
Citation: Xu, Z.; Han, Y.; Zhao, D.; Li,

K.; Li, J.; Dong, J.; Shi, W.; Zhao, H.;

Bai, Y. Research Progress on Quality

Detection of Livestock and Poultry

Meat Based on Machine Vision,

Hyperspectral and Multi-Source

Information Fusion Technologies.

Foods 2024, 13, 469. https://

doi.org/10.3390/foods13030469

Academic Editor: Begoña Panea

Received: 5 January 2024

Revised: 29 January 2024

Accepted: 30 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Review

Research Progress on Quality Detection of Livestock and Poultry
Meat Based on Machine Vision, Hyperspectral and Multi-Source
Information Fusion Technologies
Zeyu Xu 1,2,3,4 , Yu Han 1,2,3,4, Dianbo Zhao 1,2,3,4, Ke Li 1,2,3,4, Junguang Li 1,2,3,4, Junyi Dong 1,2,3, Wenbo Shi 1,2,3,
Huijuan Zhao 5 and Yanhong Bai 1,2,3,4,*

1 College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China;
happyzeyu123@126.com (Z.X.); hanyuatt@163.com (Y.H.); zhaodb212@163.com (D.Z.);
like@zzuli.edu.cn (K.L.); 2014081@zzuli.edu.com (J.L.); dongjy1999@163.com (J.D.); wenbo836@163.com (W.S.)

2 Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry),
Ministry of Education, Zhengzhou 450000, China

3 Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
4 Food Laboratory of Zhongyuan, Luohe 462000, China
5 Henan Lianduoduo Supply Chain Management Co., Ltd., Hebi 458000, China; ldd8688@126.com
* Correspondence: baiyanhong212@163.com

Abstract: Presently, the traditional methods employed for detecting livestock and poultry meat
predominantly involve sensory evaluation conducted by humans, chemical index detection, and
microbial detection. While these methods demonstrate commendable accuracy in detection, their
application becomes more challenging when applied to large-scale production by enterprises. Com-
pared with traditional detection methods, machine vision and hyperspectral technology can realize
real-time online detection of large throughput because of their advantages of high efficiency, accuracy,
and non-contact measurement, so they have been widely concerned by researchers. Based on this,
in order to further enhance the accuracy of online quality detection for livestock and poultry meat,
this article presents a comprehensive overview of methods based on machine vision, hyperspectral,
and multi-sensor information fusion technologies. This review encompasses an examination of the
current research status and the latest advancements in these methodologies while also deliberating
on potential future development trends. The ultimate objective is to provide pertinent information
and serve as a valuable research resource for the non-destructive online quality detection of livestock
and poultry meat.

Keywords: livestock and poultry meat; quality detection; machine vision; hyperspectral; multi-source
information fusion

1. Introduction

Meat products are a primary source of nutrients for the human body. The protein,
fat, vitamins, and other components present in livestock and poultry meat are highly
similar to and easily digestible and absorbable by the human body, making them highly
nutritionally valuable. In recent years, outbreaks of swine fever and avian influenza, as
well as incidents involving spoiled meat, adulterated meat, added meat, and water-injected
meat, have increased the emphasis on quality detection of livestock and poultry meat
for both production enterprises and consumers [1]. To achieve online quality detection
of livestock and poultry meat, scholars have conducted extensive research and proposed
non-destructive detection methods based on machine vision technology and hyperspectral
technology. Machine vision technology involves capturing the color information of live-
stock and poultry meat and processing these data to obtain color-based quality evaluation
information. Hyperspectral technology, on the other hand, involves acquiring spectral data
of livestock and poultry meat at different wavelengths and extracting relevant information
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based on spectral characteristics for quality evaluation. While single detection methods
may achieve high success rates in experiments, their models often exhibit high specificity
and poor adaptability, which limits their ability to comprehensively and accurately describe
the quality characteristics of livestock and poultry meat in actual production scenarios [2].
However, the majority of current livestock and poultry meat quality detection still relies
on single detection methods, leading to potential food safety issues. To address these
challenges, it is necessary to comprehensively acquire and measure various aspects of
sample quality information, and multi-source quality information fusion technology offers
an effective solution. Multi-source quality information fusion involves utilizing multiple
sensing information resources to obtain multidimensional information describing different
quality characteristics of the same object. By analyzing, selecting, integrating, and bal-
ancing this information using detection algorithms, several simplified optimal composite
variables can be obtained. Compared to the single detection method, multi-source qual-
ity information fusion offers advantages such as higher information content, better fault
tolerance, increased accuracy, and similarity to human cognitive processes [3]. Based on
this, this article provides an overview of the research progress in machine vision technol-
ogy, hyperspectral technology, and multi-source quality information fusion technology for
non-destructive online quality detection of livestock and poultry meat. It also discusses
future development trends, aiming to provide relevant information and research references
for accurate identification and non-destructive online detection of livestock and poultry
meat quality.

2. Quality Detection of Livestock and Poultry Meat Based on Machine
Vision Technology
2.1. Machine Vision Technology

Machine vision technology involves capturing object images through cameras and
converting the visual information into digital data through feature extraction, so as to
obtain various features in the source image, and finally understand and make decisions
on the detected object according to the discrimination criteria. In the context of livestock
and poultry meat, machine vision technology has been proven to be effective in detecting
characteristics such as marbling patterns [4], tenderness [5], color [6], and freshness [7]. The
common process diagram of a machine vision detection system is illustrated in Figure 1.
Non-destructive detection of machine vision systems is shown in Figure 2.
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The characteristics of machine vision technology in meat quality detection can be
summarized in the following three aspects:

1. Non-contact and non-destructive: Machine vision technology enables non-contact
detection, ensuring that the object being measured remains uncontaminated and
undamaged. It allows for real-time and long-term monitoring [8].

2. High sensitivity: This aspect is mainly reflected in the broader spectral range and finer
resolution. While the human eye can perceive visible light in the wavelength range
of 400–760 nm, machine vision can recognize visible light, ultraviolet (100–400 nm),
infrared (760–0.3 mm), and more with the help of methods, expanding the detection
capabilities across the spectrum. The captured images are composed of pixel points in
an image matrix. Monochrome images have a minimum grayscale level of six bits per
pixel, while color images have a minimum grayscale level of eight bits per pixel. The
instrumentation-grade cameras easily provide 14–16-bit dynamic range. Digitizing
at eight digits/pixel is typical for speed. An eight-bit image corresponds to pixel
depths ranging from 0 to 255 levels, while the human eye can typically distinguish
only about 40 levels. Generally speaking, cracks with a width of more than 0.1 mm
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can be recognized by the human eye, but machine vision technology can improve the
recognition ability by more than 10–100 times [9].

3. Objectivity: The traditional manual detection methods rely on human expertise and
visual detection, making the results susceptible to subjective factors and external
environmental influences. In contrast, machine vision detection is not affected by
detection conditions or operators, ensuring objective and efficient completion of the
detection task using consistent evaluation criteria.

Machine vision detection offers advantages such as non-contact, high sensitivity, and
objectivity, making it well suited for online quality detection of livestock and poultry meat.
However, there are some challenges and areas for improvement that need to be addressed:

1. High environmental requirements: During the image acquisition stage, factors such as
lighting conditions, environmental factors, shooting angles, and distances can affect
the image features of the inspected objects, thereby impacting the detection accuracy.
Additionally, image noise interference and partial occlusion of the inspected objects
can also degrade the image quality, resulting in reduced detection accuracy. Finding
ways to improve image acquisition quality and minimize the influence of external
factors is an important challenge.

2. Large sample data: In practical image acquisition, a significant amount of sample data
are often required, and the accuracy of the detection results is directly related to the
volume of the sample data. Furthermore, constructing a database for meat quality
assessment requires a diverse range of samples representing different quality levels.
One of the future research directions is how to reduce the amount of sample data
while ensuring the accuracy of quality detection.

3. Challenging feature extraction: For the accuracy and real-time performance of live-
stock and poultry meat quality detection, even if the detection algorithm is constantly
updated, there is still a certain gap between the detection efficiency and accuracy
of algorithms compared to the actual production requirements. Enhancing the fast
and accurate extraction of image features to improve the accuracy and real-time
capabilities of the detection system remains a current challenge.

