, S. aureus, L. monocytogenes, and Lactic acid
bacteria) of the tested kombucha fresh cheese samples revealed that the first two principal
components explained 91.60% of the total variance in the observed parameters, as shown
in Figure 5.

In contrast to the antioxidant potential parameters, the samples were grouped ac-
cording to antimicrobial activity by day of storage and not by supplement type and form.
According to the results of the PCA, Aerobic mesophilic bacteria, namely E. coli, S. aureus,
and L. monocytogenes (−23.79%, −25.88%, −22.05 and −27.74% of the total variance, based
on correlations, respectively), showed a negative influence on the first principal coordinate.
On the other hand, lactic acid bacteria negatively influenced PC 2 (−59.87% of the total
variance, based on correlations).

The results of cluster analysis performed for the selected parameters of chemical
composition (dry matter, fat, ash, proteins in dry matter, and protein content), aw, pH,
antioxidant potential parameters (TP, DPPH, ABTS and FRAP), and the selected param-
eters for microbiological profile (the total number of aerobic mesophilic bacteria, E. coli,
L. monocytogens, S. aureus and lactic bacteria) of the tested kombucha fresh cheese samples
are given in Figure 7. The cluster analysis dendrogram revealed two main separate clusters,
and four sub clusters. The first cluster contained samples 1, 9, 2,10, 5, 6, 13, 17, 21, 14, 18,
and 22. On other hand, the second one involved samples 3, 11, 4, 12, 7, 8, 23, 24, 15, 16, 19,
and 20. Therefore, the samples are divided into two groups according to the day of storage.
The first cluster contains samples after 0 and 10 days of storage, while the second cluster
contains samples after 20 and 30 days of storage. The linkage distance (illustrated on the
abscissa axis) between the main clusters was nearly 70.
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3.3. Artificial Neural Network Modeling

In this study an ANN model was developed, with its structure and performance
heavily reliant on initial assumptions regarding matrix parameters (biases and weight
coefficients). These parameters play a pivotal role in molding the ANN to fit experimental
data accurately. Moreover, the number of neurons in the hidden layer can influence
the performance of the model. To counteract potential issues, each topology underwent
100,000 runs to eliminate any random correlation from initial assumptions and random
weight initialization. This meticulous approach resulted in the ANN model achieving its
highest r2 value during training with nine hidden neurons (Figure 8a).
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The ANN model underwent training for 100 epochs, highlighting its training results
in Figure 8b, specifically the train accuracy and error (loss). The accuracy increased steadily
with the number of training cycles until it plateaued around the 30–50th epoch. Going
beyond 50 epochs might lead to significant overfitting, while stopping at 50 epochs was
sufficient to attain high model accuracy without risking overfitting (refer to Figure 2).

The acquired optimal neural network models showed good generalization capabilities
for the foreseen collected data, and could be used to accurately predict the observed
outputs, based on the input parameters. The required number of neurons for the ANN
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model was 10 (network MLP 6-10-16) in order to obtain the highest values of r2 (the r2

values for prediction of output variables were 0.993, 0.992 and 0.992, for training, testing
and validation cycles, respectively), Table 2.

Table 2. Artificial neural network model summary (performance and errors), for training, testing,
and validation cycles.

Performance Error
Training

Algorithm
Error

Function

Activation

Net.
Name Train. Test Valid. Train. Test Valid. Hidden Output

MLP
6-10-16 0.993 0.992 0.992 0.112 0.110 0.099 BFGS 895 SOS Tanh Logistic

Net.—Artificial Neural Network, Train.—training cycle, Test—testing cycle, Valid.—validation cycle.

Table 3 presents the elements of matrix W1 and vector B1 (presented in the bias row).
Table 4 presents the elements of matrix W2 and vector B2 (bias) for the hidden layer used
for calculation within the ANN model.

Table 3. The weight coefficients and biases W1 and B1 for ANN model.

