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Abstract: Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for
both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant,
anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type
2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing
T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could
successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism,
lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1β and IL-6, and decrease
the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore,
broccoli altered the intestinal flora’s makeup in mice with T2DM. At the genus level, the relative
abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family
level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the
relative abundances of Erysipelotrichaceae and Rikenellaceae increased.

Keywords: type 2 diabetes mellitus; insulin sensitivity; inflammation factors; SCFAs; intestinal flora

1. Introduction

Diabetes is a chronic disease, with about 90% of people suffering from type 2 diabetes
(T2DM). The disease has a high incidence, a variety of causes, and repeated attacks [1]. The
aggravation of T2DM can lead to a series of complications such as oral disease, amputation,
chronic kidney disease, retinopathy, cardiovascular disease (stroke [2], acute myocardial
infarction [3], heart failur [4] and atherosclerosi [5], etc.), neuropathy and osteoporosis,
and even coma or even death in severe cases. T2DM is now a significant worldwide
public health issue [6]. Currently, there is no cure for diabetes, and patients can alleviate
the disease by taking drugs. However, long-term medication will lead to a series of side
effects [7], so adopting a natural, safe, mild and non-toxic diet is of great significance in the
early prevention and subsequent adjuvant treatment of diabete [8].

Broccoli is a cruciferous vegetable with a high concentration of glucosinolates (com-
pared to other vegetables) and a glycemic index (GI) of 15. Glucosinolates can be converted
into sulforaphane (SFN) and participate in body metabolism [9]. SFN has anti-cancer [10],
anti-tumor [11], anti-diabetes [12], anti-osteoporosis [13], anti-oxidation [14] and other
physiological activities, SFN can alleviate diseases such as chronic obstructive pulmonary
disease [15], asthma [16], autism [17] and diabetes complications [18]. Prior research has
demonstrated that broccoli can lessen the heart dysfunction caused by diabetes, relieve my-
ocardial hypertrophy and fibrosis [19], and secondly, broccoli can change oxidative stress
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and inflammatory response [20]. In addition, broccoli can also regulate lipid metabolism
and reduce density lipoprotein concentration [21]. Many in vitro experiments, animal ex-
periments and clinical trials have shown that broccoli metabolites have a potential positive
correlation with maintaining health, and long-term consumption of broccoli can lower
the risk of developing chronic illnesses such diabetes, obesity, heart disease, and brain
disorders [22].

Intestinal flora is the microbial community that is adapted to the anaerobic environ-
ment throughout the gastrointestinal system of animals, and the composition of intestinal
flora is different in different species. The number of mammalian intestinal flora is about
1012, and the identified strains can be divided into 9 phylum according to species (Firmi-
cutes, Bacteroidetes, Proteobacteria, Actinomyces, Micrococcus, Verrucomicrobia, Clostridium,
Cyanobacteria, Spirochaeta and VadinBE97), more than 50 species of genus (Allobaculum,
Odoribacter, Oscillospira, etc.), 800–1000 species [23]. The degree to which the host’s growth
rate, material metabolism, and immune system are impacted depends on the variety and
richness of its gut flora [24], among which Bacteroides and Firmicutes account for about
90% of the total intestinal flora and are closely related to health [25]. The composition of
intestinal flora is not only affected by species, but also closely related to dietary habits
and growth environment. Some vegetables (such as broccoli, carrot, celery, pumpkin, etc.),
fruits (such as apples, bananas, kiwi, etc.) and beans (lentils, peas, black beans, etc.) in
the daily diet are rich in dietary and some polysaccharides that cannot be absorbed and
utilized by the host are selectively absorbed and utilized by the intestinal flora, which can
sustain the host’s health and encourage the growth of advantageous microorganisms [26].

In this study, we first evaluated at how broccoli affected the body weight, blood
glucose level, and organ weight of mice given STZ-induced diabetes. We also evaluated
at how broccoli juice affected organ histology, inflammatory factor expression levels, and
lipid metabolism. Lastly, we collected samples of mouse feces and used GC-MS and 16S
rRNA macro gene sequencing to quantify the changes in intestinal microbial species and
metabolites. This allowed us to determine the specific contribution of broccoli to the
improvement of diabetes.

2. Materials and methods
2.1. Animals and Experimental Design

Fifty five-week-old male C57BL/6J mice weighed 25 ± 1.8 g. Mice were separated
into 5 groups, each consisting of 10 mice, and were acquired from Beijing Weihe Labora-
tory Animal Technology Co., LTD. (SCXK(JING) 2016-0011, Beijing, China). They were
maintained housed in groups of four mice per cage, at temperature (22 ◦C ± 2 ◦C) and
humidity (55% ± 5%) with 12:12 hlight/dark cycle, and in groups of four mice per cage.
Ethical approval for this study obtained from the Animal Ethics Committee of Nanjing
Agricultural University, China (SYXK 2017-0007). After 10 days of adaptation, experimental
groups and respective treatments are illustrated in Figure 1.

From week 1 to week 3, all mice were fed a normal diet to adapt to the new envi-
ronment. After week 3, all mice were randomly divided into 5 groups (10 in each group),
which were as follows: (1) control (CON) group: standard chow diet, with 0.4 mL ultrapure
water intragastric administration; (2) Type 2 diabetes (DM) group: high-fat diet (H10060,
HFK bioscience, Beijing, China), with 0.4 mL ultrapure water intragastric administration;
(3) positive control (PC) group: high-fat diet, with 0.4 mL 300 mg/(kg BW) melbine in-
tragastric administration; (3) Positive control (PC) group: High-fat diet, with 0.4 mL 300
mg/(kg BW) Melbine intragastric Administration; (4) LJB group: high-fat diet, with 0.4
mL 20 mg/(kg BW) juiced broccoli intragastric administration; (5) HJB group: high-fat
diet, with 0.4 mL 60 mg/(kg BW) juiced broccoli intragastric administration. From the first
day of week 4 to the end of week 18, mice in CON group were still fed conventional diet,
while mice in DM group and PC group were fed high-fat diet (H10060, HFK bioscience,
Beijing, China). Mice in LJB group and HJB group were fed high-fat diet and injected 0.4
mL broccoli juice (the LJB group received 20 mg (kg BW)−1d−1 and the HJB group received



