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Abstract: Peaches are among the most well-known fruits in the world due to their appealing taste
and high nutritional value. Peach fruit, on the other hand, has a variety of postharvest quality issues
like chilling injury symptoms, internal breakdown, weight loss, decay, shriveling, and over-ripeness,
which makes a challenging environment for industries and researchers to develop sophisticated
strategies for fruit quality preservation and extending shelf life. All over the world, consumers prefer
excellent-quality, high-nutritional-value, and long-lasting fresh fruits that are free of chemicals. An
eco-friendly solution to this issue is the coating and filming of fresh produce with natural edible
materials. The edible coating utilization eliminates the adulteration risk, presents fruit hygienically,
and improves aesthetics. Coatings are used in a way that combines food chemistry and preservation
technology. This review, therefore, examines a variety of natural coatings (proteins, lipids, polysac-
charides, and composite) and their effects on the quality aspects of fresh peach fruit, as well as
their advantages and mode of action. From this useful information, the processors could benefit in
choosing the suitable edible coating material for a variety of fresh peach fruits and their application
on a commercial scale. In addition, prospects of the application of natural coatings on peach fruit and
gaps observed in the literature are identified.

Keywords: peach fruit; edible coating; shelf life; hydrocolloids; lipids; postharvest storage

1. Introduction

Peach (Prunus persica L.) is a tropical stone fruit from the Rosacea family cultivated
throughout the world. It is assumed that in 1000 B.C., the fruit had originated from China.
Across Europe, the peaches were grown by Romans, who later spread them to the rest
of the world [1]. The Food and Agriculture Organization (FAO) [2] declared that about
22.8 million tons raised in peach and nectarine production were found across the globe, of
which 9.9% were produced in the U.S., 19.8% were produced in Europe, and 66.1% were
produced in Asia. China is the leading producer, with a production of 57.9%, having an
area of 51.1%. Peach fruit is also termed a drupe (simple fleshy fruit that usually contains a
single seed). The structure of the fruit consists of a delicate exocarp, a flesh or pulp that is
juicy and fleshy called a mesocarp, and a hard pit called an endocarp. Color, flavor, texture,
aesthetic, nutritional value, aroma, and food safety are important quality parameters for
peach fruit marketability (Table 1). Peaches are considered highly valued fruits because of
their delicious taste and flavor [3]. Peach fruit is regarded as one of the most valuable fruits
because of its appealing taste and high nutritional value. Peach fruit’s major constituents
include 86.9 g water, 11.4 g carbohydrates, and 0.7 g and 0.2 g protein and fats, respectively.

Foods 2024, 13, 267. https://doi.org/10.3390/foods13020267 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13020267
https://doi.org/10.3390/foods13020267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0009-0004-9797-6559
https://doi.org/10.3390/foods13020267
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13020267?type=check_update&version=1


Foods 2024, 13, 267 2 of 24

It is also composed of 0.02 mg thiamine, 0.04 mg riboflavin, 7 mg calcium, 0.1 mg zinc,
0.7 mg niacin, 24 mg phosphorous, 11 mg iron, 0.9 g fiber, 9 mg ascorbic acid, and an edible
part that contains 59 mg β-carotene per 100 g [4].

Table 1. Fresh peach fruit’s major quality attributes for marketability.

Quality Aspect Primary Concern

Texture (mouth feel) Fibrousness/toughness
Juiciness
Crispness

Softness/firmness
Appearance (visual) Defects

Gloss
Size

Form and shape
Color (uniformity, intensity)

Nutritional value Minerals
Vitamins

Flavor (aroma, taste) Astringency
Acidity

Bitterness
Sweetness

Volatile compounds
Safety Chemical contaminants

Toxic substances
Microbial contamination

Postharvest Complications

Peach fruit has a high respiration rate and quick ripening process because of its
climacteric nature, so it has a shorter shelf life at ambient temperature. The main reasons
associated with postharvest life reduction include firmness loss, reduction in fruit quality,
and decay. With time, the quality of fruit is reduced because of postharvest factors such
as softening of fruit and rot development; that is why peaches are marketed soon after
harvesting [5]. Because of high respiration, peach fruit has a fast ripening process, so it
cannot be stored for a long period at ambient temperature. It has a shorter storage life
of 3–5 days at room temperature [6]. There are approximately 40% postharvest losses in
peach fruit [7]. As a result, huge financial losses are faced because there are abundant
peaches in the market during peak season, and a huge portion goes wasted. At ambient
temperature, peach fruit quickly ripens and spoil, so storing peach fruit at a cold storage of
0 ◦C results in the chilling injury of peach fruit; once the fruit moves from cold storage to
room temperature, it looks normal but does not ripen well, which results in quality losses
such as dry, mealy texture, tissue browning, failure to ripen, abnormal flesh color, and
loss of flavor [8–10]. Peaches also have dynamic living tissues like other fruits, so they
have a shorter shelf life and are highly perishable [11]. Physiological disorders, metabolic
changes, decay, mechanical damage, and reduced firmness in stored peaches result in
postharvest quality loss of peach fruit. Several factors affect these losses, such as handling,
storage conditions, and ripeness stage at harvest time [12]. Without any treatment or low
temperature, the storage life of peaches is much shorter at ambient temperature, which
results in color and texture degradation of peach fruits during the storage period [13].
There are about 40–50% postharvest losses of peaches. In third-world nations, this value
rises due to a lack of postharvest handling facilities [14]. According to Sridhar et al. [15],
the wastage of different food commodities was expressed in percentages based on rapid
spoilage (Figure 1). Fresh produce (fruits and vegetables) was found to be a less expensive
and quickly spoiling commodity, followed by dairy items. Postharvest diseases result
in around 20% of peach fruit losses because of Rhizopus rot and brown rot caused by
Rhizopus stolonifera and Molinia fructi cola, respectively [16]. Botrytis cinerea results in
grey mold rot in peach fruit during postharvest storage [17]. Fruit storage life is extended
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through low-temperature storage or shipping. Still, fruit from some cultivars results in
flesh translucency, flesh browning, red pigment (bleeding), black pit cavity, failure to
ripen, lack of juiciness/mealiness/wooliness, and loss of flavor after ripening at room
temperature or after long-term cold storage [18]. In developing countries, the world
population is increasing at a high rate, and those nations are already facing food safety and
food security issues. It is a big challenge for mankind to meet the food requirements of
an increasing population. By 2050, it is expected that the population across the globe will
exceed 9.1 billion inhabitants, which requires about a 70% increase in fresh produce to meet
the needs [19]. Excluding some plum cultivars like “Sweet Miriam” and cherries, stone
fruits are considered climacteric [20]. During the ripening process, ethylene biosynthesis,
which accelerates fruit enzymatic and biochemical reactions, was observed in climacteric
fruits [21]. For those reactions, oxygen serves as substrate; that is why, with a rise in ethylene
production, the respiration rate also rises [22]. During respiration, carbohydrates and other
substrates like proteins, organic acids, and fats are metabolized. After metabolism, these
substances cannot be replenished once the fruit or vegetable is cut off from the plant [23];
with the passage of time, the quality of food results in deterioration in terms of color, flavor,
weight, and nutritional value. Water loss is the major factor that plays a vital role in quality
deterioration in fruits and vegetables, leading to wilting, shriveling, texture loss, flaccidness,
and loss of nutritional value [24]. Over the past few decades, fresh agricultural products
and processed foods have benefited greatly from the widespread use of conventional
petroleum-based plastic packaging. This is primarily due to the manufacturing simplicity,
cheaper cost, ease of use, and favorable physico-chemical properties of the material [25].
Still, as public awareness grows related to the harmful effects of plastic on the environment,
consumers are diverted toward biodegradable, renewable, and environmentally friendly
packaging material [26]. Using edible films and coating is one of the ways to meet the
current demand for coatings [27].
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Figure 1. Quickly spoiled food products expressed in percentage.

