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Abstract: Enzyme inactivation is crucial for enhancing the shelf life of lightly milled rice (LMR), yet
the impact of diverse superheated steam (SS) treatment conditions on lipolytic enzyme efficiency,
physicochemical properties, and volatile profiles of LMR remains unclear. This study investigated
varying SS conditions, employing temperatures of 120 ◦C, 140 ◦C, and 160 ◦C and exposure times of 2,
4, 6, and 8 min. The research aimed to discern the influence of these conditions on enzyme activities,
physicochemical characteristics, and quality attributes of LMR. Results indicated a significant rise
in the inactivation rate with increased treatment temperature or duration, achieving a notable 70%
reduction in enzyme activities at 120 ◦C for 6 min. Prolonged exposure to higher temperatures
also induced pronounced fissures on LMR surfaces. Furthermore, intensive SS treatment led to a
noteworthy 5.52% reduction in the relative crystallinity of LMR starch. GC/MS analysis revealed a
consequential decrease, ranging from 44.7% to 65.7%, in undesirable odor ketones post-SS treatment.
These findings underscore the potential of SS treatment in enhancing the commercial attributes
of LMR.

Keywords: superheated steam; rice; lipolytic enzymes; GC/MS

1. Introduction

Rice (Oryza sativa) stands as a primary global crop and serves as the staple food for
over half of the world’s population. The rice crop undergoes husking to yield brown
rice, which, in turn, is further milled to eliminate the bran layer and germ, resulting in
white rice—the prevalent form of consumption. In contrast to white rice (WR), brown
rice (BR) harbors enhanced bioactive constituents, including lipids, amino acids, vitamins,
phytosterols, and phenolic compounds, attributable to the presence of bran and embryo [1].
Despite its nutritional richness, BR undergoes limited consumption as a staple due to
prolonged cooking times, firm texture, and the undesirable odor associated with rice bran.
Lightly milled rice (LMR), obtained by selectively removing the bran layer while retaining
the embryo during the milling process, has emerged as a favored rice variant. Recent
investigations demonstrate that this method of light milling substantially enhances cooking
quality compared to brown rice while preserving a significant portion of its nutritional
contents [2].

The milling process for LMR, however, may compromise the natural barrier between
enriched lipids and lipolytic enzymes in the bran layer. This leads to accelerated hydrolytic
rancidity and oxidative rancidity of lipids, causing LMR to have a shorter shelf life than BR
and WR. Consequently, the inactivation of these enzymes becomes crucial for the extended
storage of LMR. While heat treatments are commonly employed for enzyme inactivation in
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foods, traditional approaches like high-temperature air fluidization [3] and microwave [4]
and infrared [5] treatments often alter the natural physicochemical properties of foods,
resulting in nutrient loss or fissure formation, significantly impacting the commercial
quality of rice.

Superheated steam (SS) emerges as a promising heat treatment technology suitable
for various food processing applications. Its primary advantages lie in high thermal
penetration and the provision of an oxygen-free environment, leading to swift heating
and reduced oxidative degradation reactions during processing. Consequently, the utility
of SS as a heat treatment medium has garnered increasing attention. In recent years, SS
has found widespread use in enzyme inactivation to prolong the shelf life of grains. For
instance, Wang et al. [6] demonstrated that treating buckwheat grains with SS at 170 ◦C
for 5 min significantly inhibited lipase activity, suppressing hydrolytic rancidity. Similarly,
the treatment of black soybeans with SS at 190 ◦C for 40 s proved effective in inactivating
lipolytic enzymes, thereby enhancing lipid stability [7]. Numerous studies have also
reported a substantial reduction in residual enzyme activities following SS treatment [8–10].

Nevertheless, it should be noted that LMR exhibits characteristics distinct from those of
whole grains due to the absence of the protective outer layer. In the absence of the cuticular
layer, LMR is susceptible to developing undesired cracks during SS processing. However,
there is a scarcity of comprehensive studies addressing the impacts of superheated steam
(SS) treatment on lightly milled grains. The previous literature underscored the significance
of SS treatment parameters, particularly temperature and duration, in influencing enzyme
inactivation and various physicochemical properties. The primary objective of this study
is to systematically evaluate the influence of different SS treatment conditions on LMR
enzyme activities. Furthermore, the study aims to comprehensively assess the impact of
varying SS conditions on the physicochemical and quality characteristics of LMR.

2. Materials and Methods
2.1. Chemicals and Reagents

The internal standard 4-methyl-2-pentanol was supplied by Macklin Inc. (Shanghai,
China). The n-Alkane mix (C7–C40) was purchased from Sigma-Aldrich (Steinheim,
Germany). Other chemicals were procured from Sinopharm Chemical Reagent Company
(Shanghai, China).

2.2. Design of Experiment and Procedure

Vacuum-packed brown rice was procured from Dandong, Liaoning Province, and then
milled with a rice milling machine (Model JM3010, Shenzhen Mifresh Technology Com.,
Ltd., Shenzhen, China) to obtain LMR. The LMR was then subjected to treatment using SS
equipment (Model LHCCK2, Nanjing Leying Professional Kitchen Equipment Co., Ltd.,
Nanjing, China) under the following conditions: the temperature was adjusted to 120 ◦C,
140 ◦C, and 160 ◦C, and the volume flow was maintained at 0.5 m3/min. The treatment
time was varied between 0, 2, 4, 6, and 8 min. Once the SS reached the predetermined
temperature, 50 g of LMR was evenly spread in a single layer onto the sieve and fed into
the processing chamber via a conveyor belt, ensuring uniform passage of SS through the
LMR. The processed samples were then sealed and refrigerated at 4 ◦C for later use.