Foods 2024, 13, 273 3 of 20

60 mg (kg BW)−1d−1). Streptozotocin (STZ) (Sigma, St. Louis, MO, USA) was injected into
DM group, PC group, LJB group and HJB group starting from day 1 of the 11th week, and
all mice were given intraperitoneal injection after fasting for 12 h. Mice in CON group
were intrabitoneally injected with 50 mmol L−1 citrate buffer (pH 4.5), STZ, dissolved in 50
mmol L−1 citrate buffer, was injected intrabitonally into the DM, PC, LJB, and HJB groups’
subjects at a dose of 80 mg (kg BW)−1d−1. Additionally, STZ injections were maintained
until the conclusion of week 18 in order to create a type 2 diabetes model.
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Figure 1. Diet and intragastric samples of mice in different group. CON: Mice fed with normal diet
and administered sterile water via gavage.DM: Mice fed with HFD and administered sterile water
via gavage. PC: Mice fed with HFD and administered 300 mg (kg BW)−1d−1 metformin via gavage.
LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1 juiced broccoli via gavage. HJB:
Mice fed with HFD and administered 60 mg (kg BW)−1 d−1 juiced broccoli via gavage. The images
of H&Estained tissues were viewed under a light microscope at 400× magnification.

2.2. Chemicals and Reagen

Broccoli was purchased from a local store in Nanjing city, Jiangsu Province, China, then
add ultra-pure water for juiced, the ACCU-CHEK glucometer were obtained from Roche
(Mannheim, Germany); Human insulin was obtained from Novo Nordisk (Copenhagen,
Denmark); Beijing Solarbio Biological Technology Co., Ltd. provided the metformin, while
Nanjing Jiancheng Bioengineering Institute provided the commercial kits (Nanjing, China).

2.3. Mice Body Weight and Organ Indexes

All mice were killed after an 18-week experiment, following a 12-h fast. Body weight
was measured weekly and before sacrifice. Liver, kidney, spleen, fat and pancreas were
collected after sacrifice. The organ index was computed utilizing the subsequent formula:

Organ index =
organ mass (mg)

animal body mass (g)
(1)

2.4. Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT)

At the 18th week of the trial, mice fasted for 12 h were given an oral glucose tolerance test
(IGTT) with no restriction of water intake during the fast. Glucose was injected intraperitoneally
at a dose of 2 g (kg BW)−1. Using the ACCU-CHEK glucose meter, blood glucose was measured
at 0 (the instantaneous time before glucose injection), 30, 60, and 120 min.

At week 18 of the study (3 days before the sacrifice), mice that had fasted for 5 h were
tested for insulin tolerance (ITT) and drank water freely during the fast. Insulin was injected
intraperitoneally at a concentration of (0.75 U/kg BW). The ACCU-CHEK glucose meter was
used to measure blood glucose at 0 min (before glucose injection), 30 min, 60 min, 90 min, and
120 min.
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2.5. Biochemical Measurements

Using an ELISA kit, the fasting insulin (FINS) was determined. The following is the
formula for the homeostatic model assessment of insulin resistance (HOMA-IR) and the
insulin sensitivity index (ISI):

ISI = ln(
1

FINS
∗ FBG) (2)

HOMA − IR = FINS ∗ FBG
22.5

(3)

Trunk blood were collected from the eye socket vein, and centrifuged (3000× g,
10 min) to obtain serum for the biochemical measurements. Serum total cholesterol (TC),
triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C) were quantified with the com-mercial kit (Nanjing Jiancheng Biology
Engineering Institute, Nanjing, China).

As directed by the manufacturer, the ELISA kits were used to quantitatively detect
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-
10 (IL-10).

Measurements of oxidative stress Using a commercial kit, the following biochemical
parameters were measured: lipopolysaccharide (LPS), glutathione (GSH), glutathione
peroxidase (GSH-Px), malondialdehyde (MDA), and superoxide dismutase (SOD). and the
level were measured in accordance with their particular protocols.

2.6. Histopathological Observation of Mice Epididymal White Adipose, Pancreas, Kidney, Ileumand
and Liver

A small portion of the epididymal white adipose, pancreas, kidney, ileumand and liver
was excised cut off and fixed perserved in 10% formalin. Shanghai Erwan Biotechnology
Co., Ltd. (Shanghai, China) completed out the histopathological work.

2.7. Determination Content of Short-Chain Fatty Acids and Intestinal Flora

After the mice were fed for 18 weeks, under aseptic conditions fecal pellets of mice
were freshly collected, instantly frozen with dry ice, and then stored at −80 ◦C. The Beijing
Genomics Institute completed tests on the intestinal flora, collected microbiome DNA from
100 mg of fecal samples, and amplified the V3–V4 area of 16S RNA using PCR. Before the
analysis, the PCR products underwent processing and purification. A gas chromatograph-
mass spectrometer (GC-MS) was used to measure the amount of short-chain fatty acids
(SCFAs), which include acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid,
and total short-chain fatty acids.

2.8. Statistical Analysis

All experiments were run three times. Every outcome is displayed as the means ± SEM.
Software from GraphPad, namely Prism 9.5.1, was used in every instance to handle and
analyze statistical data (GraphPad Software). To determine whether the difference between
the five groups had statistical significance, a one-way analysis of variance (ANOVA) was
used. p values < 0.05 was deemed statistically significant.

3. Results
3.1. Impact of Different Broccoli Juice Dosages on Body Weight, Fasting Blood Glucose (FBG), and
Organ Indices