On fruit surfaces, the edible coating acts as a barrier to moisture or gas, reducing
moisture loss and oxygen uptake from the surroundings, which slows down the respiration
process. Food additives like antimicrobials and antioxidants were also added to the coating,
so the layer acts as a career for additives that retards decay without affecting food quality. It
is almost a century-old technique to use edible coatings on fruits. Wax was used for lemons
and oranges in the early 12th century to maintain quality for a prolonged time [28], so for a
long period of storage, the best postharvest practices are required to preserve the quality of
a product.

Numerous reviews emphasize the widespread use of natural edible films and coatings
for fresh fruits and vegetables [29,30]. As per our information, despite shriveling, moisture
loss, and the highly perishable nature of peach fruit, no review was carried out on edible
coating application on peach fruit to control decay and physiological disorders in peach
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fruit; this study concentrates on the most recent findings of the postharvest application of
edible coatings to extend storage life and maintain quality.

2. Natural Edible Coatings: An Overview

The term “edible coating” refers to a delicate fine layer of natural edible films that
covers the outer part of products as an alternative to natural waxy coating. These edible
material coatings reduce the risk of decay without affecting the quality of the product
and prolong the storage life of fresh fruits without anaerobic conditions. These coatings
preserve freshness, aroma, texture, flavor, and nutritional quality, allowing the gaseous
exchange [28]. For storing postharvest agricultural products, edible coating technology
has been used extensively recently. Recent studies revealed that it improves the quality
of postharvest produce and thereby affects the redox state and rate of respiration [31].
Edible coatings of food-grade materials are also fit for human consumption [26]. Edible
coatings block improving physical, chemical, and biological factors [32]. Biodegradable or
edible coatings must possess important functional properties like a solute or gas barrier,
a moisture barrier, lipid/water solubility, mechanical characteristics, nontoxicity, and
color/appearance (Figure 2). The impact of edible coatings on fresh produce greatly
depends on alkalinity, coating thickness, temperature, type of coating, condition, and
variety of fresh produce [33]. Consumers target the wholesomeness and quality of fresh
produce while purchasing based on the aesthetic of fresh produce. The major problem
faced by the fruit industry is to control and maintain fresh produce quality, retard the
growth of pathogenic microorganisms, and avoid spoilage [34]. To prolong the postharvest
storage life of fresh-cut fruits and vegetables, edible coating application is considered a
packaging strategy. Natural resources originating from edible coating are considered eco-
friendly and can enhance fresh produce quality [35]. Using edible coatings as a postharvest
technology was found to reduce quality losses in peaches [22]. The best coatings can reduce
decay, have no adverse effect on the quality of fresh produce, and can extend storage life
without causing anaerobiosis. In the past, edible coatings were used to reduce moisture loss;
however, novelties in edible coating formulations possess a broad range of permeability
characteristics that extend the application of edible for fresh produce [36].
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Natural coatings are applied by different means on the surface of fresh produce,
such as spraying, dipping, and brushing, to alter the atmosphere within the fruit [37–39].
Material used in films and coatings preparation should be Generally Recognized as Safe
(GRAS) because it should be consumed. The fruit coating concept originated in China
in the 12th century, where lemons and oranges were brought for waxing to inhibit loss
of moisture and enhance aesthetic value [40], but the commercial application of wax to
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inhibit postharvest losses of fresh produce did not begin until 1922 [41]. However, the
use of those waxes was considered unfit for consumers, paving the way for a coating
application that is more sustainable and natural. An edible coating reduces quality losses
by forming a semipermeable barrier around the fruit’s surface that regulates gaseous,
moisture, and solute exchanges in the fruit and external surroundings [42]. A fruit’s epicarp
is completely covered by edible coating; it also seals stomata and lenticels and covers
pores and cracks [43]. Therefore, the coating may delay physicochemical changes, prevent
physiological disorders, and slow down ripening [44]. Researchers in the field have recently
paid a lot of attention to creating and using agricultural bio-based polymers like cellulose
derivatives, starches, chitin/chitosan, proteins, lipids, and gums [45].

3. The Need for a Natural Edible Coating

The barrier that edible films and coatings create against gases and moisture modifies
the atmosphere inside fresh produce; as a result, shelf life is prolonged, and the freshness
of the product is maintained. It has been concluded from various studies that an edible
coating alters the atmosphere inside fruit; as a result, a reduction in postharvest losses was
found in peaches (Table 2). An edible coating contributes toward hygiene and acts as a
barrier against microbial invasion.

Table 2. Effect of various edible coatings on peach fruit quality.

Fruit Edible Coating Formulations Storage Condition Findings References

Peach (‘Alberta’)
Methylcellulose

(MC) and
Alginate (A)

MC 3%, A 2% 15 ◦C and 40% RH, stored for
21 days (A) and 24 days (MC)

Moisture loss, changes in
quality parameters, and

respiration rate were much
lower in coated peaches.

MC-coated fruit shows (68%) a
high effect regarding

respiration than A (62%).

[46]

Peach (Persica
vulgaris Miller.)

Wax and
Carboxymethylcel-

lulose (CMC)

25 ◦C and 75% RH, stored for
12 days

Reduces respiration, weight
loss, and moisture barrier and
partially inhibits PPO activity.

[47]

Nectarines Carnauba Wax

Retards fungal and enhances
brightness and firmness of fruit,
and no spore germination of R.
stolonifera and M. fructicola.

[48]

Peach (‘Jefferson’)
Pectin and
Cinnamon

Essential Oil (EO)

5 ◦C and 90% RH, stored for
15 days

Enhances antioxidant and
antimicrobial activity. Decreases
microbial growth. Retards color,

taste, and flavor changes.

[49]

Peach
(‘RedHeaven’)

Aloe Vera or Aloe
Arborescens gels

20 ◦C and 85% RH, stored for
6 days

Retards ethylene production
and weight loss. A significant

delay was found in color
change and ripening index.

[22]

Peach (Granada
cultivar)

Xanthan Gum,
TaraGum, Sodium

Alginate

Xanthan gum
(0.5% w/v), tara
gum (0.5% w/v),

alginate (2%
w/v)

4 ± 1 ◦C, stored for 12 days

Tara gum showed the best
result and led to firmness
maintenance, mass loss

reduction, lower mold and
yeast growth, and lower color

alteration.

[50]

Nectarine (‘Arctic
Snow’) Aloe Vera Gel

Aloe vera gel
dried powder

(200:1)

20 ± 1 ◦C and 60 ± 5% RH,
stored for 8 days. In separate

trials, fruits were kept at
0 ± 0.5 ◦C and 90 ± 5% RH

for 3 and 6 weeks before
ripening at 20 ± 1 ◦C

Reduction was found in
respiration rate, production of
ethylene, electrolyte leakage,

weight loss, and
maintaining firmness.

[51]
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Table 2. Cont.

Fruit Edible Coating Formulations Storage Condition Findings References

Peach

Chitosan (CS),
Chitosan

Chlorogenic Acid
Conjugate
CS-g-CGA

20 ◦C, stored for 8 days

CS-g-CGA maintained soluble
solid contents, firmness,

titratable acidity, and L-ascorbic
acid contents well. It also
prevented decay index,

respiration rate, and weight
loss increase.

[52]

Peach Sodium Alginate
(SA), Rhubarb

1% sodium
alginate and
rhubarb-SA

28 ± 1 ◦C and 90% RH, stored
for 7 days

Reduction was found in
respiration rate, weight loss,

PPO Activity and MDA content.
It also has good

anti-fungal activity.

[53]

Peach (‘Jinxiu’) Peach Gum Peach gum 1%,
5% and 10% v/v 8 ◦C, stored for 25 days

Fruit softening, ethylene
production, and reduction in
sorbitol are repressed. Weight

loss is also reduced.