1 2 3 4 5 6 7 8 9 10

Day of storage 5.946 −74.377 −5.191 −0.123 35.947 19.789 69.472 18.844 11.077 −9.741
Herb (salvia) −22.188 19.571 2.858 −0.875 −23.021 −1.460 −20.183 −24.839 24.732 −0.049
Herb (thyme) 23.436 −8.728 −1.138 0.791 23.777 −8.585 5.219 17.235 −22.868 3.855
Sample (KC) −0.108 −7.028 3.362 22.847 −16.967 4.949 11.619 30.853 −28.909 −0.042
Sample (KG) 1.287 −3.620 −2.503 −21.715 8.757 4.618 −37.262 −22.961 22.947 −0.295
Sample (KSFE) 0.132 21.571 0.872 −1.102 9.015 −19.489 10.619 −15.595 7.802 4.176
Bias 1.441 10.877 1.697 −0.082 0.821 −10.059 −15.175 −7.666 1.981 3.787

Table 4. The weight coefficients and biases W2 and B2 for ANN model.

1 2 3 4 5 6 7 8 9 10 Bias

DM 58.183 8.481 32.653 −42.411 −16.508 26.829 35.997 29.942 54.881 −4.307 0.671
Fat −7.297 −31.416 70.373 −66.801 44.395 −34.262 −97.084 50.442 −64.959 −79.962 −1.562
Ash −5.044 −7.549 −9.331 14.156 −10.769 −49.339 20.769 −12.630 13.787 −41.212 1.185
Proteins DM −35.584 −2.777 39.702 −54.536 3.466 47.129 −5.042 33.668 −52.901 10.158 −2.158
Proteins −20.417 −3.559 7.086 −9.984 25.723 11.569 −13.381 5.889 −10.779 3.842 −0.324
aw 35.435 16.330 −28.452 38.750 −51.027 −33.065 45.172 −18.905 36.649 −6.693 4.102
pH −1.433 14.026 11.830 −17.768 25.875 18.149 −44.432 33.513 −16.784 6.469 −0.361
TP −73.083 −36.334 −15.210 −21.810 19.576 21.696 8.571 −25.220 −22.743 4.998 0.670
DPPH −18.678 34.277 −50.497 33.291 3.410 −50.724 5.340 17.083 34.110 −28.422 −1.852
ABTS 17.065 0.087 17.405 −23.008 1.717 18.474 3.723 14.220 13.383 3.014 −2.949
FRAP 3.087 6.057 −1.503 2.053 3.001 −1.930 −4.765 5.701 3.037 −0.763 −0.582
Aerobic 65.168 59.848 7.543 −10.703 2.055 3.993 −31.010 23.972 −10.132 −2.797 0.059
E. coli 16.318 2.112 4.819 −6.670 −10.296 3.710 −7.232 3.367 −6.008 −0.189 0.417
L. monocytogenes 3.493 −3.286 4.604 −6.459 −3.850 4.743 −11.311 2.547 −10.371 0.625 1.358
S. aureus 5.659 −4.874 6.536 −9.038 −5.145 4.751 −15.700 3.467 −14.378 −0.910 0.171
Lactic 7.317 −1.893 1.916 −2.428 −8.363 0.305 −4.583 0.212 −4.536 −1.266 0.608

The potential of the ANN model to predict observed parameters is presented by
scatter plots (Figures 9–11). Figures 9–11 display the experimentally estimated and ANN
model-predicted values of the observed responses for kombucha fresh cheese samples,
suggesting that the ANN model correctly predicted experimental variables.
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The elevated levels of pathogenic bacteria presented in Figure 11 were deliberately
induced for experimental purposes, as stated in our previously published papers [32–34].
The cheese samples were intentionally contaminated to examine the specific influence of
herbs under such conditions. This approach allowed exploration of the potential effects
of herbs and herbal extracts on the microbiological profile of kombucha fresh cheese,
providing insights into their antimicrobial properties or other relevant interactions.
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3.4. The Accuracy of the Model

To numerically verify the displayed models accuracy coefficient of determination (r2),
reduced chi-square (χ2), mean bias error (MBE), root-mean-square error (RMSE), and mean
percentage error (MPE) were calculated, as shown in Table 5. The results show that the
ANN models had a minor lack of fit tests, which implies that the models satisfactorily
predicted the values of the analyzed parameters.