We examined how the body weight of T2DM mice was affected by HFD and various
dosages of juiced broccoli. (Figure 2a, p < 0.05). As expected, HFD significantly promoted
weight gain in mice before STZ induction, the body weight was significantly higher in
the DM and LJB groups than in the CON/PC and HJB groups after 8 weeks of dietary
intervention. Furthermore, there were no discernible variations in body weight between
the CON/PC and HJB groups; similar results were noted when contrasting the DM and
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LJB groups (Figure 2a, p < 0.05). Throughout the experiment, we observed that the body
weights of CON/PC and HJB weren’t significantly different. These results demonstrated
high doses of juiced broccoli can reduce weight of the T2DM mice.
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During the experiment, we measured and recorded the fasting blood glucose (FBG)
of the mice every week. From the results, we can know that there was a significant
difference in FBG in the mice. In the third week of the experiment, the FBG of DM group
was significantly increased (Figure 2b, p < 0.05), however, the FBG of the mice decreased
significantly at the fourth week. In addition, FBG was relatively stable in mice from week 4
to week 10 (Figure 2b, p < 0.05). At week 11 and 12, FBG in DM group was significantly
higher than that in CON group by 18.7% and 33.2%. At week 13, FBG of DM/PC and
LJB mice increased significantly compared with CON group by 30.7%, 18.7% and 37.3%,
respectively (Figure 2b, p < 0.05), there was no significant difference between HJB group
and DM group. At week 14, FBG was significantly lower in the PC and LJB groups than in
the other groups. At week 15–17, FBG was increased in all four groups compared with the
CON group, but the increase of FBG in PC and LJB groups was smaller than that in CON
group. At week 18, mice in the CON group had less FBG, compared with CON group, DM,
PC, LJB and HJB groups increased by 28.8%, 30.5%, 43.7% and 29.0%, respectively, and
there was no significant difference in FBG between the other four groups. These results
suggest that HFD and T2DM can cause glucose intolerance, while high-dose juiced broccoli
can improve glucose metabolism and lower blood sugar in mice.

Next, to check the effect of juice broccoli on organ and tissues we also measured the weight
of liver/renal/spleen/adipose and pancrease tissues of T2DM mice. We found that the DM
and PC groups had higher index of liver than the CON group, DM increased by 18.7% and PC
increased by 12.6%. The liver index was still considerably lower in the HJB and LJB groups
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compared to the DM group by 11.9% and 8.4%, respectively. The organ weights of the PC group
and DM group did not differ significantly (Figure 3a, p < 0.05). Additionally, the renal index was
6.2%, 7.6%, and 8.6% lower in the DM/PC and LJB groups than in the CON group (Figure 3b,
p < 0.05).
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Figure 3. Organ indexes determined for various mice groups. (a) The liver index. (b) The renal index.
The spleen index (c). (d) The Adipose Index. (e) The pancreatic index. CON: Mice fed with standard
chow diet and administered sterile water via gavage.DM: Mice fed with HFD and administered sterile
water via gavage. PC: Mice fed with HFD and administered 300 mg (kg BW)−1d−1 metformin via
gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1 juiced broccoli via gavage.
HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced broccoli via gavage.

The results of masurement of spleen show that compared with CON group, index of
LJB and HJB Groups had significantly decreased by 18.7% and 19.0% (Figure 3c, p < 0.05).
Furthermore, the CON group had a substantially higher level of adipose than the other
four groups: the DM group had an increase of 114.6%, the PC group had a 79% rise, the
LJB group had a 76.9% increase, and the HJB group had a 47.9% increase. The adipose
indexes of the PC, LJB, and HJB groups fell by 16.7%, 17.8%, and 31.1%, respectively, in
comparison to the DM group (Figure 3d, p < 0.05). The results from the weight of pancrease
demonstrate that the various mice groups did not differ significantly from one another
(Figure 3e, p > 0.05). When combined, these findings imply that T2DM mice administered
DMBG or broccoli juice can decrease their adipose tissue weight.

3.2. Impact of Different Juice Broccoli Dosages on OGTT and ITT

Figure 4a,b shows the blood glucose curves for each group following the oral glucose
tolerance test (OGTT) and AUC. Compared to the CON group, the blood glucose and AUC
were considerably higher in the DM, PC, LJB, and HJB groups. The AUC for the groups DM,
PC, LJB, and HJB was found to be 168.4%, 144.3%, 161.1%, and 145.3% greater than that of
the CON group, in that order. Following the 30-min glucose treatment (2 g/kg BW), the
mice’s blood sugar levels reached their peak in all groups; compared to the CON group, the
blood glucose levels of the DM, PC, LJB, and HJB groups increased significantly (Figure 4a,



Foods 2024, 13, 273 7 of 20

p < 0.05). At the end of OGTT (120 min), there was no significant difference between CON
group and 0 min, but the blood glucose level in DM group, PC group, LJB group and HJB
group was 43.2%, 44.3%, 32.2% and 41.8% higher than that at 0 min, respectively.
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The blood glucose curves of each group following of the insulin tolerance test (ITT)
and AUC are shown in Figure 4c,d. During the whole experiment. The mice in the DM
group, PC group, LJB group, and HJB group had considerably greater blood glucose levels
(Figure 4c, p < 0.05) and an AUC (Figure 4d, p < 0.05) than the mice in the CON group.
The AUC of DM group, PC group, LJB group and HJB group was 137.6%, 115.2%, 174.9%
and 109.9% higher than that of CON group, respectively. After inadministration of insulin
(0.75 U /kg BW), the blood glucose level of HJB group was reduced to the minimum value
after 30 min, and that of the other four groups was reduced to the minimum value after
60 min. The minimum blood glucose level of the other four groups was 71.7%, 85.9%,
147.1% and 87.4% higher than that of the CON group, respectively. At the end of ITT (120
min), in every group, the mice’s blood glucose level was considerably lower than it was at
0 min.

3.3. Impact of Different Broccoli Juice Doses on Insulin Sensitivity

Before the trial’s conclusion, we examined the effects of T2DM on the FINS, ISI,
and HOMA-IR of mice following 6 weeks of dietary and STZ intervention in order to
throw light on the effects of various dosages of juice broccoli on insulin sensitivity. As
shown in Figure 5a, although there were no appreciable variations in the FINS between
the CON/DM/PC and HJB groups, the FINS was much greater in the LJB group. At the



Foods 2024, 13, 273 8 of 20

ISI, DM group’s ISI level increased by 19.3%, which is significant from CON group’s level.
ISI (Figure 5b, p < 0.05) in PC, LJB and HJB groups were lower and had no significant
difference from those in CON group. Compared with DM group, ISI in PC, LJB and HJB
groups were decreased by 10.4%, 9.8% and 9.2%, respectively (Figure 5b, p < 0.05). During
the experiment, the insulin resistance was assessed by HOMA-IR (Figure 5c, p < 0.05). The
results showed that the LJB, DM, and HJB groups had higher insulin resistance than the
CON group.