[54]

Peach Aloe Vera Gel
A. gel diluted
with distilled

water (1:3)

1 ◦C and 95% RH, stored for
30 days

Reduction in total soluble solids
(TSS), weight loss, titratable

acidity (TA) color change.
Increased visual properties

have more favorable texture
and flavor.

[55]

White Peach Fruit
(‘Settembrina’)

Aloe Arborescens
(EC), 1-

Methycyclopropene
(1-MCP)

EC 40% (v/w),
1-MCP 0.14%, EC

40% (v/w) +
1-MCP 0.14%

Stored at 1 ◦C for 28 days,
whereas in second trial, fruits
were transferred at 20 ◦C for

six days

Retards ripening and maintains
flesh firmness, color, and

weight. Decreases transpiration
and respiration.

[56]

Anti-browning agents, nutrients, colorants, flavors, and spices are some additives that
can be added to the polymer matrix and eaten with the fruits; they also improve safety or
even fruits’ sensory and nutritional qualities. Because of their biodegradable nature, edible
coatings help deplete the waste produced by synthetic packaging [28].

4. Classifications of Edible Coatings for Postharvest Application of Peach Fruit

The formulation of edible coatings can be made from different materials with desired
properties. Polysaccharides (pectin, starch, gums, alginate, chitosan, cellulose, etc.), proteins
(gelatin, egg albumin, wheat gluten, zein, whey protein, casein, soy protein, etc.), and lipid
compounds (fatty acids, waxes, etc.) are three major categories that can be considered
to classify the basic materials that are used to make edible coatings. Another coating
is called composite coating, which results from combining more than one substance or
material [57–60]. Classification of various edible coatings is depicted in (Figure 3). Edible
coatings also enhance functional properties by incorporating antioxidants, antimicrobial
compounds, vitamins, and minerals into a polymer matrix [61].

4.1. Lipids

The lipid-based edible coating has low water affinity as it is hydrophobic and has
excellent moisture barrier properties [42]. However, it has been reported that lipid-based
edible coatings have poor gas barriers and mechanical properties [62]. Apart from prevent-
ing water loss, lipid-based edible coatings reduce respiration rate, prolong postharvest
life, and enhance the aesthetic of fresh produce by imparting shine on the surface [28].
Coatings made of lipids have been used for more than 800 years. In the past, coatings made
of lipids were used to coat confectionery items and waxing fruits. Beeswax and paraffin
wax were considered the most effective. Lipids prevent the chilling injuries that often occur
in cold storage [63]. In various edible coatings, carnauba wax and beeswax (natural waxes)
have been utilized as lipid components [64]. Because of their hydrophobic nature, these
compounds help to prevent weight loss caused by dehydration during storage and impart
gloss to the fruit’s surface. Compared to protein and polysaccharide coating, a lipid-based
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coating has excellent barrier properties and the best compatibility with other coating agents.
The lipid-based coating leads to unacceptable organoleptic properties because of its greasy
nature and lipid rancidity [65]. Widely used materials for coatings include beeswax, acety-
lated monoglycerides, carnauba wax, mineral oil, vegetable oil, surfactants, and paraffin
wax [63].
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4.2. Proteins

Proteins are classified into two groups based on the source from which they are
obtained, i.e., globular protein and fibrous protein. Globular proteins are attained from
plant sources (e.g., cotton seed protein, wheat gluten, cotton seed protein, corn-zein, peanut
protein, soy protein) and are soluble in bases, salts, and aqueous solutions of acids or
water, while fibrous proteins are attained from animal sources (e.g., collagen, whey protein,
keratin, gelatin, casein) and are insoluble in water [66]. The coatings obtained from animal
sources (such as milk protein) and plant sources (such as zein, wheat gluten, and soy
protein) have excellent lipid, oxygen, and carbon dioxide barrier properties, especially
at low RH [67]. Edible coatings from protein sources possess excellent gas barrier and
mechanical properties, but their use is limited due to allergenic risks and ethical or religious
beliefs [62]. Additionally, edible coatings obtained from protein sources were susceptible
to cracking and brittle [65]. Various fruits and vegetables can be coated with proteins
based on edible coatings derived from gelatin, milk, corn, soybeans, wheat, peanuts, or
gelatin. Most protein-based films have good results on hydrophilic surfaces, but they rarely
resist water vapor diffusion. Coatings derived from proteins have poor mechanical and
water barrier properties but excellent oxygen and carbon dioxide barrier properties [68].
Compared to polysaccharide films, the protein coating has good mechanical and excellent
gas barrier properties. Still, as it is hydrophile, like polysaccharide films, the protein
coating is considered to have a poor moisture barrier [69]. It has been assumed that it has a
great potential for aromatic and organoleptic attribute retention, develops a barrier against
mechanical strength, and has a high oxygen permeability, but because of its hydrophilic
nature, it is not a good moisture barrier that can be strengthened by the addition of
hydrophobic substance like lipids [70].
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4.3. Polysaccharides

Polysaccharides are biodegradable macromolecules that are safe, non-toxic, and highly
stable [28]. Polysaccharides are naturally occurring polymers used in the production of
edible coatings. Chitosan, starch, and gums are important ingredients used for food preser-
vation in polysaccharide-based edible natural coatings. This coating has many advantages,
like easy availability and cheap cost. However, different polysaccharides were found to
have a lower water barrier quality. Some polysaccharides like carrageenan and alginate are
thick-filmed and have a hygroscopic nature. Polysaccharide-based edible coatings possess
antimicrobial and antioxidant characteristics, which are considered efficient in keeping
fruits and vegetables fresh and improving quality. Because of its hydrophilic nature, it
cannot act as a barrier to moisture [71]. Throughout the literature, polysaccharides, such
as starches, gums, cellulose derivatives, and pectins, are widely mentioned and highly
favored for use as an edible coating in all types of stone fruit [72]. Polysaccharides are
excellent coating materials because of their easy availability, allergen-free nature, and typi-
cally water-soluble nature. Their strong hydrogen-bonded and orderly network structure
leads to a good gas barrier and mechanical properties [62]. A variety of polysaccharides
can be utilized in the production of edible coating. The most often available polymers are
extracted from agricultural plants, animals, and marine sources. During short-term storage,
these coatings have been used to prevent some food moisture loss [63].

4.4. Composites or Bi-Layer Natural Edible Coatings

For improved functional qualities in coatings, the development of bi-layer and compos-
ite coatings containing proteins, lipids, and polysaccharides has received much attention
in the past few years. Multiple coating materials are combined in a composite edible
coating, resulting in the improved functionality of the coating due to several advantageous
properties [62]. Because each coating material serves a distinct but limited function, the
functionality can be enhanced by combining two distinct coating materials. The main
goal of composites is to maximize the benefits of the mixture’s highest possible perfor-
mance while maintaining the quality as stable as an individual component. Combining
multiple materials can create composite edible coatings with distinctive properties [70].
Multi-component or composite films possess both features of hydrocolloid (proteins or
polysaccharides) and lipid components; hydrocolloid serves as a selective barrier to oxygen
and carbon dioxide, while lipid components serve as an excellent barrier to water vapor [73].
A coating composed of just one material, such as a protein, polysaccharide, or lipid, may be
effective in exhibiting a specific property but may not possess several properties or barriers
simultaneously. For example, hydrocolloids (proteins and polysaccharides) are excellent
film-forming materials with good structural and mechanical properties. Still, they often
have a poor moisture barrier, so to enhance the hydrophobicity, lipids are often added to the
edible coating to create a barrier to postharvest moisture loss. As a result, the hydrophobic
nature of the lipids may play a significant role by acting as an excellent barrier to water.
In other words, bi-layer or composite coatings are designed to integrate the benefits of
lipids and hydrocolloid coatings to reduce or mask each limitation [68]. Edible coatings
comprised of protein, polysaccharides, and lipid blends may vary in nature. This strategy
assists an individual in taking advantage of the different functional properties of each film
class [74].