2.2. Image Processing Technology

Machine vision technology generally involves processes such as image acquisition,
processing, and analysis. Image processing encompasses analog image processing and
digital image processing, emphasizing the use of various algorithms to transform and
manipulate the color model of an image, representing a process from one image to another.
Image analysis, on the other hand, focuses on segmenting, extracting, and measuring the
objects of interest in an image to obtain their objective information, thereby describing the
image in terms of data. While machine vision technology enables objective judgments of
detected objects, compensating for the limitations of traditional human sensory perception,
the quality of the obtained images significantly affects the results of machine vision. The
image processing component plays a pivotal role throughout the entire machine vision
process, and thus, the effectiveness of image processing directly impacts the final detection
outcomes. In food image analysis, machine vision systems utilize color models to capture
and analyze the visual characteristics of food products. They can effectively extract and
analyze the relevant information from images by utilizing the conversion between different
color models. In addition to color models and conversion algorithms, the utilization of
image segmentation techniques to separate and extract region of interest (ROI) is also an
indispensable process. By integrating suitable color models, conversion algorithms, and
image segmentation techniques, machine vision systems can achieve accurate and efficient
tasks based on visual features, such as quality control, grading, and classification.

2.2.1. Color Model

The color model refers to a subset of visible light within a three-dimensional color
space, which encompasses all colors within a specific color gamut. In the field of food,
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there are four commonly used color models: RGB, CMY, HIS, and CIE. These color models
are represented in Figure 3, illustrating their respective color spaces.
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1. RGB color model: The RGB color model is a commonly used model for representing
color information. Its color model equation is given by the following:

F = α(R) + β(G) + γ(B) (1)

In the equation, α, β, and γ represent the mixing ratios of the red, green, and blue
colors, respectively, known as the color coefficients [10]. This model quantitatively repre-
sents colors based on the brightness of the red, green, and blue components. The RGB color
model follows the additive color principle of the primary colors, making it suitable for
emissive devices such as displays [11]. For a given color, the RGB encoding values can be
interpreted as coordinates in a three-dimensional space. These coordinates form a unit cube,
as depicted in Figure 3a. The vertex points of the cube represent specific colors: (0, 0, 0)
corresponds to black, (1, 1, 1) corresponds to white, and the other six vertices represent
red (R), yellow (Y), green (G), cyan (C), blue (B), and magenta (M).

2. CMY color model: The CMY color model is a subtractive color model composed
of cyan, magenta, and yellow as primary colors, as depicted in Figure 3b. Unlike
the RGB color model, the CMY color model follows the subtractive color principle.
The color model of CMY is almost identical to the RGB color model in terms of the
corresponding subspaces.
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3. HSI color model: When observing objects, the human eye is more sensitive to hue,
saturation, and intensity. The HSI (hue, saturation, intensity) color space is designed
to describe colors based on these three components [12], as depicted in Figure 3c.
The establishment of the HSI model is based on two important principles: firstly,
the intensity component (I) is independent of the color information in the image,
and secondly, the hue (H) and saturation (S) components align better with the color
characteristics perceived by the human eye [13]. This makes the HSI color model a
useful tool for studying image processing algorithms, and thus it is commonly used
in machine vision systems.

4. CIE color model: The CIE (International Commission on Illumination) color model is
one of the earliest color models proposed by the commission, as depicted in Figure 3d.
It is a three-dimensional model, where two dimensions define color and the third
dimension defines brightness or luminance. The most commonly used CIE color
models are CIE XYZ and CIE L*a*b*.

The CIE XYZ color model is derived from the theory of three primary colors (R, G,
and B). It calculates the stimulus values of the three primary colors, X, Y, and Z in the CIE
color space through the standard observer’s color matching functions x(λ), y(λ), and z(λ).
Any color can be represented as a combination of X, Y, and Z stimulus values, which are
the coordinate values in the CIE color space representing the range of colors visible to
humans [10].

The CIE L*a*b* color model is a device-independent color model that consists of a
lightness parameter (L) and two color axes (a, b). It is designed to represent differences
between colors and is considered a uniform color space [14]. The color space represented
by CIE L*a*b* appears more visually uniform and closer to human perception compared
to the RGB color space. The color feature of CIE L*a*b* is also the most commonly used
feature in the significance detection and is more commonly used in the color detection of
food [15].

2.2.2. Conversion Algorithm between Color Models

The RGB color model is easy to understand and implement on hardware. However,
since all three components are used to represent hue, changing the value of any one
component will alter the overall color of the pixel. The CMY color model can mitigate color
loss to some extent but operates at a slower speed, making it suitable for color printing. The
HSI color model provides independent control over brightness and chromaticity, enabling
better object segmentation even when external lighting conditions change. The CIE color
model defines the largest color gamut, eliminating color loss issues. However, compared
to other color models, it requires more pixel data to achieve the same color accuracy.
Due to variations in color spaces among different devices capturing images and the need
for efficient image processing and analysis, color model conversions are often necessary.
Commonly used color model conversion algorithms include:

1. The algorithm for converting between the RGB and CMY color models is as follows:

C = 255 − R (2)

M = 255 − G (3)

Y = 255 − B (4)

2. The algorithm for converting between the RGB and HSI color models is as follows:

I =
1
3
(R + G + B) (5)

S = 1 − 3
R + G + B

[min(R, G, B)] (6)
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H = arccos

 1
2 [(R − G) + (R − B)]

[(R − G) 2 + (R − B)(G − B)]
1
2

 (7)

3. The algorithm for converting between the RGB and CIE XYZ color models is as follows:X
Y
Z

 =

0.608 0.714 0.200
0.299 0.587 0.144
0.000 0.066 1.112

R
G
B

 (8)

4. The algorithm for converting between the CIE XYZ and CIE L*a*b* color models is
as follows:

L* = 116f(Y/Yn)− 16 (9)

a* = 500[f(X/Xn)− f(Y/Yn)] (10)

b* = 200[f(Y/Yn)− f(Z/Zn)] (11)

L is between 0 and 100, a and b are between −300 and +300. From −a to +a indicates
the transition from green to red, and −b to +b indicates the transition from blue to yellow.

Xn, Yn, Zn in the formula represent the white parameter values in X, Y, and Z, respec-
tively.

f(x) =
{

X1/3 x > 0.008856
7.787x + 16/116 x ≦ 0.008856

(12)

2.2.3. Image Segmentation

Image segmentation is a part of image processing and serves as an initial step in image
analysis. It involves classifying all the pixels in an image into several distinct regions with
specific similarities, thereby dividing the image into mutually exclusive and connected re-
gions [16]. Commonly used segmentation algorithms in image processing include threshold
segmentation, edge-based segmentation, region-based segmentation, clustering analysis,
wavelet transform-based segmentation, mathematical morphology-based segmentation,
neural network-based segmentation, and genetic algorithm-based segmentation. Table 1
provides a comparison of the advantages, disadvantages, and application scopes of these
eight segmentation methods.

Table 1. Advantages, disadvantages, and application scopes of eight image segmentation methods.

Method Advantage Disadvantage Application Scope

Threshold segmentation

The calculation process is
simple, with high

computational efficiency and
fast speed.

It is sensitive to noise and has
relatively low robustness.

It is suitable for images where
there is a significant contrast

between the target
and background.

Edge-based segmentation
The edge localization is

accurate, and the process is
fast in terms of speed.

It cannot guarantee the
continuity and closedness of

the edges.

It is suitable for images with
low noise interference and
significant edge variations.

Region-based segmentation

The image segmentation has a
large spatial scope and

exhibits distinct
regional features.

It may lead to
over-segmentation of the image.

It is more suitable for images
that possess a well-defined

regional structure.
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Table 1. Cont.

Method Advantage Disadvantage Application Scope

Clustering analysis-based
segmentation

The approach is characterized
by its simplicity, ease of

implementation, fast
convergence speed, and

ability to reach local
optima efficiently.

It is insensitive to noise and
uneven grayscale.

It is suitable for images that
exhibit uncertainty

and ambiguity.

Wavelet transform-based
segmentation

The method can effectively
extract information from

signals and is not sensitive
to noise.

In the face of different
real-world situations, it is

necessary to choose appropriate
filtering functions to effectively
perform image segmentation.

It is used for edge detection
and can extract multi-scale
edges. Additionally, it can
differentiate edge types by

calculating and estimating the
image’s singularity.

Mathematical
morphology-based

segmentation

It achieves good localization
results, high segmentation

accuracy, and exhibits good
noise resistance.

After image processing, there
may still exist numerous short

lines and isolated points that do
not correspond to the target.

It is suitable for tasks such as
noise suppression, feature

extraction, and edge detection
in image processing.

Neural network-based
segmentation

It can effectively address noise
and unevenness issues

in images.

It requires a large amount of
data, operates at a relatively

slow speed, and has a
complex structure.

It is suitable for handling
problems such as noise

suppression and unevenness
in images.

Genetic algorithm-based
segmentation

Genetic algorithms possess
strong global optimization

search abilities.

The selection of different fitness
functions, as well as the

determination of crossover and
mutation probabilities, can

impact the segmentation results.

It is suitable for
threshold-based segmentation
methods and region-growing
methods, aiming to find the

global optimum in
segmentation.