Foods 2024, 13, x FOR PEER REVIEW 8 of 21 
 

 

Figure 4. Impact of different juice broccoli dosages on the following tests: (a) insulin tolerance test 
(ITT) results; (b) OGTT AUC; (c) oral glucose tolerance test (OGTT) results; and (d) ITT AUC. CON: 
Mice fed with standard chow diet and administered sterile water via gavage.DM: Mice fed with 
HFD and administered sterile water via gavage. PC: Mice fed with HFD and administered 300 mg 
(kg BW)−1d−1 metformin via gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1 

juiced broccoli via gavage. HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced 
broccoli via gavage. 

3.3. Impact of Different Broccoli Juice Doses on Insulin Sensitivity 
Before the trial’s conclusion, we examined the effects of T2DM on the FINS, ISI, and 

HOMA-IR of mice following 6 weeks of dietary and STZ intervention in order to throw 
light on the effects of various dosages of juice broccoli on insulin sensitivity. As shown in 
Figure 5a, although there were no appreciable variations in the FINS between the 
CON/DM/PC and HJB groups, the FINS was much greater in the LJB group. At the ISI, 
DM group’s ISI level increased by 19.3%, which is significant from CON group’s level. ISI 
(Figure 5b, p < 0.05) in PC, LJB and HJB groups were lower and had no significant differ-
ence from those in CON group. Compared with DM group, ISI in PC, LJB and HJB groups 
were decreased by 10.4%, 9.8% and 9.2%, respectively (Figure 5b, p < 0.05). During the 
experiment, the insulin resistance was assessed by HOMA-IR (Figure 5c, p < 0.05). The 
results showed that the LJB, DM, and HJB groups had higher insulin resistance than the 
CON group. 

 
Figure 5. Impact of different juice broccoli doses on (a) the fasting insulin (FINS), (b) the insulin 
sensitivity index (ISI), (c) the homeostatic model assessment of insulin resistance (HOMA-IR). CON: 
Mice fed with standard chow diet and administered sterile water via gavage.DM: Mice fed with 
HFD and administered sterile water via gavage. PC: Mice fed with HFD and administered 300 mg 
(kg BW)−1d−1 metformin via gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1 

juiced broccoli via gavage. HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced 
broccoli via gavage. 

3.4. Impact of Different Broccoli Juice Dosages on Serum Lipid, Inflammation Factors and 
Oxidative Stress 

We examined the levels of TC, TG, LDL-C, and HDL-C in order to clarify the effects 
of different doses of juiced broccoli on lipid metabolism in diabetic mice. As shown in 
Figure 6. We can see from the test data diabetic significantly promoted TC gain in mice, 
DM, PC, LJB and HJB groups were 44.1%, 38.6%, 30.5% and 25.1% higher than CON 
group, respectively. Compared with DM group, PC group, LJB group and HJB group were 
reduced by 12.5%, 30.8% and 43.1%, respectively. Juiced broccoli was shown to be an ef-
fective way to lower the cholesterol content in diabetic mice (TC in the HJB group was 
17.8% lower than in the LJB group), and the high dose (60 mg/kg BW) had a greater effect. 

Figure 5. Impact of different juice broccoli doses on (a) the fasting insulin (FINS), (b) the insulin
sensitivity index (ISI), (c) the homeostatic model assessment of insulin resistance (HOMA-IR). CON:
Mice fed with standard chow diet and administered sterile water via gavage.DM: Mice fed with HFD
and administered sterile water via gavage. PC: Mice fed with HFD and administered 300 mg (kg
BW)−1d−1 metformin via gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1

juiced broccoli via gavage. HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced
broccoli via gavage.

3.4. Impact of Different Broccoli Juice Dosages on Serum Lipid, Inflammation Factors and
Oxidative Stress

We examined the levels of TC, TG, LDL-C, and HDL-C in order to clarify the effects
of different doses of juiced broccoli on lipid metabolism in diabetic mice. As shown in
Figure 6. We can see from the test data diabetic significantly promoted TC gain in mice,
DM, PC, LJB and HJB groups were 44.1%, 38.6%, 30.5% and 25.1% higher than CON group,
respectively. Compared with DM group, PC group, LJB group and HJB group were reduced
by 12.5%, 30.8% and 43.1%, respectively. Juiced broccoli was shown to be an effective way
to lower the cholesterol content in diabetic mice (TC in the HJB group was 17.8% lower
than in the LJB group), and the high dose (60 mg/kg BW) had a greater effect. We found
that the TG levels in the PC group and HJB group were considerably lower—by 19.5% and
23.6%, respectively—than in the DM group (Figure 6b, p < 0.05).

Furthermore, determination of LDL-C indicated that compared with CON group,
LDL-C content in DM group, PC group and LJB group was significantly increased, by
158.6%, 91.7%, 66.8% and 43.9%, respectively (Figure 6c, p < 0.05). Compared with DM
group, LDL-C content in the other four groups was significantly decreased, which was
61.3%, 25.9%, 35.5% and 44.3% in CON group, PC group, LJB group and HJB group,
respectively, There was no difference in the LDL-C content between the PC group and the
LJB group, nor between the HJB group and the CON group. Next, HDL-C data analysis
results suggested that compared with CON group, HDL-C content in DM group was
significantly increased by 14.4%. Compared with DM group, HDL-C content in PC group
was significantly reduced by 18.4% (Figure 6d, p < 0.05). These results demonstrated that
providing diabetic mice juiced broccoli can significantly lower their blood levels of TC, TG,
and LDL-C., and a high dose (60 mg/kg BW) has excellent outcomes.
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Figure 6. Impact of different juice broccoli dosages on serum lipid concentrations. (a) total cholesterol
(TC), (b) triglycerides (TG), (c) low-density lipoprotein cholesterol (LDL-C), (d) high-density lipopro-
tein cholesterol (HDL-C), (e) IL-1β, (f) IL-6, (g) IL-10 and (h) TNF-α. CON: Mice fed with standard
chow diet and administered sterile water via gavage.DM: Mice fed with HFD and administered sterile
water via gavage. PC: Mice fed with HFD and administered 300 mg (kg BW)−1d−1 metformin via
gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1 juiced broccoli via gavage.
HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced broccoli via gavage.

It is crucial to find out the impact of juiced broccoli on the production of levels of inflam-
matory markers in addition to its effect on lipid metabolism in diabetic mice. As illustrated in
Figure 6e, the IL-1β levels in the four other groups—DM, PC, LJB, and HJB—were significantly
lower than those of the CON group, at 90.2%, 11.1%, 58.4%, and 62.0%, respectively.