5. Edible Coatings’ Effects on Physico-Chemical Properties of Peach Fruit
5.1. Pigments and Color Attributes

Color is a crucial sign of ripening, which determines consumer acceptability and
fruit quality. Chlorophyll is broken down as the fruit ripens, and other pigments like
anthocyanins and lycopene develop [75]. When compared to uncoated fruits, edible
coatings retard color change and slow down ripening [76]. Depending on stone fruit
types, visible color changes may occur during the ripening. Stone fruit undergoes color
changes throughout maturation and ripening due to the synthesis of carotenoids and
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anthocyanins [77]. It has been concluded that a reduction in color changes was found in
peach fruits coated with edible coatings [22,55]. Edible coatings lower the activities of a
pair of important enzymes involved in the synthesis of anthocyanin, flavanone synthase,
and phenylalanine ammonia-lyase, as respiration is repressed by edible coatings, which, in
turn, decreases the availability of oxygen within the fruit [44]. Carotenoid synthesis was
catalyzed by two enzymes, f-carotene desaturase and phytoene desaturase/synthase [78].
Peach fruits coated with aloe arborescens and aloe vera gel were kept for six days at 20 ◦C,
and deferred external color changes were measured as chroma index. In control fruits
during storage, a significant decrease in chroma index was noticed, while in treated fruits,
the decrease was lower [22]. A substantial difference in fruit colors was observed in peach
fruits coated with aloe vera gel, kept in plastic having pores of 5 mm, and cold stored at
1 ◦C and RH 95% for 30 days with an interval of 10 days as compared to control ones. The
coating significantly affected the fruits’ color appearance parameter (hue angle). Aloe vera
gel-coated fruits had a greater hue angle throughout storage than uncoated ones. A gradual
decrease in hue angle was observed with time. Yet, the coated fruits decrease less than
the uncoated ones [55]. From those outcomes, it has been concluded that edible coatings
may prevent rapid color change in peach fruits. These outcomes are in accordance with
those of [79], who found that aloe vera gel-coated cherry fruits experienced a significantly
lower color change in comparison to the control group. “Granada Cultivar” minimally
processed peeled peaches were divided into cubes coated with various edible coatings,
such as 0.5% xanthan gum, 0.5% Tara gum, 2% alginate, 1% ascorbic acid, 0.25% citric
acid, 1% calcium chloride, or 1% glycerol, then subjected to PET packaging and brought
to storage for 12 days at 4 ± 1 ◦C. The color evaluation was carried out on stored peaches.
From the experiment, it has been concluded that less alteration in color was observed in
Tara-coated treatments in comparison to other treatments and the control group [50].

5.2. Firmness

Firmness is the primary physical characteristic of fruit that significantly impacts
consumer acceptability. A decrease in firmness was caused by the increased activity of
endogenous autolysins, which degrades cell walls [80]. Loss of fruit firmness was found
when cell-wall-degrading enzymes like polygalacturonate, pectin methyl esterase, and
β-galactosidase decrease cell-to-cell adhesion and the mechanical strength of cell walls as
fruit ripens [46]. Those enzymes require oxygen to be functional, and ethylene production
enhances their activity in climacteric fruits [77]. It has been reported that edible coatings
keep nectarines firmer by slowing down respiration and reducing ethylene production; as
a result, the activity of cell-wall-degrading enzymes is minimized. Aloe vera gel-coated
nectarine fruit stored for 8 days at a room temperature of 20 ± 1 ◦C retain greater firmness
during ripening than the control group, and the control group shows 40% more softening
at the fully ripe stage than coated fruit. The same case was observed in fruits coated with
aloe vera gel kept at cold storage at 0 ± 0.5 ◦C for 3 and 6 weeks at 90 ± 5% RH; retention
of fruit firmness was found in coated fruits during ripening, and 41% greater firmness was
found at a fully ripe stage as compared to uncoated ones. This was achievable because of
lower ethylene production, which results in retarded ripening in “Arctic snow” nectarines
coated with aloe vera gel [51].

Moreover, peach fruits coated with methylcellulose and sodium alginate, having
storage conditions of 15 ◦C and 40% RH, retained significantly more firmness during storage
in comparison with control fruit [46]. Firmness was significantly higher in the rhubarb-SA
(sodium alginate)-coated samples stored for 7 days at ambient temperature (28 ± 1 ◦C)
than in the 1.0% SA (sodium alginate)-coated samples and the control group. Peach fruits
with low values of firmness have high weight loss. The higher firmness retained in rhubarb-
SA-coated samples was due to excessive antibacterial activity, decelerating intracellular
matrix decomposition, and the process and reduction of central vacuole [53]. A significant
effect on fruit firmness was observed in aloe vera gel-coated cold-stored peaches for 30 days
at 1 ◦C and 95% RH. A minimum loss of firmness was noticed in aloe vera-coated peaches,
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and during the late storage period, it was found to be more effective [55]. This outcome was
in accordance with [79]. Edible-coated peach fruits with 5 g per liter CS-g-CGA (chitosan
chlorogenic acid conjugate) stored at 20°C for 8 days were found to be more effective in
retarding decreases in firmness. In contrast, during the ripening process, the control group’s
firmness decreased gradually [52]. 1-Methylcyclopropene (1-MCP)- and aloe arborescens
(EC)-coated white peaches cold stored at 1 ◦C for 28 days showed higher firmness values
than 6 kg cm−2, which is considered the best for commercial scale. Thus, aloe arborescens,
in combination with 1-MCP, has a positive influence on peach fruit firmness by lowering
the degradation of cell walls through microbial propagation inhibition and delaying the
senescence of fruit. There was no significant decrease in flesh firmness in fruit treated
with EC or 1-MCP + EC [56]. Cassava starch, microemulsion based on cassava starch, and
commercial wax coatings were applied to whole peach fruits to check the firmness values.
Firmness reductions were found in all treatments during storage [81]. These outcomes are
in accordance with those of [46]. However, compared to the control sample, they asserted
that the coated fruits improved firmness maintenance. Compared to sodium alginate,
methylcellulose was more effective at maintaining firmness.

5.3. Total Soluble Solids and Titratable Acidity

Total soluble solids (TSS) are the most significant factor through which stone fruits’
eating quality can be determined. TSS measures a fruit’s sweetness and is known to rise
throughout ripening as catabolic processes like respiration hydrolyze starch into simple sug-
ars [82]. The breakdown of starch frequently has a higher impact on alteration in TSS values,
even though a rise in TSS was found because of postharvest moisture loss resulting from
the sugar concentration within fruit [83]. It has been declared that edible coatings reduce
the increase in TSS content throughout storage because of repressed respiration [83,84]. The
fruit metabolism is decreased by edible coating; as a result, starch breakdown is deferred;
consequently, TSS is maintained during storage. Chitosan-chlorogenic acid conjugate
(CS-g-CGA)-coated peaches that were stored for 8 days at 20 ◦C showed that TSS first
increased and then decreased at the end of storage; peach fruit coated with 5 g per liter
of CS-g-CGA was effective in retarding TSS rise in peach fruit [52], probably as a result
of starch hydrolysis and cell wall degradation [85]. Hazrati et al. [55] declared that aloe
vera gel-coated fruits that had a storage period of 30 days with 10-day intervals showed
that significant changes in TSS were noticed in aloe vera-coated peaches. Aloe vera-coated
peaches slightly reduced TSS compared to a control group. These differences may be due
to less ethylene production, which leads to later fruit ripening [86]. The values of TSS were
found to be 9% higher in the control treatment than in the coated ones. These outcomes are
in accordance with those of [51]: aloe vera gel-treated “Arctic snow” nectarine were stored
for 8 days at 20 ± 1 ◦C in the first experiment, while in the second, fruits were subjected to
90 ± 5% RH and 0 ± 0.5 ◦C for 3 and 6 weeks before they started to ripen at 20 ± 1◦ C. The
first experiment declared that during the starting 3 days, coated and uncoated fruits did
not show any significant differences. Later, coated fruits showed lower TSS values than the
control during ripening. An increase was found in both coated and uncoated samples, but
the rise was more evident in uncoated fruits, whereas the second experiment showed that
following 3- and 6-week cold storage, TSS of coated and uncoated samples rose during the
period of ripening, but at the ripe stage, uncoated fruits showed 9.4% higher TSS values
compared to aloe-coated fruits. White flesh peach fruits “Settembrina” were coated with
aloe arborescens (EC), 1-Methylcyclopropene (1-MCP), or EC+1-MCP and stored at 1 ◦C for
28 days with 7 days of intervals; fruits were then transferred from cold storage to 20 ◦C and
pulled out after 6 days to check the effect of both the room temperature and cold storage
on shelf life.