However, the importance of conducting external validation using independent datasets
or real-world experiments to ascertain the robustness and generalizability of these find-
ings should be highlighted, while also acknowledging the potential limitations in fully
addressing long-term implications or changes within the study, thereby underscoring the
imperative for further research in this area.

3.5. Global Sensitivity Analysis—Yoon’s Interpretation Method

The influence of input variables on the relative importance of the dry matter content,
fat content, ash content, content of proteins in dry matter, protein content, aw value, and
pH value for ANN model, is illustrated in Figure 12. In Figure 12, the storage duration
emerged as the most influential factor affecting dry matter content, with a significant
positive impact of approximately +64.98% (Figure 12a). Additionally, the day of storage
played a pivotal role in pH and fat content, but the impact was contradictory, accounting for
−39.70% and −22.41% of relative importance, respectively (Figure 12g). The introduction
of sage had adverse effects on dry matter (−15.56%), fat (−16.03%), proteins in dry matter
(−20.78%), protein content (−15.99%), and pH (−9.71%), while positively impacting ash
content (+12.26%) and water activity (+18.78%). Conversely, the inclusion of wild thyme
exhibited a positive influence on fat (+22.24%), proteins (+16.10%), and pH (+16.19%), while
negatively affecting ash (−11.35%) and water activity (−19.44%). Regarding cheese sample
preparation, samples with ground herbs positively influenced proteins, while those with
the addition of herbal supercritical fluid extracts positively affected ash content and water
activity value.
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Figure 11. Comparison between experimentally obtained and ANN model predicted values of (a) aerobic
mesophilic bacteria (b) E. coli, (c) L. monocytogenes, (d) Staphilococcus aureus, and (e) lactic acid bacteria.

Figure 13 illustrates the impact of input variables on the relative importance of TP,
DPPH, FRAP, and ABTS. Notably, the day of storage emerged as the most influential
parameter, positively affecting TP (+51.97%) and ABTS (+37.76%), while simultaneously
exerting a negative influence on DPPH (−29.44%) and FRAP (−64.46%). Other input
parameters demonstrated significantly lower effects on the observed antioxidant potential
parameters of kombucha fresh cheese samples. This implies that, within the study’s scope,
the day of storage predominantly shapes the antioxidant characteristics of the cheese.
The finding that the day of storage significantly influences the antioxidant potential of
kombucha fresh cheese aligns with common practices in food science [55]. The distinct
effects of the day of storage on different antioxidant parameters (TP, DPPH, FRAP, and
ABTS) reflect the complex nature of these compounds [56].

The influence of input variables on the relative importance of aerobic mesophilic
bacteria, E. coli, L. monocytogenes, S. aureus, and lactic acid bacteria for ANN model, was
given in Figure 14. Significantly, the day of storage stands out as the most influential
parameter, exerting a negative impact on the observed responses of aerobic mesophilic
bacteria (−66.98%), E. coli (−46.12%), L. monocytogenes (−34.88%), S. aureus (−34.29%), and
lactic acid bacteria (−46.61%). The research by Tiwari et al. [57] underlined that the post-
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processing storage conditions at the retail level are critical factors affecting L. monocytogenes
concentration. The negative impact observed in the ANN model underscores the need
for careful consideration of storage parameters to mitigate potential risks associated with
the proliferation of undesirable microorganisms [57]. The integration of ANN modeling
with a focus on the day of storage provides valuable insights into the dynamic nature of
microbiological responses in kombucha fresh cheese [58,59].

Table 5. The “goodness of fit” tests for the developed ANN model.