IL-6 analysis showed that compared with CON group, IL-6 level in LJB group was signifi-
cantly decreased by 42.9%. Compared with DM group, IL-6 levels in LJB group and HJB group
were significantly reduced by 42.9% and 22.5%, respectively. (Figure 6f, p < 0.05) Compared
with PC group, IL-6 levels in LJB group and HJB group were significantly decreased by 54.5%
and 27.4%, respectively. Compared with LJB group, IL-6 level in HJB group was significantly
increased by 59.5%. We also measured IL-10 levels in addition to IL-1 β and IL-6, compared
with CON group, IL-10 levels in LJB group and HJB group were significantly increased by
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182.65% and 152.6%, respectively (Figure 6g, p < 0.05). Compared with LJB group, IL-10 level
in HJB group was significantly decreased by 10.6%. Overall, our results suggest that juiced
broccoli can increase IL-1β level and decrease IL-6 level in diabetic mice.

The levels of MDA, SOD, GSH, and GSH-Px in the liver tissue of diabetic mice were
measured in order to evaluate the impact of juiced broccoli on the antioxidant capacity
of diabetic mice cells (Figure 7). In comparison to the CON group, we noticed the MDA
levels in the DM, PC, and HJB groups had dramatically increased by 64.8%, 128.4%, and
38.4%, respectively. (Figure 7a, p < 0.05). The MDA level in the PC group was much
higher by 38.6% when compared to the DM group, whereas the MDA level in the LJB
and HJB groups was much lower by 31.9% and 16.0%, respectively. (Figure 7a, p < 0.05).
Furthermore, distinctions in GSH-Px have been found in five mouse groups (Figure 7d,
p < 0.05), compared with PC group, the concentration of GSH-Px in CON group and LJB
group was decreased by 9.7% and 11.1%. These findings suggest that Juiced broccoli can
significantly reduce MDA levels in diabetic mice, high doses of juiced broccoli can increase
GSH-Px concentration in diabetic mice, and DMBG can significantly increase MDA levels
in diabetic mice.
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Figure 7. Impact of varying juice broccoli doses on indicators of oxidative stress. (a) malonaldehyde
(MDA), (b) superoxide dismutase (SOD), (c) glutathione (GSH) and (d) glutathione peroxidase (GSH-
Px). CON: Mice fed with standard chow diet and administered sterile water via gavage.DM: Mice fed
with HFD and administered sterile water via gavage. PC: Mice fed with HFD and administered 300 mg
(kg BW)−1d−1 metformin via gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1

juiced broccoli via gavage. HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced
broccoli via gavage.
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3.5. Histopathological Analyses of Epididymal White Adipose, Pancreas, Kidney, Ileum and Liver

Hematoxylin and eosin were applied to stain the white adipose tissue of the epi-
didymis, pancreas, kidney, ileum, and liver of five groups of mice in order to explore the
effects of broccoli juice on the organ histopathology of T2DM mice (Figure 8).
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Figure 8. Impact on organ histopathology at different dosages of juice broccoli. (a) adipose tissue,
(b) pancreas tissue, (c) kidney tissue, (d) ileum tissue, (e) liver tissue. CON: Mice fed with standard
chow diet and administered sterile water via gavage.DM: Mice fed with HFD and administered sterile
water via gavage. PC: Mice fed with HFD and administered 300 mg (kg BW)−1d−1 metformin via
gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1 juiced broccoli via gavage.
HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced broccoli via gavage. The
images of H&E-stained tissues were viewed under a light microscope at 400× magnification. Scale
bars are 50 µm.

According to the observation results of adipose tissue sections (Figure 8a), adipose
tissue in CON group was uniform in size, neatly arranged and with clear edges. Compared
with CON group, part of adipose tissue in DM group and LJB group was significantly
enlarged and more disorderly in arrangement. Although the adipose tissue size of PC
group did not increase significantly, there was a certain degree of damage at the edge and
the shape was not full. There was no significant increase in adipose tissue size in HJB group,
and the margin was obvious. Therefore, the effect of high-dose juiced-broccoli (60 mg/kg
BW) was better than that of low-dose broccoli (20 mg/kg BW) in alleviating fat cell growth.

As can be seen from the observation of pancreatic tissue sections (Figure 8b), pancreatic
cells in CON group were full, evenly distributed and with clear edges. The DM group’s cell
count was significantly fewer than that of the CON group, and its margins were unclear
as well as to having become atrophic. The number of cells in PC group decreased to some
extent, and some cells atrophied. The decrease of pancreatic cell number and cell atrophy
in both LJB group and HJB group were alleviated to some extent, and the cell distribution
in HJB group was more uniform and the cell morphology was more full.
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From the observation results of kidney, ileum and liver tissue sections (Figure 8c–e),
we can see that the CON group tissues are closely arranged, and the fat particles in the
tissues are small. Compared with CON group, DM group and LJB group had more fat
particles, and the order of tissue arrangement was destroyed. The fat particles in PC group
and HJB group were reduced to a certain extent, and the order of tissue arrangement was
restored to a certain extent.

Altogether, these observations provide further support for juiced broccoli can alleviate
and repair the enlargement of fat cells and the damage of pancreas, liver, kidney and ileum
tissue to a certain extent, and the effect of high-dose juiced broccoli (60 mg/kg BW) on
alleviating the enlargement of fat cells and repairing tissue damage is better than that of
low-dose broccoli (20 mg/kg BW).

3.6. Impact of Different Juice Broccoli Doses on SCFAs

To clarify the effects of juice broccoli on short-chain fatty acid (SCFAs), following an
18-week dietary intervention we used a gas chromatography–mass spectrometer (GC–MS)
to determine the amount of SCFAs that inhabit the intestinal tract of diabetic mice. The
levels of acetic acid, butyric acid, and total short-chain fatty acids in the intestines of the
five groups did not differ significantly, as demonstrated by Figure 9a,c,f.

Foods 2024, 13, x FOR PEER REVIEW 13 of 21 
 

 

MS) to determine the amount of SCFAs that inhabit the intestinal tract of diabetic mice. 
The levels of acetic acid, butyric acid, and total short-chain fatty acids in the intestines of 
the five groups did not differ significantly, as demonstrated by Figures 9a,c,f. 