EC+1-MCP significantly reduces TSS values from 7 to 28 days of storage compared
with the control group [56]. Cherries fruit coated with almond gum and gum arabic stored
for 16 days at 2 ◦C and 90–95% RH showed that 25% higher TSS was observed in control
fruits than coated with gum arabic 18.1% and almond gum 19%. It has been declared
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that edible coatings reduce ripening and defer starch breakdown [82]. Pizato et al. [50]
evaluated “Granada Cultivar” minimally processed peaches peeled off and then divided
into cubes. The cubes were then coated with various edible coatings, such as 0.5% xanthan
gum, 0.5% Tara gum, 2% alginate, 1% ascorbic acid, 0.25% citric acid, 1% calcium chloride,
or 1% glycerol, stored at 4 ± 1 ◦C for 12 days, and subjected to PET packaging. The control
and alginate-coated samples showed an increase in TSS, which may be the result of an
accumulation of sugar because moisture loss usually occurs throughout ripening, even in
small quantities, whereas Tara gum- and xanthan gum-coated samples show a reduction
in TSS and slow down ripening. The fruit TSS may have been leached by immersion in
filmogenic solutions [87].

Another crucial aspect of a fruit’s eating quality is titratable acidity (TA). According
to Mahfoudhi et al. [82], titratable acidity approximates a solution’s total acidity and
frequently declines during postharvest storage because the key substrates for metabolic
processes and respiration are organic acids. As fruits mature, their acidity tends to be
lower as TSS content rises. It has been reported that edible coatings reduce loss in TA in
nectarines [51] and peaches [46] during storage. Ahmed et al. [51] found that aloe-coated
nectarine showed 29% significantly higher TA than the control group at the end of storage
(stored for 6 weeks at 90 ± 5% RH, 0 ± 0.5 ◦C, followed by 8 days storage at 60 ± 5% RH,
20 ± 1 ◦C). Methylcellulose- and sodium alginate-coated peaches stored for 25 days at
15 ◦C and 40% RH experienced a minimum decrease in TA, particularly methylcellulose-
coated peaches, with the maximum being found in the control group, which indicates that
peach fruit acid levels reduced slightly faster in the control group than in coated produce.
These outcomes are found to be in accordance with [88], which found that peach fruit
coated with chitosan reduces acidity at a slower rate. A significant difference in acidity was
observed in coated and uncoated fruits throughout the storage period. The control sample
showed a maximum acceptable shelf life of 15 days at ambient temperature, which was
enhanced to 24 days (60%) by methylcellulose-coated samples and 21 days (40%) by sodium
alginate-coated samples [46]. Generally, throughout the storage period, fruit TA declined,
which was rapid and more pronounced in the control or uncoated group. Abbas et al. [89]
reported that aloe gel-coated fruits had a higher TA (lower pH), which was an indirect sign
of lower organic acid metabolism, which was in accordance with [51]. Crisosto et al. [11]
discovered that peach titratable acid content reduces by 30% throughout ripening, which
agrees with our findings. The TSS and acidity ratio is one of the crucial factors that play
a role in determining consumer acceptance of peach fruit. It has also been demonstrated
that TSS: TA content is raised throughout storage in fruits 10 days after harvesting; this rise
begins but is significantly enhanced between 20 and 30 days at the end.

6. Edible Coatings’ Effect on Physiological Factors of Peach Fruit
6.1. Ethylene Production

Ethylene production is usually reduced in coated fruits because of repressed respi-
ration [77]. Aloe-coated peach fruits stored for six days at 85% RH and 20 ◦C show a
50% reduction in ethylene production during storage [22]. Likewise, a 64% reduction in
ethylene production was found in peach fruits coated with glycerol (0.33%), mango seed
kernel antioxidant extracts 0.078 g L−1, and mango peel solution 1.09% [90]. Peach gum
coating is considered one of the possible alternative treatments to maintain peach fruit
functional properties and retard postharvest fruit ripening. Peach fruit treated with differ-
ent concentrations of peach gum (10%, 5%, and 1%, v/v) suppressed ethylene production
as compared to the control group [54]. Aloe vera gel-coated peach fruits with storage
conditions at 1 ◦C and 95% RH stored for 30 days show less oxygen exchange, so it is likely
that ethylene production slows down, which reduces the amount of water lost through the
fruit’s peel pores [63]. The ripening of nectarine fruit coated with aloe vera gel kept at room
temperature (20 ± 1 ◦C) for 8 days slowed up until day 6 of ripening, and there was no
significant change in ethylene production. Afterward, ethylene production in coated fruits
increased but was 62% less than that of the control group on day 8 of ripening. In contrast,
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the control group had a significant rise in ethylene production. Similarly, fruit coated with
aloe vera gel stored for three and six weeks at 90 ± 5% RH and 0 ± 0.5 ◦C resulted in lower
ethylene production during fruit ripening [51]. Figure 4 summarizes the effect of edible
coatings on the overall quality of fresh peach fruit.
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6.2. Respiration Rate

One primary factor contributing to postharvest losses is the respiration rate. Edible
films and coatings have the strength to lower the rate of respiration by generating a barrier
to carbon dioxide and oxygen by adjusting the internal modified atmosphere [91]. After
harvest, the respiration process continues in stone fruit; oxygen is absorbed for utilization
in metabolic activities, whereas carbon dioxide and water are released as a by-product [42].
The respiration rate rises continuously during ripening in climacteric stone fruits and
becomes maximum at the point where senescence is initiated, which is termed a climacteric
peak [44]. The climacteric peak was removed when “Alberta” peaches were kept at 15 ◦C
and 40% RH; these were coated with an edible coating of methylcellulose and sodium
alginate, which reduced the rate of respiration by 68% and 62% and allowing them to remain
acceptable for 21 days and 24 days, respectively [46]. Applying the rhubarb-SA coating
slowed and delayed the peach fruits’ respiration rate. The peak levels were decreased by
11.7% and 16.1% by coatings with 1.0% SA and rhubarb-SA, respectively, and the peak
was delayed till day 5. Generally, the respiration rate was effectively decreased by the SA
coating combined with rhubarb and retarded the respiratory peak arrival by 1 day in the
peach fruit [53]. It has been noticed that a coating made of chitosan or chitosan chlorogenic
acid effectively prevented peach fruit respiration rates from rising during storage. The
carbon dioxide production rates in peach fruit coated with 5 g per liter CS-g-CGA on days
2, 4, and 6 of storage were 36.5%, 21.9%, and 28.9%, respectively, lower than the control
group. It was 16.0%, 10.2%, and 13.0% lower than that of the 5 g per liter CS treatment
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group, respectively. It has also been concluded that during storage at 20 ◦C for eight days,
the CS-g-CGA coating was more efficient than CS treatment at lowering the gas exchange
between the surrounding atmosphere and peach fruit [52]. Nectarine fruit coated with aloe
vera gel kept at an ambient condition (20 ± 1 ◦C) for 8 days shows a significant reduction
in the rate of respiration during ripening compared to control fruit; a rapid increase was
found in the control fruit respiration rate. Control fruits show a 41% higher respiration rate
on day 8 of fruit ripening than aloe vera gel-coated fruits. Similarly, fruit stored at 90 ± 5%
RH and 0 ± 0.5 ◦C for three and six weeks exhibited lower respiration rates during the
ripening period than the control group [51].