χ2 RMSE MBE MPE SSE AARD r2

DM 0.080 0.094 −0.028 0.128 0.146 1.205 0.994
Fat 0.128 0.119 −0.028 0.146 0.242 0.707 0.936
Ash 0.000 0.006 0.002 0.202 0.001 0.054 0.996
Proteins DM 0.170 0.137 0.035 0.166 0.317 1.365 0.998
Proteins 0.045 0.071 −0.003 0.232 0.089 0.914 0.995
aw 0.000 0.001 0.000 0.072 0.000 0.012 0.990
pH 0.006 0.027 0.001 0.418 0.013 0.361 0.990
TP 0.083 0.096 0.042 3.361 0.134 0.987 0.999
DPPH 0.023 0.051 0.025 7.456 0.036 0.552 0.999
ABTS 0.350 0.197 −0.005 5.905 0.699 2.390 0.990
FRAP 0.953 0.325 −0.005 6.407 1.905 3.790 0.980
Aerobic 0.856 0.534 −0.236 3.468 5.508 5.868 0.698
E. coli 0.482 0.401 −0.169 12.928 3.172 4.612 0.867
L. momocytogens 0.777 0.509 −0.022 8.927 6.208 7.013 0.610
S. aureus 0.438 0.382 −0.085 6.110 3.328 4.477 0.703
Lactic 6.838 1.510 0.681 13.734 43.561 17.815 0.11
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3.6. Multi-Objective Optimization of the Outputs of the ANN

The challenges associated with Artificial Neural Network (ANN) models in real-world
applications include dependency on data quality and quantity, susceptibility to over fitting
and under fitting, lack of interpretability due to their “black-box” nature, high computa-
tional resource and time demands, sensitivity to hyper parameters, potential generalization
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issues, limited causality inference capabilities, and risks of biased predictions [60,61]. Firstly,
their accuracy is heavily contingent upon the quality and quantity of input data, and they
are susceptible to overfitting or underfitting, hindering their ability to generalize to new
data [62]. The “black-box” nature of ANNs makes it challenging to interpret the relation-
ships between inputs and outputs [63]. Additionally, the training and optimization of
complex ANN models demand significant computational resources and time [64]. Sensitiv-
ity to hyperparameters necessitates careful tuning, and issues with generalization may arise
if the training dataset lacks representativeness [65]. While ANNs can capture correlations,
their limited ability to infer causality requires additional analysis. Furthermore, the models
are sensitive to initial conditions during training, posing a challenge in achieving consistent
outcomes. The risk of biased predictions due to biased training data and the need for
specialized expertise in machine learning and neural networks contribute to the overall
limitations of ANNs. Keeping in mind all the listed ANN limitations, the optimization
of the ANN outputs was performed using results presented in Tables 2 and 3, applied in
Equation (1). One of the main goals in this investigation was to optimize DM, Fat, Ash,
Proteins DM, Proteins, aw, pH, TP, DPPH, ABTS, FRAP, aerobic mesophilic bacteria, E. coli,
L. momocytogens, S. aureus, and lactic acid bacteria, simultaneously, using the ANN model
by changing the input variables (day of storage, herb selection and kombucha fresh cheese
sample type). These numerical tasks were solved using the MOO calculation in Matlab.
The MOO procedure was defined to find the best combinations of process parameters by
optimizing the output variables in the ANN model. The number of generations reached
446 for ANN model, while the size of the population was set to 100 for each input variable.
The number of points on the pareto front was 2.

In the realm of ANN model optimization, the results culminated in the identification
of an optimal sample—specifically, the one with supercritical fluid extract of sage, stored
on the 20th day. This optimal sample exhibited a finely tuned composition, with dry matter
at 53.535%, fat at 25.25%, ash at 1.70%, proteins dm at 43.993%, proteins at 24.550%, with
aw 0.936 and pH 4.190. Additionally, it showcased desirable values for total phenols (TP),
DPPH, ABTS, FRAP, and microbiological components, including Aerobic bacteria, E. coli,
L. monocytogenes, S. aureus, and lactic acid bacteria (TP 7.15 mgGAE/g, DPPH 4.482 µM
TE/g, ABTS 7.031 µM TE/g, FRAP 0.409 µM TE/g, Aerobic bacteria 6.975 logCFU/g, E.coli
2.370 logCFU/g, L. monocytogenes 3.115 logCFU/g, S. aureus 2.650 logCFU/g, and lactic
acid bacteria 6.770 logCFU/g).