Compared with CON group, DM group and PC group, the propionic acid concen-
tration in LJB group and HJB group was significantly increased by 96.8% and 221.6%, re-
spectively (Figure 9b, p < 0.05). Compared with DM group, LJB group and HJB group were 
significantly increased by 55.5% and 153.9%, respectively (Figure 9b, p < 0.05). Compared 
with CON group, the concentration of valerate in HJB group was significantly decreased 
by 5% (Figure 9d, p < 0.05). Compared with CON group, the isovaleric acid concentration 
in DM group, PC group, LJB group and HJB group was significantly decreased by 2.9%, 
3.4%, 2.8% and 3.7%, respectively (Figure 9e, p < 0.05). In summary, juiced broccoli can 
increase the concentrations of propionic acid and valeric acid in the intestine, and its reg-
ulatory effect is better than DMBG. 

 
Figure 9. Impact of different juice broccoli doses on SCFAs. (a) Acetic acid (b) Propionic acid (c) 
Butyric acid (d) Valeric acid (e) Isovaleric acid (f) Total short-chain fatty acids (SCFAs). CON: Mice 
fed with standard chow diet and administered sterile water via gavage.DM: Mice fed with HFD and 
administered sterile water via gavage. PC: Mice fed with HFD and administered 300 mg (kg 
BW)−1d−1 metformin via gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1 juiced 
broccoli via gavage. HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced broccoli 
via gavage. 

3.7. Impact of Different Broccoli Juice Doses on Intestinal Flora 
T2DM can lead to imbalance of intestinal ecological environment, especially the low 

diversity and stability of intestinal flora, to investigate the effects of different doses of 
juiced broccoli on intestinal flora diversity, we evaluated the α diversity. Observed spe-
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Figure 9. Impact of different juice broccoli doses on SCFAs. (a) Acetic acid (b) Propionic acid
(c) Butyric acid (d) Valeric acid (e) Isovaleric acid (f) Total short-chain fatty acids (SCFAs). CON:
Mice fed with standard chow diet and administered sterile water via gavage.DM: Mice fed with HFD
and administered sterile water via gavage. PC: Mice fed with HFD and administered 300 mg (kg
BW)−1d−1 metformin via gavage. LJB: Mice fed with HFD and administered 20 mg (kg BW)−1d−1

juiced broccoli via gavage. HJB: Mice fed with HFD and administered 60 mg (kg BW)−1d−1 juiced
broccoli via gavage.

Compared with CON group, DM group and PC group, the propionic acid concen-
tration in LJB group and HJB group was significantly increased by 96.8% and 221.6%,
respectively (Figure 9b, p < 0.05). Compared with DM group, LJB group and HJB group
were significantly increased by 55.5% and 153.9%, respectively (Figure 9b, p < 0.05). Com-
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pared with CON group, the concentration of valerate in HJB group was significantly
decreased by 5% (Figure 9d, p < 0.05). Compared with CON group, the isovaleric acid con-
centration in DM group, PC group, LJB group and HJB group was significantly decreased
by 2.9%, 3.4%, 2.8% and 3.7%, respectively (Figure 9e, p < 0.05). In summary, juiced broccoli
can increase the concentrations of propionic acid and valeric acid in the intestine, and its
regulatory effect is better than DMBG.

3.7. Impact of Different Broccoli Juice Doses on Intestinal Flora

T2DM can lead to imbalance of intestinal ecological environment, especially the low
diversity and stability of intestinal flora, to investigate the effects of different doses of juiced
broccoli on intestinal flora diversity, we evaluated the α diversity. Observed species, chao,
ace, shannon’s diversity, simpson’s diversity and good coverage are shown in Figure 10.
Compared with CON group, observed species in DM group, PC group, LJB group and
HJB group decreased by 22.0%, 24.7%, 18.9% and 18.2%, respectively (Figure 10a, p < 0.05).
chao decreased by 20.9%, 22.2%, 16.5% and 17.4% respectively (Figure 10b, p < 0.05), ace
decreased by 21.5%, 23.2%, 18.2% and 18.4% respectively (Figure 10c, p < 0.05). There was
no significant difference in shannon’s diversity, simpson’s diversity and good coverage of
the five groups of experimental animals. These results indicated that T2DM significantly
reduced the abundance of microorganisms in the gut of mice. Adding broccoli to the diet
can restore gut flora abundance to some extent.

The taxonomic analysis revealed that juiced broccoli had certain effects on intestinal
flora of T2DM mice at the level of phylum (Figure 10g), genus (Figure 10h) and family
(Figure 10i). On the phylum levels (Figure 10g). Mice’s gut flora was dominated by
Firmicutes and Bacteroides. The relative abundance of firmicutes in the PC group dropped
dramatically by 29.3% and 36%, respectively, as compared to the CON group and the DM
group. In the intestinal tract of the mice in the CON group, there was a minor amount of
Cyanobacteria, but in the intestinal tract of the diabetic mice, it was completely absent. It’s
interesting to observe that the relative abundance of Verrucomicrobia in the mice’s guts
increased significantly in the DMBG group compared to the CON group, reaching 318
times higher.

On the genus level (Figure 10h), the genera with the dominant relative abundance were
Allobaculum, Odoribacter and Oscillospira. In comparison to the CON group, the DM group
showed a significantly higher relative abundance of Allobaculum (7 times that of the CON
group). Additionally, the LJB group demonstrated a significantly higher relative abundance
of Odoribacter and Oscillospira (5.6 and 2.6 times, respectively, of that in the CON group),
and the HJB group demonstrated a significantly higher relative abundance of Allobaculum
and Oscillospira (4.3 and 3 times, respectively, of that. Relative Allobaculum abundances
in the PC and LJB groups were significantly lower (77.3% and 51.7%, respectively) than
in the DM group. When the Allobaculum relative abundances of the PC and LJB groups
were compared to the HJB group, they were significantly higher (3 and 1.4 times less,
respectively).