2.3. Application of Machine Vision Technology on Quality Detection of Livestock and Poultry Meat

In recent years, machine vision and image processing techniques have gradually been
applied to the quality detection of livestock and poultry meat. Key indicators for meat
quality detection include freshness, meat color, intramuscular fat content (IMF%), volatile
basic nitrogen, back fat thickness, drip loss, water-holding capacity, dry matter content, total
fat content, protein content, and total bacterial count. Among these indicators, freshness,
meat color, and IMF% have been successfully detected using machine vision methods
by researchers. Figure 4 shows the application scenario of machine vision technology in
livestock and poultry meat quality detection.
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Freshness is considered one of the most crucial indicators for assessing meat quality
and safety [17]. Luo et al. [18] employed machine vision technology and machine learning
models to assess the freshness of beef. The study involved several steps. Initially, the
ROI in the collected images was segmented, followed by preprocessing techniques such
as filtering, denoising, and downsampling. Next, the Oriented Bounding Box algorithm
and volume algorithm were used to determine the depth and volume of the processed
images. Subsequently, a four-element viscoelastic model was established to fit the depth
and volume data, capturing the mathematical characteristics of beef’s viscoelasticity. Using
these mathematical features, a regression model was constructed and validated through
experimental testing, resulting in the development of an optimal prediction model and
method. The prediction model and method were utilized to determine the pH and total
volatile basic nitrogen (TVB-N) content of beef. The results indicated that the calibration set
and prediction set had correlation coefficients of 0.7636 and 0.9036 and 0.7669 and 0.8388,
respectively. Xu et al. [19] proposed a novel olfactory visualization system for detecting
the freshness of beef based on a colorimetric sensor array and chemometrics methods.
Firstly, twelve color-sensitive materials were fixed on a hydrophobic platform to capture
the odor information of beef samples based on the solvent-induced color change effect.
Secondly, a machine vision algorithm was utilized to extract the odor fingerprints, and a
principal component analysis was employed to compress the feature dimensions of the
fingerprints. Finally, four qualitative models, namely k-nearest neighbors, extreme learning
machine, support vector machine (SVM), and random forest, were constructed to evaluate
the volatile basic nitrogen and total bacterial count, which characterized the freshness
of beef. The results demonstrated that the SVM model exhibited favorable predictive
capabilities, with accuracies of 95.83% for the training set and 95.00% for the prediction
set. Jiang et al. [20] utilized machine vision technology for beef freshness detection. They
studied the temporal changes in the R, G, and B color channel values of beef images. The
research findings revealed that the R value decreased linearly with time, while the G and
B values increased linearly with time. Based on the observed real-time changes, a beef
freshness recognition model was developed. The accuracy of the model for detecting beef
freshness was reported to be 90%. Zhang [21] proposed a method for grading the freshness
of pork by integrating image features and olfactory features. Firstly, the ROI in the pork
image was extracted, followed by preprocessing steps such as grayscale conversion, noise
removal, and background segmentation. Subsequently, image features were extracted,
which were further divided into color features and texture features. These two types of
features were then fused together to obtain the fused color-texture feature. Simultaneously,
the olfactory information of the same batch of pork was collected, and olfactory features
were extracted. These olfactory features were then fused with the image features to obtain
the image-olfactory fusion feature. Finally, different classification models, including the
extreme learning machine, random forest, learning vector quantization neural network, and
SVM model, were sequentially employed to achieve the freshness grading of pork based on
color features, texture features, color–texture fusion features, olfactory features, and image-
olfactory fusion features. The results showed that under the same feature type and different
classification models, the classification model of SVM had the highest accuracy of 100%. In
the case of the same classification model and different feature types, the classification model
based on image olfactory fusion features had the highest accuracy of 100%.

Meat color is a visually influential factor that affects consumers’ purchasing decisions,
and consumers often pay close attention to the color state of meat products [22]. Murashev
et al. [23] have established an automated quality monitoring system for sausages. By
analyzing the colors in the RGB images of sausages, they obtained the parameter values of
individual color channels (R, G, or B) and their correlation with quality evaluation criteria
such as pH, moisture content, and dry matter content. This system enables the monitoring of
product quality based on these correlations. Lan et al. [24] utilized machine vision technology
to extract feature parameters of beef marbling patterns. Subsequently, they further optimized
these parameters using the local binary pattern algorithm. Finally, an intelligent grading
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model was established based on the convolutional neural network (CNN) algorithm. The
results demonstrated that the grading accuracy achieved the following percentages: 84.2%
for Grade 1, 89.4% for Grade 2, 81.9% for Grade 3, 84.1% for Grade 4, and 82.6% for Grade 5.
Sun et al. [25] conducted research on using color features of pork images to detect pork color.
Firstly, pork images were collected, and the background and muscle regions in the images
were segmented. Then, color features were extracted from different color spaces, including
RGB, HSI, and L*a*b*. Based on these extracted features, partial least squares regression
(PLSR) and SVM models were established for analysis. Finally, different color detection
models and their scores were obtained. The results showed that the highest detection
accuracy for PLSR and SVM models was 90.9% and 93.3%, respectively. Sánchez et al. [26]
proposed an approach for multivariate analysis of beef color changes using white-box
machine learning techniques. Firstly, they used a computer vision system (CVS) to capture
the color of the beef pieces. The differences between the three color spaces (RGB, HSV,
and CIE Lab*) were then examined. Finally, the performance of three white-box classifiers
(decision tree, logistic regression, and multiple normal distributions) for predicting color in
both fresh and non-fresh beef was evaluated. The results showed that the best prediction
was performed by using CIE Lab* and logistic regression, which used a plane to separate
the fresh and non-fresh beef samples in the 3D color space (L*, a*, and b*).

The influence of IMF% is a crucial factor affecting consumers’ perceptions of food
quality. Chen et al. [27] proposed an algorithm utilizing machine vision technology to esti-
mate IMF%. A total of 1481 photographs of pigs’ loin muscles were subjected to computer
vision scoring (IIMF%), followed by measurements of actual IMF%, meat color, marbling
score, back fat thickness, pH value, and drip loss. Subsequently, stepwise regression (SR)
and gradient boosting machines (GBMs) were employed to construct a predictive model
for IMF%. The results revealed correlation coefficients of 0.68, 0.64, 0.48, 0.45, and 0.25
between IMF% and IIMF%, marbling score, back fat thickness, moisture content, and pH
value, respectively. The predictive accuracy of the SR and GBM models, based on residual
distribution, was determined to be 0.875 and 0.89, respectively. Munoz et al. [28] employed
segmented images to investigate and compare the recognition accuracy of eight convolu-
tional neural networks for muscle fat content. A total of 252 images were used for training,
61 for validation, and 62 for testing purposes. The results demonstrated that CNN3-512
achieved a pixel-wise accuracy of 0.99 and an accuracy close to 0.84 in determining IMF%
using a limited number of training images. Barbon et al. [29] utilized the marbling pattern
features in beef images to analyze the IMF%. Initially, the beef images were segmented
using the Otsu method and underwent illumination normalization and contrast enhance-
ment. The erosion technique was then applied to remove boundary pixels from the ROI to
eliminate fat coverage. Subsequently, the marbling pattern features were extracted, and a
detection model was established based on the k-Nearest Neighbor algorithm. The results
indicated that the detection accuracy of the model for analyzing IMF% was 81.59%.

This section provides a detailed exposition of the principles, characteristics, limitations,
and color models in image processing within the context of machine vision technology.
It enumerates eight common image segmentation methods used in image processing
and offers an overview of research progress in machine vision technology pertaining
to the detection of freshness, meat color, and intramuscular fat content in livestock and
poultry meat. These studies collectively illustrate the advancements achieved through
machine vision technology in assessing the aforementioned meat attributes. The integration
of sophisticated imaging techniques and machine learning algorithms has contributed
to heightened precision and efficiency in evaluation. By scrutinizing subtle variations
in color, texture, and fat distribution, the condition of meat products can be promptly
assessed, facilitating timely decisions regarding processing and grading. Nevertheless, it is
imperative to acknowledge that challenges persist, including accounting for the variability
in equipment settings and meat characteristics. Ongoing research and development are
essential for refining machine vision technology and enhancing its stability across diverse
meat types, breeds, and environmental conditions.
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3. Quality Detection of Livestock and Poultry Meat Based on Hyperspectral Technology
3.1. Hyperspectral Technology

Hyperspectral technology, as a type of spectral technology, combines the advantages of
machine vision and multispectral imaging. It possesses the high-pixel imaging capability
of a regular camera and the high-resolution imaging capability of a spectrometer. It can
capture continuous images of samples at hundreds of wavelengths, simultaneously acquir-
ing both the image information and the spectral information of the samples. Ultimately, a
three-dimensional data cube is generated, consisting of two-dimensional images at different
wavelengths [30]. Each pixel in this data cube contains spectral data at different wavelengths,
representing the image information of the sample at each wavelength. The image infor-
mation can reflect the visual texture features of the sample, while the spectral information
can reveal its physical structure and chemical composition. Therefore, using hyperspectral
technology for meat quality detection enables sensory evaluation based on surface physical
features and provides insights into internal component content. The composition of a typical
hyperspectral imaging system is illustrated in Figure 5 [31]. Non-destructive detection of
hyperspectral systems is shown in Figure 6. Table 2 shows the comparative analysis between
machine vision and hyperspectral in terms of resolution and spatial information, real-time
processing, environmental adaptability, cost, and data volume.