7. Natural Coatings’ Effects on Antioxidant and Phytochemical Properties of Peach Fruit

Stone fruits are reported to have a high nutritional value because of abundant phenolic
compounds [92,93]. Phenolic compounds are derived from plant metabolism, considered a
class of phytochemicals, and famous for various key properties and biological functions
such as antimicrobial activity, pigmentation, protection against UV light, and antioxidant
activity. They are the primary antioxidant component of the peach [94,95]. An important
subgroup of polyphenols is flavonoids, which contain flavanones, anthocyanins, flavanols,
flavones, flavan-3-ols, and isoflavones [96]. A significant rise in both antioxidant capacity
and total phenolic content was found in the peel and in the flesh of stone fruit throughout
maturation and ripening; compared to the flesh, concentrations are four to five times higher
in the peel [97]. As senescence starts in fruit, phenolic compounds reduce because cell
structure breaks down [98]. The phenol oxidase and peroxidase activities lower the phenolic
content in stone fruits, resulting in lower nutritional value [99]. Total antioxidants and
ascorbic acid were significantly lower in edible-coated nectarine fruits with aloe vera gel
compared to uncoated ones throughout ripening at cold storage and ambient temperatures.
Ascorbic acid levels in coated fruit may have decreased because of the treatment’s general
effect on ripening delay, as treatment also reduced respiration rate and ethylene production.
The increase in activities of various enzymes such as peroxidase, ascorbic acid oxidase,
and cytochrome oxidase may be the cause of the decrease in total antioxidants found in
pulp tissues of fruit coated with aloe vera gel, as declared before by [100]. Edible coatings
delay the ripening process; as a result, senescence is delayed, and cell structure breakdown
is reduced.

Moreover, edible coatings result in decreased respiration and lower oxygen availability
in fruits, which are responsible for metabolic activities; consequently, phenol peroxidase
and oxidase activities are reduced [46]. Peach fruit treated with 1.0% sodium alginate alone
or in combination with rhubarb (rhubarb-SA) stored for 7 days at 28 ± 1 ◦C showed that
a PPO activity was significantly lower in rhubarb-SA-coated fruit throughout storage in
comparison with 1.0% SA and the control group. In the control group, the PPO values
were 20.8% greater than rhubarb-SA and 14.9% more than 1.0% SA coatings at the end
of storage [53]. Postharvest browning in fruits and vegetables is primarily caused by
polyphenol oxidase (PPO), as it oxidizes phenolic compounds [101]. PPO activity is linked
to the degree of browning on the peach fruit surface [80]. When plant tissue is injured,
polyphenols and PPOs, which exist in various cell organelles, react with each other [102],
and to stop fruit browning, Chinese herbal medicines can be used as inhibitors to prevent
the process that leads to browning. Table 3 summarizes the attitude of fresh peach fruit
toward different coating materials.

The edible coating treatment of peach fruits can decrease surface browning by main-
taining the structure and integrity of the cell membrane. Therefore, rhubarb-SA-coated
peach fruits improved the preservation quality by inhibiting peach PPO activity. Aloe
arborescens (EC)-, 1-Methylcyclopropene (1-MCP)- or EC+1MCP-coated settembrina white
flesh peach fruits were stored for 28 days at cold storage (1 ◦C); the fruits were then shifted
to room temperature (20 ◦C) and analyzed to check the combined effect of room tempera-
ture and cold storage. It is considered that the total phenolic content (TPC) accumulated
because of the EC and EC+1-MCP edible coating, which, as a result, prolonged the shelf and
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storage life of peach fruits and lowered the incidence of decay. Certain phenolic compounds
like flavonoids, phenolic acids, and tannins are found to be directly involved in defense to
inhibit pathogen development and make the host tissue stronger. Therefore, during storage
and shelf life, it is essential to keep a high-level phenolic compound in fruit [103].

Table 3. Attitude of fresh peach fruit toward different coating materials.

Effect of Edible Coatings on Physico-Chemical Properties of Peach

Quality Parameter Coating Material Effect of Coating References

Pigment and color
attributes

Aloe arborescens and aloe vera gel. Deferred external color changes. A lower decrease in
chroma index. [22]

Aloe vera gel Greater hue angle. Gradual decrease in hue angle. Yet,
less decrease in comparison to coated ones. [55]

Tara gum Less alteration in color as compared to control group. [50]

Firmness

Methylcellulose and sodium alginate Retained significantly more firmness during storage in
comparison with control fruit. [46]

Rhubarb-SA (sodium alginate) Showed significantly higher firmness than control group. [53]

Aloe vera gel Minimum firmness loss was observed at later
storage period. [55]

CS-g-CGA (chitosan chlorogenic acid conjugate) Retard decrease in firmness. [52]
1-Methylcyclopropene (1-MCP) and aloe

arborescens (EC) Showed good firmness values. [56]

Cassava starch, microemulsion based on cassava
starch, and commercial wax coating Reduction in firmness was observed in all treatments. [81]

Total soluble solids

CS-g-CGA (chitosan chlorogenic acid conjugate) Retarded TSS rise in peach fruit [52]

Aloe vera gel Aloe vera-coated peaches show a slight reduction in TSS
compared to a control group. [55]

Aloe arborescens (EC), 1-Methylcyclopropene
(1-MCP), or EC+1-MCP

A significant reduction in TSS values in comparison with
the control group [56]

Titratable acidity

Tara gum and xanthan gum Showed a reduction in TSS and slowed down ripening. [87]

Methylcellulose and sodium alginate Experienced a minimum decrease in TA compared to
control group. [46]

Chitosan Reduces acidity at slower rate. [88]

Effect of edible coatings on physiological factors of Peach Fruit.

Ethylene
production

Aloe vera gel Reduction in ethylene production during storage. [22,51]
Glycerol, mango seed kernel antioxidant extracts,

and mango peel solution 64% reduction in ethylene production was found. [90]

Respiration rate
Methylcellulose and sodium alginate Reduced the rate of respiration by 68% and

62%, respectively. [46]

Chitosan or chitosan chlorogenic acid Prevented peach fruit respiration rates from rising
during storage. [52]

Effect of edible coatings on antioxidant and phytochemical properties of peach fruit.

Antioxidant and
phytochemical
properties

Sodium alginate alone or in combination with
rhubarb (rhubarb-SA)

Showed significant lower PPO values in
rhubarb-SA-coated fruit throughout storage in

comparison with 1.0% SA and control group. The PPO
values were found to be 20.8% greater in control group

than with rhubarb-SA 14.9% and SA coatings 1.0%.

[53]

Aloe arborescens (EC) and
1-Methylcyclopropene (1-MCP), or EC+1MCP

Accumulation of total phenol content (TPC), which
prolonged the shelf life and lowered the decay incidence. [103]

Effect of edible coatings on decay index and physiological disorders of peach fruit.

Weight loss

Chitosan CS and chitosan chlorogenic
acid conjugate Significant reduction in weight loss during storage. [52]

Aloe vera gel
Throughout ripening, a significant weight loss decrease

was noticed. Aloe vera gel had a 65.3% lower mean
weight loss than uncoated ones.

[51]

Tara gum
Tara gum-coated peaches resulted in a minimum mass

loss of 7.60%. Thus, in terms of mass loss, Tara gum
showed the best results.