On the family level (Figure 10i), Erysipelotrichaceae, Lachnospiraceae, Odoribacter-
aceae, Rikenellaceae, Ruminococcaceae and S24-7 were predominant in relative abundance.
When comparing the DM group to the CON group, there was a significant increase in the
relative abundance of Erysipelotrichaceae and Rikenellaceae (6.2 and 2.7 times, respec-
tively), while there was a significant decrease in the relative fraction of Lachnospiraceae
and S24-7 (70% and 48.7%, respectively). The relative abundances of Lachnospiraceae and
S24-7 in the PC group were significantly lower than those of the CON group, declining
by 76.9% and 55%, respectively. When comparing the LJB group to the CON group, there
was a substantial rise in the relative abundance of Ruminococcaceae and Rikenellaceae (2.4
and 2.3 times, respectively), but there was a significant drop in the relative abundance of
Lachnospiraceae and S24-7 (47.6% and 54.3%, respectively). The relative abundances of
Ruminococcaceae and Rikenellaceae in the HJB group were significantly higher than in the
CON group (3.2 and 2.5 times, respectively). Erysipelotrichaceae relative abundances in
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the PC and LJB groups were much lower (76.9% and 51.7%, respectively) than in the DM
group. In comparison to the PC group, the HJB group exhibited a notable increase in the
relative abundance of Rikenellaceae, which was 1.8 times higher.
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Figure 10. Impact of different broccoli juice doses on the intestinal flora of type 2 diabetic mice.
(a) Observed species, (b) chao index, (c) ace index, (d) shannon diversity, (e) simpson’s diversity,
(f) good coverage, (g) The composition and relative abundance of the gut microbiota at the phylum
level, (h) The composition and relative abundance of the gut microbiota at the genus level, (i) The
composition and relative abundance of the gut microbiota at the family level, (j) Relative abundance of
Firmicutes and Bacteroidetes at the phylum level, (k) Relative abundance of Allobaculum, Odoribacter
and Oscillospira at the genus level and (l) Relative abundance of Erysipelotrichaceae, Lachnospiraceae,
Odoribacteraceae, Rikenellaceae, Ruminococcaceae, S24-7 at the family level.
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4. Discussion

In this study, the effects of different doses of juiced broccoli on T2DM mice were
studied from the aspects of lowering blood glucose, lowering blood lipids, reducing inflam-
mation and anti-oxidation, improving organ tissue damage and regulating intestinal flora
composition and metabolism. The results showed that broccoli could not only effectively
improve the disorder of glucose and lipid metabolism in diabetic mice, but also regulate
intestinal flora.

In this study, type 2 diabetic mice fed with a HJB for 18 weeks following a free feeding
strategy appeared to show significantly lower increases in FBG to the CON group. This
observation is similar to a recent study demonstrating that treated rat liver cancer cells
with the main active ingredient (SFN) in broccoli, which showed a significant and dose-
dependent decrease in glucose levels in the cells [19]. Juiced broccoli is a natural and
side-effect free food that plays an important role in lowering FBG. Juiced broccoli can
treat T2DM by improving insulin secretion and insulin resistance in mice, FINS and ISI in
mice treated with juiced broccoli are significantly reduced. Previously, Other researchers
found that SFN reduced fasting blood sugar in rats by 7.5%, but significantly increased
insulin sensitivity and glucose tolerance, however, the subsequent trials conducted by
this team in T2DM patients found that SFN had no significant effect on HOMA-IR and
ISI [27]. Bahaddoran et al. found that broccoli sprouts can significantly reduce the serum
insulin concentration and HOMA-IR of patients [28]. According to the research of Axelsson
et al., SFN, the active ingredient of broccoli, can reduce the production of glucose by
down-regulating the key gluconogenic enzyme and increasing insulin sensitivity through
NRF2, thus reducing blood sugar [27] Cho et al. found that broccoli extract can reduce
the expression of glycated protein, this is related to the effect of broccoli on lowering
blood sugar [29]. Many studies have shown that the potential role of broccoli in reducing
insulin resistance is related to SFN. Studies have shown that SFN can activate AKT, the
intermediate of insulin signal transduction, but islet secretion is also affected by many other
pathways [30], and its specific mechanism needs further study.

Type 2 diabetes occurrence involves changes in many metabolism related to serum
lipid, inflammation factors and oxidative stress. In this study, we found that the juiced
broccoli intervention can improve the lipid metabolism of type 2 diabetic mice, especially
in the HJB group. High-dose juiced broccoli can significantly reduce the contents of serum
TC, TG and LDL-C. The previous mechanism investigation revealed that the increase of
TC, TG and LDL-C is closely related to the risk of cardiovascular disease (CVD) leading to
death in T2DM patients [31], juiced broccoli may have a positive effect on T2DM mice by
regulating lipid metabolism. The research results of Laura et al. proved that broccoli can
reduce the cholesterol content in hamsters, and the metabolism of cholesterol and lipids
may be different depending on the sex of the animals. Paul et al. found that broccoli extract
can not only up-regulate oxidase coding base, but also down-regulate the coding base
of proteins related to fatty acid synthesis and transportation, and the occurrence of lipid
oxidation can reduce the weight of fat in the liver [32]. The specific mechanism of broccoli’s
influence on lipid metabolism still needs to be further studied.

In this study, we also found that juiced broccoli reduces levels of cellular inflammatory
factors (IL-1β and IL-6). Chronic inflammation is a common feature of T2DM patients, and
the increased concentration of cellular inflammatory factors may lead to cardiovascular
diseases and metabolic syndrome [33]. IL-1β can activate pro-inflammatory mediators
and infiltrate macrophages, cause insulin resistance and oxidative stress, and lead to β cell
dysfunction and impaired insulin secretion [34]. Increased levels of IL-6 lead to decreased
expression of genes involved in adiponectin production, adiponectin is a adipose-specific
plasma protein, it can enhance insulin sensitivity [35], anti-inflammatory [36], and increase
the concentration of HDL-C [33]. Juicer Broccoli reduces the levels of IL-1β and IL-6 in
cells, which helps to alleviate the decrease of insulin secretion and insulin resistance caused
by T2DM, improve the disorder of glucose metabolism, reduce inflammatory response and
cardiovascular disease risk [37]. We determined four oxidative stress-related substances
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(MDA, SOD, GSH and GSH-PX) in mice, and found that juiced broccoli can significantly
reduce MDA levels in T2DM mice. MDA is one of the markers of lipid peroxidation [38],
becoming the main cause of diabete-related complications [39]. In agreement with our
result, Bahadoran et al. found that broccoli bud powder significantly reduced serum MDA
content by 9% in T2DM patients [40].