Table 2. The comparative analysis between machine vision and hyperspectral in terms of resolution
and spatial information, real-time processing, environmental adaptability, cost, and data volume.

Method Resolution and
Spatial Information Real-Time Processing Environmental

Adaptability Cost Data Volume

Machine vision High spatial
resolution

Excellent real-time
processing capability.

It is well adapted to various
lighting and environmental

conditions.
Low cost Small data

volumes

Hyperspectral Low spatial
resolution

Poor real-time
processing capability.

More sensitive, requiring
complex calibration under

changing conditions.
High cost Large data

volumes
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3.2. Application of Hyperspectral Technology on Quality Detection of Livestock and Poultry Meat

Hyperspectral technology integrates advanced disciplines such as optics, computer
science, and electronics. It finds wide applications in various fields, including food safety
detection [32], agricultural information remote sensing [33], drug component detection [34],
and ecological environmental protection [35]. Research on non-destructive meat quality
detection based on hyperspectral imaging technology mainly focuses on the determina-
tion of physical features and chemical composition of meat products, the rapid freshness
assessment of meat, and adulteration detection in meat products [36–39]. Figure 7 shows
the application scenario of hyperspectral technology in livestock and poultry meat qual-
ity detection.

Hyperspectral technology enables the rapid and non-destructive acquisition of physi-
cal and chemical indicators of samples, making it highly advantageous for industrial-scale
online quality detection of livestock and poultry meat. Velasquez et al. [40] developed
a system using hyperspectral technology to grade and classify the marbling pattern of
beef based on the Japanese beef marbling standard. They digitally processed 12 grading
standards to obtain shape and spatial distribution parameters for each marbling pattern
grade. Subsequently, a hyperspectral imaging system operating in the 400–1000 nm range
was used to scan 35 samples of the longest back muscle in reflectance mode. The 528 nm
wavelength was selected for image segmentation of the samples and background, while
the 440 nm wavelength was used for marbling pattern grading of the samples. A mathe-
matical model was established to process and analyze the spectral information, and the
experimental results showed an error rate of only 0.08% for this model. Kucha et al. [41]
utilized hyperspectral imaging technology to detect IMF% in pork. The study involved gas



Foods 2024, 13, 469 13 of 23

chromatography (GC) analysis of the fatty acid profile and scanning of the minced pork
section using a hyperspectral imaging system operating in the 900–1700 nm range. Texture
features were extracted using mean spectral features, Gabor filter features, and wide line
detector features. PLSR was employed to establish a correlation between these features and
the GC results. A simplified model was developed using PLSR at selected wavelengths.
The results indicated that the highest accuracy achieved by the detection model was 85.9%.
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TVB-N is an important indicator for assessing the degree of spoilage in high-protein
foods and is also used as a key parameter for evaluating the freshness of meat products [42].
In the process of spoilage in livestock and poultry meat, protein degradation leads to
the formation of volatile amine compounds such as trimethylamine, dimethylamine, and
ammonia. These substances are collectively referred to as TVB-N [43]. Baek et al. [44]
utilized hyperspectral images of pork and its actual TVB-N content to construct a PLSR
model. They combined this model with a feature selection method and designed a short-
wave infrared hyperspectral imaging system. The spectral data were subjected to maximum
normalization to obtain the optimal RF-PLSR model. Experimental results demonstrated
that the optimal model exhibited correlation coefficients of 0.94 and 0.90 for calibration
and prediction accuracy, respectively. This model can be used for the detection of TVB-N
content in fresh pork. Zhuang et al. [45] employed fluorescence hyperspectral imaging
technology to study the quality attributes of unfrozen pork. Based on the fluorescence
spectra of TVB-N, pH, L*, a*, and b*, they established a PLSR model and compared it with
a PLSR model based on visible/near-infrared hyperspectral imaging. The results showed
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that the detection model based on fluorescence spectra exhibited correlation coefficients of
0.9447, 0.9037, 0.6602, 0.8686, and 0.8699 for TVB-N, pH, L*, a*, and b*, respectively.

Adulteration and authentication are highly concerned with the quality detection of
livestock and poultry meat [46]. To reduce the occurrence of meat adulteration, researchers
have applied hyperspectral imaging technology to the detection and identification of
adulteration in livestock and poultry meat. Zheng et al. [47] proposed a rapid and non-
destructive method for detecting adulterated duck meat in lamb mince using a hyperspec-
tral imaging system (400–1000 nm). Firstly, the spectral data of the samples were acquired,
and the regions of interest were segmented and extracted. Then, a detection model was
established based on the PLSR model. The SR, successive projections algorithm, and
Savitzky–Golay (S-G) smoothing methods were used to select wavelengths, and the PLSR
model was evaluated using these methods to determine the optimal wavelengths. The
experimental results showed that the PLSR model with the optimal wavelength selection
had a prediction determination coefficient of 0.98 and a prediction standard deviation of
2.51%. Xie et al. [48] utilized hyperspectral imaging technology to construct a visualized
model for assessing the quality changes of braised beef during the frying process. The
predictive correlation coefficients of moisture content and shear force for braised beef, as
determined by this model, were 0.908 and 0.763, respectively. These findings indicate that
hyperspectral imaging technology possesses the capability to detect complex components,
such as seasoning, within meat products. Wang et al. [49] collected hyperspectral data
from lamb meat samples originating from three different regions in China. The spectral
data were preprocessed using the area normalization method, followed by feature wave-
length selection. Subsequently, a classification model for differentiating the origin of lamb
meat was established using PLSR. The results revealed that the accuracy of this model for
detecting the origin of lamb meat was 90.48%. Miriam et al. [50] in order to distinguish
the breed (Iberian or Iberian × Duroc) of acorn-fed pigs of Iberian ham, the spectra of the
60 samples (24 samples of 100% Iberian ham and 36 samples of Iberian × Duroc crossbreed
ham) were recorded only for the fat, only for the muscle, or for the whole slice with two
benchtop near-infrared (NIR) spectrometers and five portable spectrometers, including
four portable NIR devices (VIAVI MicroNIR 1700 ES, TellSpec Enterprise Sensor, Thermo
Fischer Scientific microPHAZIR, and Consumer hysics SCiO Sensor), and one RAMAN
device. The results showed that, in general, the whole slice recording produced the best
results for classification purposes. The SCiO device showed the highest percentages of
correctly classified samples (97% in calibration and 92% in validation). The SCiO sensor
also showed the highest percentages of success when the analyses were performed only
on lean meat (97% in calibration and 83% in validation), while in the case of fat tissue.
Raman technology showed the best discrimination capacity (96% and 78%). Therefore,
near-infrared spectroscopy and Raman spectroscopy can be used to identify ham samples
quickly, non-invasively, and inexpensively according to variety purity.

This section elucidates the fundamental principles of hyperspectral technology, ana-
lyzes its merits in meat inspection, and provides an overview of research advancements
in hyperspectral technology concerning the analysis of physical characteristics, chemical
composition, meat freshness, and adulteration in livestock and poultry meat. These studies
underscore the potential of hyperspectral technology to capture intricate details pertaining
to meat attributes, encompassing physicochemical indicators like moisture content, protein
distribution, and the identification of specific adulterants. The non-destructive nature of
hyperspectral analysis facilitates a comprehensive evaluation of meat products without
compromising their integrity. However, akin to pioneering technologies, challenges persist,
such as the classification of detection models and the complexity of predictive variables.
Hyperspectral technology demands robust calibration models to effectively correlate spec-
tral data with meat properties across diverse samples and conditions. Moreover, the key
to seamless application of hyperspectral technology in non-destructive meat quality as-
sessment lies in refining techniques to eliminate extraneous data and accurately selecting
feature wavelengths to enhance detection precision and computational efficiency. Despite
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these challenges, the advancements in hyperspectral technology present a transformative
opportunity for the meat industry, with the potential to play a pivotal role in ensuring the
authenticity, freshness, and safety of meat products.