[50]

Decay index
Chitosan chlorogenic acid conjugate (CS-g-CGA) Showed lower decay index of about 20.6% in comparison

with a control group. [52]

Sodium alginate Decay index was found to be significantly less as
compared to control group. [53]
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8. Edible Coatings’ Effect on Decay and Physiological Disorders in Peach Fruit
8.1. Shrivel

Shrivel is regarded as one of the most significant physiological disorders affecting
stone fruits, resulting in an unpleasant appearance that makes them unsellable [104]. In
stone fruits, the development of shrivels is influenced by numerous factors, but it is believed
that moisture loss has a huge impact [104,105]. Moisture loss in fruits leads to turgor loss
in epidermal cells; as a result, fruits’ overall volume is reduced. The cuticle maintains its
surface area, and the elasticity of the cuticle is limited; consequently, there is wrinkled and
shriveling development. Additionally, in various cultivars of stone fruits, the occurrence
of postharvest shrivel is challenging despite the use of shrivel packaging bags such as
high-density polyethylene (HDPE) [104]. It has been stated by Crisosto et al. [106] that
nectarine and peaches can shrivel at a minimum of 5% moisture loss rate, and this rate may
vary among other cultivars of stone fruits. Edible coatings have the strength to inhibit the
development of shriveling in stone fruits. It has been found that caseinate milk protein-
coated cherries did not experience shriveling at 4 ◦C and 80–85% RH when stored for
20 days, whereas the control group experienced high shriveling [107]. To our knowledge,
it was concluded that it is the only information that discusses the edible coating ability
related to a decrease in shriveling in stone fruits; no study was conducted on edible coating
effects on shriveling in peach fruit. Many studies are available on edible coating’s potential
to decrease textural losses, peel permeability, and moisture loss [43,108]. As a result, edible
coating viability for being used to overcome shrivel development in stone fruit may be
favorable. Texture is considered one of the key properties of fruits. Freshness is indicated
by appearance. Throughout the ripening process, textural changes occur. Pectin is broken
down into protopectin by the pectic enzymes, which lose fruit firmness. The incorporation
of texture enhancers into edible coatings has the potential to reduce firmness loss in fruits.
The texture of the product is considered a crucial aspect of the acceptability of the product.
Stone fruit’s textural loss was found to be linked with shrivel development. When fruit
becomes softened, cell-wall-degrading enzymes hydrolyze the pectin, creating a gap in the
network of cellulose–hemicellulose [109]. These voids are covered by free water, which
binds to cell wall components and decreases the fruit tissues’ overall water movement. In
addition, moisture loss may lead to the development of shrivel because of mobile water
absence in fruit to keep the hydration beneath the epicarp. Benitez et al. [110] stated that
aloe vera-based edible-coated kiwi fruit shows that edible coatings enhanced texture and
some other quality parameters. It also enhances the aesthetic value, adds shine to the
fruit, and conceals the small scars; even by reducing the loss of moisture, it represses
the development of physiological disorders [111]. The coating’s potential to adapt to
morphological changes that are peculiar to stone fruit cuticle-like fruit mechanical damage,
shrinkage, and shriveling should be excellent.

8.2. Weight Loss

Once the fruit is detached from the parent plant, it does not receive more water from the
plant, resulting in loss of moisture because of transpiration [112]. Fruit shriveling, softening,
and a loss in sellable weight all have been associated with moisture loss and exhibit a
parallel trend with the decay rate [113]. Weight loss, which often occurs at postharvest
storage, is considered undesirable and often linked to respiration and evaporation of water
through epidermal pores [114]. Significant reductions in weight loss were found in edible-
coated peaches [55] and nectarines [51,115]. Edible-coated fruits cannot transpire freely
because the epicarp of fruits is covered by coating; it also coats the lenticels and stomata
and fills the pores and cracks [44]. It has been observed that incorporating lipids into edible
coatings enhances their hydrophobicity and has a greater effect on decreasing moisture
loss. Peach fruit coated with chitosan CS and chitosan chlorogenic acid conjugate at 5 g per
liter CS-g-CGA and stored for 8 days at 20 °C showed a significant reduction in weight loss
rises compared to uncoated ones. Throughout storage, less weight loss was observed in the
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peach fruit coated with CS-g-CGA compared to CS coated at the same concentration. Thus,
5 g per liter CS-g-CGA-coated fruits showed the lowest weight loss on day 8 of storage [52].

Aloe vera gel-coated nectarine ’ Arctic Snow’ fruit were kept at an ambient temperature
of 20 ± 1 ◦C for 8 days in the first experiment and left to ripen. It has been observed that a
significant weight loss decrease was found in coated fruits throughout ripening. A 65%
weight loss decrease was observed at a fully ripe stage in aloe vera coating treatments,
while in the second experiment, peach fruits were stored for 3 and 6 weeks at 0 ± 0.5 ◦C
and 90 ± 5% RH before ripening at 20 ± 1 ◦C. It has been concluded that a significant
weight loss decrease was noticed throughout ripening compared to a control group. Fruits
coated with aloe vera gel had a 65.3% lower mean weight loss than uncoated ones [51]. The
weight loss rate seems to be somewhat repressed in peach gum-treated fruits [54]. Peaches
and plum fruits were coated either with aloe arborescens or aloe vera gel and stored for
6 days at 20 ◦C and left to ripen; a rise in weight loss was observed throughout postharvest
storage, having final values of ∼=6.5 and 5.5% in control peaches and plums. However,
treated fruits resulted in a significantly lower weight loss. The effect of aloe arborescens is
significantly greater than that of aloe vera gel. It has been concluded from these results that
compared to aloe vera gel, the gelling properties of aloe arborescens involved in coating
formation throughout the fruit surface are enhanced in terms of reduced water vapor
permeability [22]. As a result, the hydrophobic properties of aloe arborescens gel would be
higher than those of aloe vera gel, resulting in a coating with greater barrier potency [116].

Compared to control treatments, the edible coating of aloe vera gel had a significant
effect on the weight loss of peach fruits [55]. Generally, coatings are a combo of fats
and polysaccharides that prevent loss of water [117]; because aloe vera gel has a greater
polysaccharide content [118], it can be utilized as a non-fatty coating to prevent loss of
water in fruits. Weight losses have been found to be significantly decreased in aloe vera
gel-coated nectarines [119]. Edible coatings can reduce mass loss as they assist in reducing
the loss of water from minimally processed fruits and vegetables [120,121]. “Granada
Cultivar” minimally processed peeled peaches were divided into sliced cubes and treated
with various edible coatings, such as 0.5% xanthan gum, 0.5% Tara gum, 2% alginate, 1%
ascorbic acid, 0.25% citric acid, 1% calcium chloride, or 1% glycerol, stored for 12 days
at 4 ± 1 ◦C, showed that in all treatments, a rise in the mass loss was observed during
storage but significant reduction in the mass loss was found in coated peaches as compared
to control. Mass loss was a maximum of 34.1% in the control group on day 12 of storage.
Tara gum-coated peaches resulted in a minimum mass loss of 7.60%, while among coated
samples, xanthan gum-treated peaches showed a maximum mass loss of 10.87%. Thus,
regarding mass loss, Tara gum showed the best results [50]. Edible-coated peach fruits with
sodium alginate and methylcellulose stored at 40% RH and 15 ◦C for 24 days showed that
in an uncoated control sample after 12 days of storage, mass loss was two folds higher
than sodium alginate- and three folds higher than methylcellulose-based edible-coated
fruits [46].