This optimization process pinpointed an optimal configuration for the kombucha fresh
cheese and underscored the intricate relationships and trade-offs inherent in the various
quality parameters. The meticulous tuning of these variables serves as a blueprint for prac-
titioners and researchers, offering a pathway toward achieving the desired characteristics in
kombucha fresh cheese production. Achieving the preferable composition of fresh cheese
formulation ensures a desirable sensory acceptance by consumers.

Furthermore, the integration of advanced computational techniques, such as Multi-
Objective Optimization (MOO) alongside Artificial Neural Network (ANN) models, show-
cases the evolving landscape of optimization methodologies in the dairy industry. This
systematic approach to parameter optimization provides insights into the complex relation-
ships among various quality parameters and sets a framework for future investigations
and enhancements in cheese production processes.

4. Conclusions

In conclusion, the comprehensive investigation of kombucha fresh cheese, involving
correlation analysis, Principal Component Analysis, Cluster analysis, and Artificial Neural
Network models, revealed significant associations and provided a multifaceted assessment
of quality parameters. Positive correlations among microbiological components and nega-
tive correlations between total proteins and water activity were identified. PCA elucidated
the diverse impacts of different parameters on variance, specifically in chemical compo-
sition, antioxidant potential, and microbiological profiles. The developed ANN models
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demonstrated robust predictive capabilities. The highlighted optimal sample, kombucha
fresh cheese with addition of supercritical fluid extract of sage, KSFE, on the 20th day of
storage showcased specific attributes for quality optimization.

Furthermore, the sensitivity analysis emphasized the pivotal role of the day of storage
and the influence of herbal additives like sage and wild thyme. These insights underscore
the need to carefully consider storage conditions and ingredient choices to achieve desired
product characteristics. The study’s findings contribute valuable knowledge for enhancing
kombucha fresh cheese production, offering practical guidance for the dairy industry and
researchers seeking to refine processes and improve overall product quality.

Future research could delve into investigating long-term storage effects interactions
among ingredients, consumer sensory evaluation, optimization of production processes,
microbial dynamics, scale-up studies, market trends analysis, and environmental impact
to enhance kombucha fresh cheese production and contribute to the dairy industry’s
advancement. The study’s findings offer practical guidance for refining processes and
improving overall product quality.
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cheese with wild thyme (Thymus serpyllum L.) herbal dust and its influence on antioxidant activity. Food Biosci. 2023, 56, 103161.
[CrossRef]

https://doi.org/10.1016/j.foodchem.2011.05.126
https://www.ncbi.nlm.nih.gov/pubmed/25212373
https://doi.org/10.1016/j.talanta.2013.04.043
https://doi.org/10.1016/j.fbp.2020.12.006
https://doi.org/10.1111/1471-0307.12370
https://doi.org/10.1016/B978-0-12-818766-1.00284-1
https://doi.org/10.37652/juaps.2023.178567
https://doi.org/10.18805/ajdfr.DR-2013
https://doi.org/10.20884/1.jap.2023.25.2.197
https://doi.org/10.1111/1471-0307.12505
https://doi.org/10.3168/jds.2021-20808
https://doi.org/10.1111/jfpp.14535
https://doi.org/10.1089/fpd.2009.0412
https://www.ncbi.nlm.nih.gov/pubmed/19919287
https://doi.org/10.1111/j.1365-2621.1987.tb00499.x
https://doi.org/10.1016/j.fbio.2021.101177
https://doi.org/10.1016/j.sjbs.2013.10.005
https://www.ncbi.nlm.nih.gov/pubmed/24955014
https://doi.org/10.1080/14786419.2022.2125965
https://www.ncbi.nlm.nih.gov/pubmed/36134545
https://doi.org/10.1590/fst.31322
https://doi.org/10.15587/1729-4061.2021.239120
https://doi.org/10.1007/s13197-020-04256-1
https://doi.org/10.1016/j.lwt.2021.112142
https://doi.org/10.1039/D2FO01774A
https://www.ncbi.nlm.nih.gov/pubmed/36942549
https://doi.org/10.1016/j.fbio.2023.103161