4. Quality Detection of Livestock and Poultry Meat Based on Multi-Source Information
Fusion Technology
4.1. Multi-Source Information Fusion Technology

Multi-source information fusion technology refers to the rational selection, extraction,
optimization, and combination of different types of information collected from various
sensors, aiming to make more accurate decisions. In the process of quality detection of
livestock and poultry meat, using a single type of sensor to acquire quality information
can lead to certain limitations and biases. Single-modality data alone cannot accurately,
comprehensively, and objectively reflect the true quality of livestock and poultry meat [51].
On the other hand, multiple heterogeneous sensors can evaluate the same sample in differ-
ent feature spaces, providing more abundant, comprehensive, and complete information
compared to multiple homogeneous sensors. Based on the levels of data abstraction in
multi-sensor information fusion methods, the fusion of multi-source quality information
can be divided into data-level fusion, feature-level fusion, and decision-level fusion [3].
The fusion processes of these three levels of information are illustrated in Figure 8, while
the fusion processing for each level is shown in Figure 9. Multi-source information fusion
methods can be broadly classified into classical information fusion and modern informa-
tion fusion. Classical information fusion methods are based on theories such as Bayesian
inference, weighted averaging, and Dempster-Shafer evidence theory. On the other hand,
modern information fusion methods, mainly represented by neural networks and artificial
intelligence, draw inspiration from the way the human brain processes information. These
methods have seen rapid development and are gradually being applied to the quality
detection of livestock and poultry meat [42].
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4.2. Application of Multi-Source Information Fusion Technology on Quality Detection of Livestock
and Poultry Meat

In recent years, with the continuous development of sensor technology, multi-source
information fusion techniques based on multiple sensor information have also advanced
and gradually found applications in detecting the freshness, physical properties, chemical
composition, and adulteration of livestock and poultry meat. Compared to using a single
machine vision or hyperspectral detection technique, multi-source information fusion
technology exhibits more accurate detection results, stronger adaptability to material
conditions, and reduced susceptibility to external environmental influences.

In the field of detecting the freshness of livestock and poultry meat, scholars have
already utilized multi-source information fusion techniques. Liu et al. [52] proposed a
precise analysis method for assessing the freshness of lamb (Figure 10). Firstly, data from
an electronic nose (E-nose) sensor was collected, followed by the extraction of reflectance
spectra and image features from lamb hyperspectral imaging. Relevant variables were
selected from these features. Subsequently, the electronic nose data, hyperspectral imaging,
and CNN algorithm were integrated to establish a lamb freshness prediction model. The
results indicated that the root mean square error of the prediction set for TVB-N content was
3.039 mg/100 g, with a correlation coefficient of 0.920 and a performance deviation ratio of
3.59. Weng et al. [53] proposed a method for capturing and integrating freshness parameters
of livestock and poultry meat by combining E-nose, computer vision (CV), and artificial
touch (AT) sensory technologies. Initially, odor features, color features, and elasticity
features of the samples were extracted using E-nose, CV, and AT, respectively. Subsequently,
a normalization algorithm was applied to unify the dimensionality of the three types of
feature data, followed by feature-level fusion. A PLSR prediction model for TVB-N content
was then established based on the fused data. Experimental results demonstrated that
the model achieved prediction accuracies of 0.91 and 0.94 for pork and chicken meat,
respectively. Zhu et al. [54] conducted a study on lamb freshness using hyperspectral
imaging and near-infrared spectroscopy imaging. They collected freshness data for three
different grades of lamb meat according to comprehensive evaluation standards for meat
quality. The data was preprocessed using the S-G smoothing method combined with
the first derivative. They applied competitive adaptive reweighting sampling, genetic
algorithms, and successive projection algorithms to select feature variables from the full
wavelength range. Subsequently, they established freshness detection models based on
full-band variables, feature variables, and fused variables for hyperspectral imaging, near-
infrared spectroscopy imaging, and fused imaging, respectively. A comparative analysis
was conducted on the nine detection models established. The results showed that the
fusion imaging model based on fused variables exhibited the best detection performance,
with a detection accuracy of 100%.

Multi-source quality information fusion technology has also shown excellent perfor-
mance in detecting the physical properties and chemical composition of livestock and
poultry meat. Cheng et al. [55] proposed a data fusion method combining hyperspec-
tral imaging and E-nose technologies for detecting moisture content (MC) in frozen pork
(Figure 11). They first collected data from 240 pork samples using hyperspectral imaging
and E-nose technologies. Then, spectral and image information was extracted from the
hyperspectral imaging data, while odor information was extracted from the E-nose data.
Finally, the three types of information were fused through decision fusion to establish a
fusion detection model. The detection results showed that the model achieved a correlation
coefficient of 0.9533 and a root mean square error of 0.3869 on the prediction set. This
method improved the prediction performance of MC in frozen pork. Aheto et al. [56] fused
the texture and spectral information from hyperspectral imaging to predict the levels of
2-thiobarbituric acid reactive substances (TBARS) and peroxide value (PV) in pork muscle
under different processing conditions. They first established PLSR models separately for
the full spectrum and optimal spectrum. Then, they fused the spectral image and optimal
spectral information to build a data fusion model. The results showed that for TBARS
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measurement, the model based on the optimal spectrum had a prediction determination
coefficient of 0.896 and a root mean square error of prediction (RMSEP) of 1.034, outper-
forming the data fusion model. For PV measurement, the data fusion model yielded the
best results, with a prediction determination coefficient of 0.899 and an RMSEP of 0.966. To
further improve the prediction accuracy, Aheto et al. [57] integrated electronic nose tech-
nology to detect IMF% and PV in pork products. They first collected spectral data, image
data, and electronic nose data from the samples. Based on the SVM model, they established
models for median spectral features (MSF) from hyperspectral data, image texture features
(ITF) from images, and average signal values (MSV) from electronic nose data. They then
selected the optimal wavelengths highly correlated with IMF% and PV from MSF and ITF,
respectively, and combined them to form “combined attribute features” (CAF). Finally,
they fused CAF with MSV to achieve better prediction accuracy. The experimental results
showed that the fused model achieved the highest prediction accuracy, with calibration
and prediction correlation coefficients of 0.936 and 0.955 for IMF% and 0.895 and 0.901 for
PV, respectively.
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Multi-source quality information fusion technology has also shown great potential
for detecting adulteration in meat products. T. Wang [58] utilized ultrasound technology
and hyperspectral imaging to detect adulteration in processed beef steaks. They first
collected ultrasound images and hyperspectral images of both authentic and synthetic beef
steaks. Texture features were extracted from the images using the gray-level co-occurrence
matrix method. They then established a data fusion identification model based on the
texture features of both types of images. The identification model was further optimized,
and the optimized model achieved a recognition rate of 100.00% for both the calibration
and prediction sets. Pu et al. [59] employed hyperspectral imaging technology combined
with CNN to differentiate between fresh and frozen-thawed beef samples. They utilized
CNN to extract spectral and texture features and established a feature fusion model. The
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results showed that the model achieved a recognition accuracy of 88.89%. Han et al. [60]
proposed a rapid method for detecting adulteration of duck meat in beef (Figure 12).
They first analyzed the differences in basic characteristics and volatile organic compounds
between raw beef and duck meat. Then, they established E-nose detection models for
these characteristics and Fourier transform near-infrared (FT-NIR) spectroscopy detection
models, as well as a data fusion detection model combining FT-NIR and E-nose. The results
showed that the accuracy of FT-NIR reached 100% in independent sample detection of
raw beef, beef-duck meat mixture, and raw duck meat. In the detection of adulteration,
the correlation coefficient for FT-NIR detection was 0.913, and for E-nose detection, it was
0.841. However, when using the data fusion detection of E-nose and FT-NIR, the correlation
coefficient increased to 0.972.

1 
 

 
  

Figure 11. A data fusion method combining hyperspectral imaging and E-nose technologies for de-
tecting moisture content (MC) in frozen pork [55]. Reproduced or adapted from [55], with permission
from LWT, Food Science and Technology, 2022.
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This section provides a comprehensive exposition of the principles, characteristics,
fusion modes, and fusion methods of multi-source quality information fusion technology.
It presents an overview of the research progress in the application of multi-source quality
information fusion technology to the assessment of freshness, physical properties, chemical
composition, and detection of adulteration in livestock and poultry meat. An increasing
number of practical applications underscore the efficacy of multi-source quality information
fusion technology in compensating for the limitations of singular detection methods by
integrating data from diverse sources. This integration enhances detection precision,
improves adaptability to material states, and augments resistance to external interferences,
thereby offering a comprehensive approach to meat quality assessment that enables a
more accurate and nuanced understanding of product attributes. Information fusion
not only elevates measurement accuracy but also mitigates the inherent constraints of
individual techniques. The utilization of advanced data fusion algorithms, including those
based on machine learning and artificial intelligence, aids in extracting relevant data from
complex datasets, supporting real-time decision-making along the entire meat supply
chain. Nonetheless, challenges exist in coordinating different data sources and ensuring
the reliability and consistency of fusion outcomes, presenting certain complexities. As
research in this domain advances, collaboration between experts in fields such as food
science and data analysis will be pivotal in optimizing the fusion process and establishing
dependable protocols for quality assessment. The continuous refinement and integration
of multi-source quality information fusion technology hold the potential to definitively
ensure meat quality, enhance consumer confidence, and drive advancements in the realm
of food safety.