Adipose tissue can produce adipokines and exosomes, which are involved in the regu-
lation of many important physiological functions [41]. The increase of adipose tissue in DM
mice affects systemic metabolic homeostasis and leads to systemic insulin resistance [42]
and inflammation [43]. According to the results of adipose tissue section and adipose
index test, high-dose juiced broccoli can significantly improve the growth of adipocytes
and reduce body adipose index. Juiced broccoli can also relieve islet cell damage caused by
T2DM [44]. Kidney is an important organ for metabolite production, endocrine regulation
and reabsorption in the body. Glucose metabolism disorder and inflammatory response
caused by diabetes will cause damage to the kidney [44]. Liver is an important organ
that regulates carbohydrate and lipid metabolism [45]. The ileum is an important place
of absorption and secretion in the body. Combined with the organ index and histological
observation results, it can be seen that juiced broccoli can significantly reduce the liver
index of T2DM mice, reduce the fat content in kidney, liver and ileum, and alleviate insulin
resistance. Sun et al. [46] also found that high fat significantly increased liver index in mice.

Short-chain fatty acids (SCFAs) are the main metabolites of carbohydrate after fermen-
tation by intestinal flora. The production of SCFAs can inhibit the growth of pathogenic
microorganisms, improve intestinal microenvironment [47], regulate host blood sugar and
lipid metabolism, promote nutrients, improve insulin sensitivity, inhibit inflammation and
tumor cell invasion and metastasis. It is closely related to health [48]. From the results, we
know that juiced broccoli can significantly increase the concentrations of propionic acid and
valeric acid in T2DM mice. Propionic acid can play a role in regulating the metabolism of
carbohydrate and lipid substances, anti-inflammation and reducing endotoxin [49]. Valeric
acid can lower arterial blood pressure and prevent cardiovascular and cerebrovascular
diseases [47]. In addition, previous studies have shown that dietary fiber can increase the
content of butyric acid in mice [50], and hawthorn polysaccharide can increase the content
of acetic acid and propionic acid in the intestines of mice [51]. The combination of multiple
diets will be more beneficial to diabetic patients.

Intestinal flora affects a variety of physiological and biochemical processes such
as micronutrient synthesis, pathogen defense, carbohydrate and lipid metabolism and
immunity in the host body [52]. The composition of intestinal flora is closely related
to obesity, insulin resistance and T2DM development [53]. Our study results showed
that there were significant differences in the abundance and diversity of intestinal flora
between T2DM mice and normal mice, and Observed species, chao and ace of DM group,
PC group, LJB group and HJB group were significantly reduced, indicating that diabetes
significantly decreased the abundance of intestinal flora and affected the homeostasis of
intestinal environment. On the phylum levels, Cyanobacteria existed in the intestinal tract
of mice in CON group, while Cyanobacteria disappeared in the intestinal tract of mice in
the other four groups. In addition, we also found an interesting phenomenon, that is, the
relative abundance of Verrucomicrobia in the PC group increased. Studies have shown that
Verrucomicrobia has a certain effect on anti-inflammation, improving glucose metabolism,
and improving insulin sensitivity. The increase of Verrucomicrobia inhibits the growth of
certain pathogens [54], which helps to elucidate the ameliorative effect of DMBG on T2DM.
On the genus level, the relative abundance of Allobaculum increased significantly in the
DM group and the HJB group. Previous studies have shown that Allobaculum abundance is
positively correlated with the expression of the fat-digester enzyme ANGPTL4 (Angiogenin-
like protein 4) [55]. The increase of the relative abundance of Allobaculum is conducive
to the regulation of lipid metabolism in T2DM mice. In addition, we also found that
broccoli can increase the relative abundance of Odoribacter and Oscillospira, and Odoribacter
has anti-inflammatory effects and improves insulin resistance and glucose tolerance [56].
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Wei et al. found that high-fat diet increased Oscillospira abundance in mice [57], and Zhu
et al. also found that Oscillospira abundance was positively correlated with the occurrence of
diabetes and inflammation [58], which was consistent with our research results. However,
Verdam et al. found that the abundance of Oscillospira in the intestine was significantly
reduced in patients with diabetes [59]. On the family level, we found that the relative
abundance of Lachnospiraceae and S24-7 in the intestinal tract of T2DM mice decreased,
while the relative abundance of Ruminococcaceae increased. Previous studies have also
shown that Lachnospiraceae and S24-7 are related to the development of diabetes [60].
The addition of broccoli in the diet can significantly reduce the relative abundance of
Erysipelotrichaceae in the intestines of T2DM mice, and increase the relative abundance
of Rikenellaceae. Erysipelotrichaceae is associated with intestinal inflammatory diseases
and fatty liver [61]. The metabolites of Rikenellaceae contain acetate and propionate, which
can reduce the accumulation of visceral fat [62]. Broccoli will affect the abundance and
diversity of intestinal flora through a series of metabolic processes, which is conducive to
the intestinal flora entering the “probiotic” state, thereby alleviating T2DM.

5. Conclusions

This study shows that dietary intake of a certain amount of broccoli can alleviate HFD
+ STZ-induced diabetes in mice, and there is a certain dose correlation. The higher the
dose of juiced broccoli consumed by diabetic mice, the better the improvement effect on
diabetes symptoms. High dose (60 mg/(kg·BW)) of juiced broccoli can significantly reduce
body weight and blood sugar in diabetic mice, increase glucose tolerance, improve insulin
resistance, enhance cellular antioxidant capacity, and alleviate organ tissue damage. In
addition, the role of broccoli in the treatment of diabetes also includes regulating lipid
metabolism, reducing inflammation and maintaining the balance of intestinal flora. Our
findings not only confirm the improving effect of broccoli on diabetes, but also provide
a theoretical basis for the further application of broccoli in the prevention and treatment
of diabetes and related metabolic syndrome. Exploring the specific mechanism of juiced
broccoli in lowering blood sugar, regulating lipid metabolism, improving insulin resistance
and alleviating inflammation is of great significance in elucidating broccoli in the prevention
and treatment of T2DM. Further studies will be conducted in the future. In addition,
targeted clinical trials can also provide more powerful evidence for the application of
broccoli in the prevention and treatment of diabetes. Broccoli has certain preventive and
palliative effects on T2DM, but its active ingredients are easy to be lost in the process of
storage, transportation, cooking and digestion and absorption. These factors lead to the
low bioavailability of broccoli. We will also carry out more practical research in the future
to develop anti-diabetic drugs or health food.
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