Foods 2024, 13, 548 20 of 21

35. Correia, P.; Vitor, A.; Tenreiro, M.; Correia, A.C.; Pinto, A.; Correia, P.; Madanelo, J.; Vacas, M.; Guiné, R. Influence of different
processing parameters in physical and sensorial properties of Serra de Estrela cheese. J. Hyg. Eng. Des. 2014, 8, 135–140.

36. Bezie, A.; Regasa, H. The role of starter culture and enzymes/rennet for fermented dairy products manufacture-A Review. Nutr.
Food Sci. Int. J. 2019, 9, 21–27.

37. Troch, T.; Lefébure, É.; Baeten, V.; Colinet, F.; Gengler, N.; Sindic, M. Cow milk coagulation: Process description, variation factors
and evaluation methodologies. A review. Biotechnol. Agron. Société Environ. 2017, 21, 276–287. [CrossRef]

38. Panthi, R.R.; Kelly, A.L.; O’Callaghan, D.J.; Sheehan, J.J. Measurement of syneretic properties of rennet-induced curds and impact
of factors such as concentration of milk: A review. Trends Food Sci. Technol. 2019, 91, 530–540. [CrossRef]

39. Guinee, T.P.; O’callaghan, D.J. Control and prediction of quality characteristics in the manufacture and ripening of cheese. Technol.
Cheesemak. 2010, 8904, 260.

40. Guinee, T.P. Salting and the role of salt in cheese. Int. J. Dairy Technol. 2004, 57, 99–109. [CrossRef]
41. Meng, Y.; Sun, J.; Zhang, G.; Yu, T.; Piao, H. Unlock the power of bovine milk-derived exosomes for degenerative diseases

associated with aging. J. Funct. Foods. 2023, 109, 105788. [CrossRef]
42. Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.S.; Kabisch, J.; Böhnlein, C.; Franz, C.M. Microbial quality and safety of

milk and milk products in the 21st century. Compr. Rev. Food Sci. 2020, 19, 2013–2049. [CrossRef] [PubMed]
43. Benedet, A.; Manuelian, C.L.; Penasa, M.; Cassandro, M.; Righi, F.; Sternieri, M.; Galimberti, P.; Zambrini, A.V.; De Marchi, M.

Factors associated with herd bulk milk composition and technological traits in the Italian dairy industry. J. Dairy Sci. 2018, 101,
934–943. [CrossRef] [PubMed]

44. Zhu, X.; Wen, J.; Wang, J. Effect of environmental temperature and humidity on milk production and milk composition of
Guanzhong dairy goats. Vet. Anim. Sci. 2020, 9, 100121. [CrossRef] [PubMed]

45. D’amico, D.J. Microbiological quality and safety issues in cheesemaking. Cheese Microbes 2014, 2, 251–309.
46. Curto, B.; Moreno, V.; García-Esteban, J.A.; Blanco, F.J.; González, I.; Vivar, A.; Revilla, I. Accurate prediction of sensory attributes

of cheese using near-infrared spectroscopy based on artificial neural network. Sensors 2020, 20, 3566. [CrossRef] [PubMed]
47. Shen, C.; Fan, C.; Wang, Y.; Xue, W. Limited memory BFGS algorithm for the matrix approximation problem in Frobenius norm.

Comput. Appl. Math. 2020, 39, 43. [CrossRef]
48. Mohammed, N.A.; Ismail, Z.Z. Prediction of pollutants removal from cheese industry wastewater in constructed wetland by

artificial neural network. Int. J. Sci. Environ. Technol. 2021, 19, 9775–9790. [CrossRef]
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