5. Future Research Directions

The rapid operation of modern science and technology has increased the diversity of
detection means; the advantages of various non-destructive detection technologies have
been fully exploited; and the research on food safety detection, such as livestock and poultry
meat, has also been more in-depth. Based on machine vision, hyperspectral imaging, and
multi-source quality information fusion technology, the detection method for livestock and
poultry meat has demonstrated certain advantages over traditional methods. It has also
achieved significant progress, indicating its enormous potential in the field of livestock and
poultry meat quality detection. However, upon summarizing the aforementioned detection
technologies, certain issues have been identified. Thus, it is necessary to address these
problems and provide prospects for future improvements.
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First of all, due to the interdisciplinary nature of machine vision technology and the
complexity of detection systems, the related algorithms are not yet fully mature, so when
machine vision conducts high-precision detection such as defect detection in meat, these
defects may be very small and difficult to detect on different meat surfaces, increasing the
difficulty of detection. Additionally, the acquisition and processing of image information
are susceptible to external factors such as light sources, conveyor systems, the number of
cameras, and the color and texture of different meats. These factors can result in certain
deviations in the detection results, limiting the analysis to the surface characteristics of
the samples while being unable to assess internal chemical quality. Therefore, the future
focus of research in machine vision technology should be on simplifying and optimizing
algorithms, reducing the impact of external environmental factors. This includes selecting
and extracting the relevant features of interest to build suitable models and eliminating
redundant weights and connections to reduce the size and computational complexity of
the model. Improving the cleanliness of the detection area, developing specific lighting
techniques for different types of samples, and placing the camera in a vibration-free or
low-vibration environment can enhance defect visibility or eliminate image noise, thereby
improving the efficiency and stability of machine vision systems.

In addition, hyperspectral technology provides high data accuracy, unified spectra,
and superior spatial distribution capabilities. However, the equipment used for hyper-
spectral imaging is often large and expensive, and it has poor resistance to interference,
which can add to the cost burden in the meat industry. At the same time, the spectral
characteristics of meat are affected by many factors, including moisture, fat content, etc.
The processing of hyperspectral data are relatively complicated, and a large amount of data
generated by hyperspectral imaging needs dimensionality reduction, which reduces the
processing speed. Therefore, future research directions for the development of hyperspec-
tral technology should focus on enhancing anti-interference capabilities and improving
computational efficiency. For example, conducting professional site planning and optimiz-
ing sensor design before data acquisition to minimize external interference, employing
stable and efficient algorithms for noise reduction, selecting the most effective feature wave-
lengths, and establishing high-precision discriminative models all contribute to improving
computational efficiency.

Finally, the future development trend of livestock and poultry meat quality detection
lies in online real-time monitoring, enabling the acquisition of information from the entire
surface and real-time processing of image data. Although multi-source quality information
fusion technology has shown improved results, the processing after fusion requires a sub-
stantial database, and the computational load of the fused model increases significantly.
Therefore, the future focus of research is to establish a rapid, stable, and efficient quality
detection system for poultry and livestock meat based on multi-source quality information
fusion technology. For example, when selecting sensors, sensitivity, resolution, and adapt-
ability should be considered to ensure comprehensive and accurate capture of meat quality
features. Consider the application of deep learning techniques, such as CNN or Recurrent
Neural Network (RNN), to learn features from large datasets and enhance the system’s
capability to identify complex quality features. Also, consider establishing a cloud-based
platform for centralized data management and analysis to improve the overall efficiency of
the system.

Author Contributions: Conceptualization, Z.X. and Y.H.; methodology, Z.X. and Y.H.; validation,
Z.X., Y.H., D.Z., K.L., J.L., J.D., W.S., H.Z. and Y.B.; investigation, J.D. and W.S.; data curation, K.L.
and J.L.; writing—original draft preparation, Z.X. and Y.H.; writing—review and editing, Y.B.; project
administration, D.Z., J.L. and K.L.; funding acquisition, D.Z., H.Z. and Y.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the major science and technology project in Henan province (No.
221100110500), the doctoral program of Zhengzhou University of Light Industry (No. 2020BSJJ016),
and the project of Food Laboratory of Zhongyuan (No. SPY20230014).



Foods 2024, 13, 469 21 of 23

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to commercial reason.

Acknowledgments: We express our gratitude to the following organizations: the College of Food
and Bioengineering, the Zhengzhou University of Light Industry, the Key Laboratory of Cold Chain
Food Processing and Safety Control, the Food Laboratory of Zhongyuan, and the Henan Lianduoduo
Supply Chain Management Co., Ltd. for providing experimental site and data of the article.

Conflicts of Interest: Author Huijuan Zhao was employed by the company Henan Lianduoduo
Supply Chain Management Co., Ltd. She provided the plant site and related equipment information
for this study. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Xia, K.X. Study on Food Safety Behavior of Meat Traders in Farmers’ Market and Its Influencing Factors—Based on a Survey in

Shanghai and Wuhan. Master’s Thesis, Shanghai University of Finance and Economics, Shanghai, China, 2022. [CrossRef]
2. Zhu, J.X.; Ma, X.Z.; Zhang, J.Y.; Yu, G.P.; Chen, B. Application of Information Fusion Related to Electronic Nose and Electronic

Tongue. Mod. Food 2020, 11, 118–122. [CrossRef]
3. Xu, M.; Wang, J.; Gu, S. Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data

fusion strategy. J. Food Eng. 2019, 241, 10–17. [CrossRef]
4. Pinto, D.L.; Selli, A.; Tulpan, D.; Andrietta, L.T.; Garbossa, P.L.M.; Vander Voort, G.; Munro, J.; McMorris, M.; Alves, A.A.C.;

Carvalheiro, R.; et al. Image feature extraction via local binary patterns for marbling score classification in beef cattle using
tree-based algorithms. Livest. Sci. 2023, 267, 105152. [CrossRef]

5. Kato, T.; Mastelini, S.M.; Campos, G.F.C.; Barbon, A.P.A.D.; Prudencio, S.H.; Shimokomaki, M.; Soares, A.L.; Barbon, S. White
striping degree assessment using computer vision system and consumer acceptance test. Asian-Australas. J. Anim. Sci. 2019, 32,
1015–1026. [CrossRef]

6. Kim, D.E.; Nando, Y.A.; Chung, W.Y. Battery-Free Pork Freshness Estimation Based on Colorimetric Sensors and Machine
Learning. Appl. Sci. 2023, 13, 4896. [CrossRef]

7. Zhang, T. Research on Classification of Pork Freshness Based on SSA-ELM Algorithm. Master’s Thesis, Jiangsu University,
Zhenjiang, China, 2021. [CrossRef]

8. Nasirahmadi, A.; Edwards, S.A.; Sturm, B. Implementation of machine vision for detecting behaviour of cattle and pigs. Livest.
Sci. 2017, 202, 25–38. [CrossRef]

9. Shi, C.B.; Wang, Y.X.; Zhang, C.; Yuan, J.; Cheng, Y.H.; Jia, B.D.; Zhu, C.S. Nondestructive Detection of Microcracks in Poultry
Eggs Based on the Electrical Characteristics Model. Agriculture 2022, 12, 1137. [CrossRef]

10. Zhao, J.W.; Sun, Y.H. Modern Detection Techniques for Food, 2nd ed.; China Light Industry Press: Beijing, China, 2008; pp. 18–19.
11. Duan, T.Y.; Ke, Y.Y. Research on Color Selection of Mosaic Tiles Based on Multiple Color Models. J. Jianghan Univ. (Nat. Sci. Ed.)

2022, 50, 45–52. [CrossRef]
12. Xing, Y.; Chen, H.X.; Li, W.Y.; Liu, X.; Hu, Y.K.; Tang, C. Research on traffic sign image segmentation algorithm based on HSI

color space. China High-Tech Enterp. 2014, 8, 93–94. [CrossRef]
13. Wan, S.H. Visual Attention Modeling for Multiple-Instance Images and Visual Saliency Applications. Ph.D. Thesis, University of

Science and Technology of China, Hefei, China, 2014. [CrossRef]
14. Lu, X.Y. Study on Capturing Online and Segmentation of Beef Image Based on Computer Vision. Master’s Thesis, Nanjing

Agricultural University, Nanjing, China, 2011.
15. Huang, Z.X. Research of Real-Time Visual Detection Technology for Fabric Surface Defect Based on SoC. Master’s Thesis, Jiangnan

University, Wuxi, China, 2016.
16. Huang, T.; Li, H.; Zhou, G.; Li, S.B.; Wang, Y. Survey of Research on instance segmentation methods. J. Front. Comput. Sci. Technol.