8.3. Decay

Microbial decay in stone fruits brings about soft rot, brown rot, grey mold rot, and
blue or green mold rot caused by Rhizopus stolonifera, Monilinia fructicola, Botrytis cinerea,
and Penicillium expansum, respectively [83,88,122,123]. In fruits after harvesting, microbial
decay is usual because of the high availability of water. Postharvest fruits are susceptible to
microbial decay because of the exposure of the huge surface area to an external environment
with large amounts of nutrients. Various antimicrobial agents are added to edible coating
mixtures to prevent microbial decay by retarding the growth of certain fungi and bacteria
and enhancing shelf life. The microbial growth is also controlled by chitosan hydrocolloid,
a natural antimicrobial. Numerous microbes get into the food, particularly pathogens that
cause foodborne diseases, resulting in major health problems [124]. Antimicrobial coatings
are a novel approach for enhancing storage life and increasing microbial safety [125]. The
composite coating contains pectin, cinnamon essential oil, and glycerol additive in the
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peach fruit to boost antioxidant activity and antimicrobial activity [49]. Edible-coated
peaches with chitosan chlorogenic acid conjugate 5 g per liter CS-g-CGA stored for 8 days
at 20 ◦C showed less decay index than the chitosan-treated group at the same concentration
and storage condition. The 5 g per liter CS-g-CGA edible coating showed a lower DI of
about 20.6% compared with a control group and 5 g per liter CS treated, which on the final
day of storage exhibited a decay index of 31.2% [52]. Chitosan-based edible coatings have
been reported to lower postharvest decay in fruits [126]. Edible-coated peach fruits with
sodium alginate stored for 7 days at room temperature 28 ± 1 ◦C exhibit that decay index
results from Penicillium expansum were found to be significantly less during storage than
the control group. In contrast, edible-coated rhubarb-SA peaches begin to decay on day
4 of storage, 1.0% SA edible-coated peaches on day 2 of storage, and the control group
on day 1 of storage. Rhubarb-SA-coated peaches’ decay index was 65% lower than in the
control group at the end of storage. The decay index of rhubarb-SA-coated samples was
significantly lower from day 2 than that of the SA-coated group [53]. Stone fruit decay has
been reported to be reduced by edible coatings, and when active ingredients are included,
the antimicrobial effect is enhanced [42,108]. Sweet cherries coated with an edible coating
of guar gum that had been stored for 8 days at 20 ◦C and 70–75% relative humidity had
reduced decay from 43% in the control to 26% in coated cherries; only 13% of the fruit decay
were found when an extract of ginseng was added to the coating, which further reduced
the incidence of decay [108]. It is broadly reported that chitosan possesses properties of
natural antimicrobials [127,128]. Bal et al. [129] reported that plums coated with chitosan
stored at 90 ± 5% RH and 0−1 ◦C for 40 days showed that at the end of storage, the decay
rate was reduced to 5.7%, while in uncoated samples, it was 33.1%. It has been reported
that in peach fruits, edible coatings of aloe arborescens (EC) alone and in combination
with 1-Methylcyclopropene (1-MCP) and aloe arborescens (EC) (1-MCP+EC) induce total
phenol content (TPC) accumulation; as a result, chances of decay is lower, and shelf life
and storage life is enhanced [103]. The edible coating reduces the chances of fruit decay,
enhances the product’s shine, makes it look better, and decreases water loss and mechanical
and chilling damage [73]. Edible coatings inhibit microbial contamination [130] and are a
barrier against solute movement, moisture, and oxygen [131].

8.4. Chilling Injuries

Peaches are regarded as extremely sensitive fruits due to their rapid ripening and dete-
rioration at environmental temperatures. The common method for deferring deterioration
in peaches is cold storage preservation, which may lead to chilling injury [132]. The chilling
injury has been recognized as a major cause of damage, according to [133–135]; it is referred
to as a physiological disorder that, according to Lurie and Crisosto [136], is persuaded by
low temperatures but not negative ones [18]. According to these authors, chilling injury
usually occurs when the storage temperature ranges from 22 ◦C to 7.6 ◦C, resulting in
loss of flavor, dry texture, and taunting floury pulp. Numerous studies have shown that
chilling injury has been viewed as the peach industry’s major issue in recent years [137].
Symptoms of chilling injury are more likely to appear in fruit stored at a temperature
ranging from 2 ◦C to 7 ◦C. Instead, products are stored at 0 ◦C or a lower temperature that
is not above freezing [106]. Hence, to avoid such postharvest disorders during the entire
handling process, keeping the product at suitable temperatures is crucial. The susceptibility
of stone fruit cultivars to chilling injury symptoms varies, with peach cultivars being more
susceptible than nectarine cultivars [18]. The development of this phenomenon has been
combatted or slowed down by various treatments and methods, always to preserve the
organoleptic features of the peach [132]. It has been reported that cold storage also results
in chilling injury symptoms like internal breakdown, wooliness, flesh translucency, and
flesh bleeding [44,77].

Additionally, nectarines are easily subject to physiological disorders during low-
temperature storage, like woolliness and chilling injury [138]. Usually, chilling injury results
in nectarine and peaches at 8 ◦C. Chilling injury’s visible symptoms are lack of juiciness,
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flavor loss, mealiness or wooliness, and internal pulp browning [54]. In chilling injury,
long-term exposure to carbon dioxide results in off-flavor and health risks of conventional
fungicides. For future research, edible coatings have been of great interest [139]. There
is a dearth of information regarding the effects of edible coatings on the symptoms of
chilling injury in peach fruits. Navarro-Tarazaga et al. [140] stated that in plums, composite
coating of hydroxypropyl methylcellulose lowered flesh bleeding compared to a control
group when stored for 8 weeks at 1 ◦C and 85% RH. However, there is no other evidence
to our knowledge that edible coatings affected the symptoms of chilling injury in peach
fruit. From several studies, it has been concluded that edible coatings have a positive
influence on chilling injury symptoms during cold storage in postharvest horticultural
products. Various edible coatings have been developed and were found to be excellent,
such as galactomannan-carnauba wax, resulting in guavas resistant to chilling injury stored
at 11 ◦C [141], and in orange fruits, aloe vera gel in combination with salicylic acid reduces
symptoms of chilling injury at 4 ◦C [142].

9. Conclusions and Prospects

Edible coatings, an eco-friendly alternative to plastic packaging, are gaining traction in
the food processing sector. These coatings, often polysaccharide-based, create a protective
layer on fresh produce, extending shelf life by inhibiting oxygen, carbon dioxide, and
water penetration. The addition of lipids enhances moisture barrier properties, while
antioxidants and antimicrobial agents further improve functionality. This technology
shows promise in significantly reducing postharvest losses and preserving the quality and
safety of food, particularly in extending the shelf life of peach fruit. Edible coatings, a
“green technology”, show significant potential in enhancing the postharvest management
of peach fruit. While laboratory studies indicate positive impacts, there is a crucial gap
in understanding how these coatings perform on a commercial scale. Current research
emphasizes the need for realistic, large-scale trials to evaluate the commercial viability
of edible-coated peaches. Bridging this gap is essential to unlock the full potential of
these coatings and address the intense need for natural, sustainable, and cost-effective
postharvest preservation methods in the peach industry. Incorporating active ingredients in
edible coatings alters their properties, necessitating further research on their impact on shelf
life and mechanical and functional aspects. Fruit–coating interactions require attention to
avoid undesirable compounds. Key aims include emphasizing nanotechnology, exploring
cost-effective base alternatives, and developing labor-efficient methods. Future research
should prioritize tailor-made edible coatings that are versatile across products, enhancing
functional properties and shelf life. Addressing gaps in available information, future
research seeks new, valuable coating applications with improved sensory and functional
attributes. Future experiments ought to concentrate primarily on the degree of technological
readiness of edible coating applications in peach fruit. When evaluating the performance
of edible coatings on a commercial scale, the effectiveness of various application methods
should be taken into account, as well as handling practices, costs, and the sustainability of
edible coating as alternative postharvest technology. The worldwide peach fruit industry
may benefit from adopting this scientific tool for edible coating technology.
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