2023, 17, 810–825. [CrossRef]
17. Kim, Y.Y.; Park, S.J.; Kim, J.S.; Shin, H.S. Development of freshness indicator for monitoring chicken breast quality and freshness

during storage. Food Sci. Biotechnol. 2022, 31, 377–385. [CrossRef]
18. Luo, X.Z.; Sun, Q.M.; Yang, T.X.; He, K.; Tang, X.Y. Nondestructive determination of common indicators of beef for freshness

assessment using airflow-three dimensional (3D) machine vision technique and machine learning. J. Food Eng. 2022, 340, 111305.
[CrossRef]

19. Xu, W.D.; He, Y.C.; Li, J.H.; Deng, Y.; Zhou, J.W.; Xu, E.B.; Ding, T.; Wang, W.J.; Liu, D.H. Olfactory visualization sensor system
based on colorimetric sensor array and chemometric methods for high precision assessing beef freshness. Meat Sci. 2022,
194, 108950. [CrossRef]

20. Jiang, P.H.; Zhang, Y.H.; Qian, N.Y.; Zhang, C.F.; Chen, D.J. Research on method to freshness grading of meat based on machine
vision technology. Food Sci. Technol. 2015, 40, 296–300. [CrossRef]

https://doi.org/10.27296/d.cnki.gshcu.2022.001231
https://doi.org/10.16736/j.cnki.cn41-1434/ts.2020.11.042
https://doi.org/10.1016/j.jfoodeng.2018.07.020
https://doi.org/10.1016/j.livsci.2022.105152
https://doi.org/10.5713/ajas.18.0504
https://doi.org/10.3390/app13084896
https://doi.org/10.27170/d.cnki.gjsuu.2021.001913
https://doi.org/10.1016/j.livsci.2017.05.014
https://doi.org/10.3390/agriculture12081137
https://doi.org/10.16389/j.cnki.cn42-1737/n.2022.04.006
https://doi.org/10.13535/j.cnki.11-4406/n.2014.08.045
https://doi.org/10.27517/d.cnki.gzkju.2014.000003
https://doi.org/10.3778/j.issn.1673-9418.2209051
https://doi.org/10.1007/s10068-022-01034-x
https://doi.org/10.1016/j.jfoodeng.2022.111305
https://doi.org/10.1016/j.meatsci.2022.108950
https://doi.org/10.13684/j.cnki.spkj.2015.03.070


Foods 2024, 13, 469 22 of 23

21. Zhang, Y.W. Grading of Pork Freshness Fusing Image and Olfactory Features. Master’s Thesis, Northeast Electric Power
University, Jilin, China, 2018.

22. Taheri-Garavand, A.; Fatahi, S.; Omid, M.; Makino, Y. Meat quality evaluation based on computer vision technique: A review.
Meat Sci. 2019, 156, 183–195. [CrossRef] [PubMed]

23. Murashev, S.V.; Gorlach, E.A.; Baranov, I.V.; Troshkin, D.E.; Chertov, A.N.; Mironova, D.Y. Machine vision usage for new sausage
products development. In Proceedings of the Conference on Automated Visual Inspection and Machine Vision III, Munich,
Germany, 21 June 2019.

24. Lan, T.; Chu, Q.; Liu, W.; Dai, Y.; Yang, F.; Yang, L.; Zhang, X.F.; Xi, X.J. Research on intelligent grading of beef marbling based on
deep learning. J. Food Saf. Qual. 2018, 9, 1059–1064.

25. Sun, X.; Young, J.M.; Liu, J.H.; Bachmeier, L.A.; Somers, R.; Schauunaman, S.B.; Newman, D.J. Predicting pork color scores using
machine vision and support vector machine technologies. J. Anim. Sci. 2016, 94, 67. [CrossRef]

26. Sánchez, C.N.; Orvañanos-Guerrero, M.T.; Domínguez-Soberanes, J.; Alvarez-Cisneros, Y.M. Analysis of beef quality according to
color changes using computer vision and white-box machine learning techniques. Heliyon 2023, 9, e17976. [CrossRef]

27. Chen, D.; Wu, P.X.; Wang, K.; Wang, S.J.; Ji, X.; Shen, Q.; Yu, Y.; Qiu, X.T.; Xu, X.; Liu, Y.H.; et al. Combining computer vision score
and conventional meat quality traits to estimate the intramuscular fat content using machine learning in pigs. Meat Sci. 2022,
185, 108727. [CrossRef]

28. Munoz, I.; Gou, P.; Fulladosa, E. Computer image analysis for intramuscular fat segmentation in dry-cured ham slices using
convolutional neural networks. Food Control 2019, 106, 106693. [CrossRef]

29. Barbon, A.P.A.D.; Barbon, S.; Campos, G.F.C.; Seixas, J.L.; Peres, L.M.; Mastelini, S.M.; Andreo, N.; Ulrici, A.; Bridi, A.M.
Development of a flexible Computer Vision System for marbling classification. Comput. Electron. Agric. 2017, 142, 536–544.
[CrossRef]

30. Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cullen, P.J.; Sullivan,
C. Developments and Challenges in Online NIR Spectroscopy for Meat Processing. Compr. Rev. Food Sci. Food Saf. 2017, 16,
1172–1187. [CrossRef]

31. Liu, X.Y.; Sun, Z.B.; Zuo, M.; Zou, X.B.; Wang, T.Z.; Li, J.K. Quantitative detection of restructured steak adulteration based on
hyperspectral technology combined with a wavelength selection algorithm cascade strategy. Food Sci. Technol. Res. 2021, 27,
859–869. [CrossRef]

32. Jiang, H.Z.; Jiang, X.S.; Yang, Y.; Hu, Y.L.; Chen, Q.; Shi, M.H.; Zhou, H.P. The progress of the detection of meats adulteration
using hyperspectral imaging. Food Ferment. Ind. 2021, 47, 300–305. [CrossRef]

33. Lu, B.; Dao, P.D.; Liu, J.G.; He, Y.H.; Shang, J.L. Recent Advances of Hyperspectral Imaging Technology and Applications in
Agriculture. Remote Sens. 2020, 12, 2659. [CrossRef]

34. Zhang, H.E.; Ye, P.; Li, G.; Du, G.Y.; Zhang, Z.; Shen, Y.L.; Tan, X.; Wang, E.P. Research on application progress of hyperspectral
imaging technology in medical field. Chin. J. Pharm. Anal. 2021, 8, 1360–1367. [CrossRef]

35. Chen, G.R.; Huang, J.M.; Wen, T.T.; Du, C.L.; Lin, Y.T.; Xiao, Y.B. Multiscale Feature Fusion for Hyperspectral Marine Oil Spill
Image Segmentation. J. Mar. Sci. Eng. 2023, 11, 1265. [CrossRef]

36. Wang, Y.; Wang, C.X.; Dong, F.J.; Wang, S.L. Integrated spectral and textural features of hyperspectral imaging for prediction and
visualization of stearic acid content in lamb meat. Anal. Methods 2021, 13, 4157–4168. [CrossRef] [PubMed]

37. Pu, H.B.; Wei, Q.Y.; Sun, D.W. Recent advances in muscle food safety evaluation: Hyperspectral imaging analyses and applications.
Crit. Rev. Food Sci. Nutr. 2023, 63, 1297–1313. [CrossRef] [PubMed]

38. Yu, Y.; Zhang, J.; Tian, H.Q.; Wang, D.; Wang, K.; Zhang, H.Q. Detection Method for Tenderness of Chilled Fresh Lamb Based on
Hyperspectral Imaging Technology. J. Agric. Sci. Technol. 2021, 23, 101–108. [CrossRef]

39. Jiang, H.Z.; Ru, Y.; Chen, Q.; Wang, J.P.; Xu, L.Y. Near-infrared hyperspectral imaging for detection and visualization of offal
adulteration in ground pork. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119307. [CrossRef] [PubMed]

40. Velasquez, L.; Cruz-Tirado, J.P.; Siche, R.; Quevedo, R. An application based on the decision tree to classify the marbling of beef
by hyperspectral imaging. Meat Sci. 2017, 133, 43–50. [CrossRef]

41. Kucha, C.T.; Liu, L.; Ngadi, M.; Gariepy, C. Assessment of Intramuscular Fat Quality in Pork Using Hyperspectral Imaging. Food
Eng. Rev. 2020, 13, 274–289. [CrossRef]

42. Zhang, R. Freshness Identification of Chilled Beef Based on Machine Vision and Texture Analysis. Master’s Thesis, Jiangnan
University, Wuxi, China, 2022. [CrossRef]

43. Wang, F.; Chen, M.R.; Zhao, Y.C.; Ding, Y. Progress in Study and Application of Chilled Meat Freshness Indicator. Pack. Eng. 2020,
41, 83–90. [CrossRef]

44. Baek, I.; Lee, H.; Cho, B.K.; Mo, C.; Chan, D.E.; Kim, M.S. Shortwave infrared hyperspectral imaging system coupled with
multivariable method for TVB-N measurement in pork. Food Control 2021, 124, 107854. [CrossRef]

45. Zhuang, Q.B.; Peng, Y.K.; Yang, D.Y.; Wang, Y.L.; Zhao, R.H.; Chao, K.L.; Guo, Q.H. Detection of frozen pork freshness by
fluorescence hyperspectral image. J. Food Eng. 2022, 316, 110840. [CrossRef]

46. Lei, Y.; Hu, X.J.; Jiang, M.L.; Huang, Z.X.; Ma, X.Y.; Tian, J.P.; Huang, D. Research progress on application of hyperspectral
imaging technology in meat quality of livestock and poultry. J. Food Saf. Qual. 2021, 12, 8404–8411. [CrossRef]

47. Zheng, X.C.; Li, Y.Y.; Wei, W.S.; Peng, Y.K. Detection of adulteration with duck meat in minced lamb meat by using visible
near-infrared hyperspectral imaging. Meat Sci. 2019, 149, 55–62. [CrossRef]

https://doi.org/10.1016/j.meatsci.2019.06.002
https://www.ncbi.nlm.nih.gov/pubmed/31202093
https://doi.org/10.2527/msasas2016-143
https://doi.org/10.1016/j.heliyon.2023.e17976
https://doi.org/10.1016/j.meatsci.2021.108727
https://doi.org/10.1016/j.foodcont.2019.06.019
https://doi.org/10.1016/j.compag.2017.11.017
https://doi.org/10.1111/1541-4337.12295
https://doi.org/10.3136/fstr.27.859
https://doi.org/10.13995/j.cnki.11-1802/ts.025254
https://doi.org/10.3390/rs12162659
https://doi.org/10.16155/j.0254-1793.2021.08.09
https://doi.org/10.3390/jmse11071265
https://doi.org/10.1039/D1AY00757B
https://www.ncbi.nlm.nih.gov/pubmed/34554149
https://doi.org/10.1080/10408398.2022.2121805
https://www.ncbi.nlm.nih.gov/pubmed/36123794
https://doi.org/10.13304/j.nykjdb.2020.0777
https://doi.org/10.1016/j.saa.2020.119307
https://www.ncbi.nlm.nih.gov/pubmed/33348095
https://doi.org/10.1016/j.meatsci.2017.06.002
https://doi.org/10.1007/s12393-020-09246-9
https://doi.org/10.27169/d.cnki.gwqgu.2022.001190
https://doi.org/10.19554/j.cnki.1001-3563.2020.05.011
https://doi.org/10.1016/j.foodcont.2020.107854
https://doi.org/10.1016/j.jfoodeng.2021.110840
https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2021.21.014
https://doi.org/10.1016/j.meatsci.2018.11.005


Foods 2024, 13, 469 23 of 23

48. Xie, A.G.; Kang, H.B.; Wang, F.X.; Wang, B. Visual detection of beef quality during frying process by hyperspectral imaging
technology. Food Mach. 2018, 34, 20–23. [CrossRef]

49. Wang, J.; Ding, J.X.; Guo, Z.H.; He, F.J.; Liang, X.Y. Identification of geographical origins of mutton in Ningxia based on the near
infrared hyperspectral imaging technique. Sci. Technol. Food Ind. 2018, 39, 250–254. [CrossRef]

50. Miriam, H.-J.; Isabel, R.; Ana, M.V.-Q.; Justyna, G.; Krzysztof, B.B.; Christian, W.H. Performance of benchtop and portable
spectroscopy equipment for discriminating Iberian ham according to breed. Curr. Res. Food Sci. 2024, 8, 100675. [CrossRef]

51. Tang, X.; Rao, L.; Xie, L.; Yan, M.; Chen, Z.Q.; Liu, S.Y.; Chen, L.Q.; Xiao, S.J.; Ding, N.S.; Zhang, Z.Y.; et al. Quantification and
visualization of meat quality traits in pork using hyperspectral imaging. Meat Sci. 2023, 196, 109052. [CrossRef] [PubMed]

52. Liu, C.C.; Chu, Z.J.; Weng, S.Z.; Zhu, G.Q.; Han, K.X.; Zhang, Z.X.; Huang, L.S.; Zhu, Z.D.; Zheng, S.G. Fusion of electronic nose
and hyperspectral imaging for mutton freshness detection using input-modified convolution neural network. Food Chem. 2022,
385, 132651. [CrossRef] [PubMed]

53. Weng, X.H.; Luan, X.Y.; Kong, C.; Chang, Z.Y.; Li, Y.W.; Zhang, S.J.; Al-Majeed, S.; Xiao, Y.K. A Comprehensive Method for
Assessing Meat Freshness Using Fusing Electronic Nose, Computer Vision, and Artificial Tactile Technologies. J. Sens. 2020,
2020, 8838535. [CrossRef]

54. Zhu, R.G.; Bai, Z.X.; Qiu, Y.Y.; Zheng, M.C.; Gu, J.F.; Yao, X.D. Comparison of mutton freshness grade discrimination based on
hyperspectral imaging, near infrared spectroscopy and their fusion information. J. Food Process Eng. 2021, 44, e13642. [CrossRef]

55. Cheng, J.H.; Sun, J.; Yao, K.S.; Xu, M.; Tian, Y.; Dai, C.X. A decision fusion method based on hyperspectral imaging and electronic
nose techniques for moisture content prediction in frozen-thawed pork. LWT 2022, 165, 113778. [CrossRef]

56. Aheto, J.H.; Huang, X.Y.; Tian, X.Y.; Ren, Y.; Bonah, E.; Alenyorege, E.A.; Lv, R.Q.; Dai, C.X. Combination of spectra and image
information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat. J. Food Process Eng. 2019,
42, e13225. [CrossRef]

57. Aheto, J.H.; Huang, X.Y.; Tian, X.Y.; Ren, Y.; Bonah, E.; Alenyorege, E.A.; Dai, C.X.; Tu, H.Y.; Zhang, X.R.; Wang, P.C. Multi-sensor
integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat.
Anal. Bioanal. Chem. 2020, 412, 1169–1179. [CrossRef]

58. Wang, T.Z. Study on Quality Detection of Prepared Steak Based on Hyperspectral and Ultrasound Imaging Technology. Master’s
Thesis, Jiangsu University, Zhenjiang, China, 2021. [CrossRef]

59. Pu, H.B.; Yu, J.X.; Sun, D.W.; Wei, Q.Y.; Shen, X.L.; Wang, Z. Distinguishing fresh and frozen-thawed beef using hyperspectral
imaging technology combined with convolutional neural networks. Microchem. J. 2023, 189, 108559. [CrossRef]

60. Han, F.K.; Huang, X.Y.; Aheto, J.H.; Zhang, X.R.; Rashed, M.M.A. Fusion of a low-cost electronic nose and Fourier transform
near-infrared spectroscopy for qualitative and quantitative detection of beef adulterated with duck. Anal. Methods 2022, 14,
417–426. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.13652/j.issn.1003-5788.2018.11.005
https://doi.org/10.13386/j.issn1002-0306.2018.02.047
https://doi.org/10.1016/J.CRFS.2024.100675
https://doi.org/10.1016/j.meatsci.2022.109052
https://www.ncbi.nlm.nih.gov/pubmed/36455423
https://doi.org/10.1016/j.foodchem.2022.132651
https://www.ncbi.nlm.nih.gov/pubmed/35287109
https://doi.org/10.1155/2020/8838535
https://doi.org/10.1111/jfpe.13642
https://doi.org/10.1016/j.lwt.2022.113778
https://doi.org/10.1111/jfpe.13225
https://doi.org/10.1007/s00216-019-02345-5
https://doi.org/10.27170/d.cnki.gjsuu.2020.001350
https://doi.org/10.1016/j.microc.2023.108559
https://doi.org/10.1039/D1AY01949J
https://www.ncbi.nlm.nih.gov/pubmed/35014996

	Introduction 
	Quality Detection of Livestock and Poultry Meat Based on Machine Vision Technology 
	Machine Vision Technology 
	Image Processing Technology 
	Color Model 
	Conversion Algorithm between Color Models 
	Image Segmentation 

	Application of Machine Vision Technology on Quality Detection of Livestock and Poultry Meat 

	Quality Detection of Livestock and Poultry Meat Based on Hyperspectral Technology 
	Hyperspectral Technology 
	Application of Hyperspectral Technology on Quality Detection of Livestock and Poultry Meat 

	Quality Detection of Livestock and Poultry Meat Based on Multi-Source Information Fusion Technology 
	Multi-Source Information Fusion Technology 
	Application of Multi-Source Information Fusion Technology on Quality Detection of Livestock and Poultry Meat 

	Future Research Directions 
	References