2.3. Observed Response in LMR
2.3.1. Moisture Content and Distribution

The moisture content of the LMR samples was analyzed using a moisture analyzer
(Model Hr83, Mettler toledo Inc., Zurich, Switzerland). The moisture distribution was
determined by a low-field nuclear magnetic resonance (LF-NMR) analyzer (NMI20-060V-I,
Niumag Electric Co., Ltd., Shanghai, China). The transverse relaxation (T2) of the samples
was measured at a resonance frequency of 22 MHz and a temperature of 32 ◦C using
the Carr–Purcell–Meiboom–Gill sequence. The optimal parameters for T2 measurement
were established as follows: spectral width (SW) = 200 KHz, repeated sampling waiting
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time (TW) = 2600 ms, spectrometer frequency (SF) = 21 MHz, radio frequency delay
(RFD) = 0.002 ms, 90◦ pulse time (P1) = 5 µs, 180◦ pulse time (P2) = 13 µs, echo time
(TE) = 0.2 ms, number of data points (TD) = 1024, number of accumulative sampling times
(NS) = 4, analog gain (RG1) = 20 db, and digital gain (DRG1) = 3.

2.3.2. Enzyme Activity

To prepare the sample for enzyme activity determination, the untreated and treated
LMR were ground into a fine powder using a high-speed universal crusher (Model LG
50, Ruian Baixin Pharmaceutical Machinery Co., Ltd., Ruian, China) and sieved through a
180 µm standard sieve.

Lipase Activity Determination

Lipase activity was determined using the method described by Rose and Pike [11].
Specifically, 2 g of LMR was extracted with 20 mL of hexane in a 50 mL screwcap tube for
30 min on a shaker (Model HYL-C, QiangLe, Wenzhou, China) at 140 rpm. The mixture
was then centrifuged (Model TGL-15B, Boyikang, Beijing, China) at 8000× g for 5 min, and
the supernatant was discarded. Next, 4 mL of 50% (w/v) olive oil in hexane was introduced
to the defatted sample, and the tube was subjected to incubation and oscillation in a water
bath at 40 ◦C for 4 h. Upon completion of the incubation, the hexane was evaporated using
a speed vac, and the resulting residue was redissolved in 10 mL of isooctane to ensure
complete extraction of free fatty acids (FFA).

The quantification of FFA followed the protocol of Goffman and Bergman [12]. Specifi-
cally, 1 mL of 3% (v/v) pyridine in 5% (w/v) aqueous cupric acetate was added to the FFA
sample, followed by shaking at 250 rpm for 5 min to facilitate color development. The tubes
were centrifuged at 5000× g for 5 min, and the resulting supernatant was collected and
analyzed for absorbance at 715 nm using a spectrophotometer (Model UV1601, Rayleigh,
Shanghai, China). Lipase activity was quantified based on an external standard curve of
oleic acid (C18:1) and expressed as U/g LMR, where 1 U/g = 1 µmol C18:1 eq/h/g LMR.

Lipoxygenase Activity Determination

Lipoxygenase activity was assayed according to the method described by Mohammadi
et al. [13]. Specifically, 1 g of LMR was mixed with 2.4 mL of potassium phosphate buffer
(pH 7.4), and the resulting slurry was centrifuged at 9000× g for 15 min to yield the
supernatant as the enzyme source. For substrate solution preparation, 0.5 mL of Tween
20 was dissolved in 10 mL of borate buffer (pH 9.0), followed by slow addition of 0.5 mL
of linoleic acid and subsequent addition of 1.3 mL of NaOH to achieve clarity. The final
volume of substrate was adjusted to 200 mL with distilled water after the addition of 90 mL
of borate buffer. The reaction mixture consisted of 2.0 mL of potassium phosphate buffer,
500 µL of the extracted enzyme, and 500 µL of substrate. The absorbance of the mixture
was measured using a spectrophotometer at 234 nm, and one unit of lipoxygenase activity
was defined as the changes in absorbance of 0.001/min under the specified experimental
conditions over a 3 min reaction period.

Peroxidase Activity Determination

The peroxidase activity was assessed following the method described by Jiang et al. [14].
In brief, 1 g of LMR was mixed with 10 mL of potassium phosphate buffer (pH 7.4) and
then centrifuged at 5000× g for 10 min. The resulting supernatant was collected as the
source of enzyme. For substrate preparation, 0.5 mL of guaiacol and 0.5 mL of hydrogen
peroxide were mixed with 99 mL of sodium phosphate buffer (pH 6.0). The reaction mixture
consisted of 1 mL of enzyme extract and 3 mL of substrate solution, and the absorbance was
recorded at 470 nm for 3 min using a spectrophotometer. One unit of peroxidase activity
was defined as the changes in absorbance of 0.001/min under the assay conditions.
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2.3.3. Grain Morphology
Color Determination

The color of untreated and SS-treated LMR grains was determined by means of a
digital chroma meter (CM-2300d, Konica Minolta, Tokyo, Japan) and expressed as L*
(lightness/darkness), a* (greenness/redness), and b* (blueness/yellowness) values. The
color difference (∆E) was calculated using the following formula:

∆E* = [(L* − L0*)2 + (a* − a0*)2 + (b* − b0*)2]1/2,

where the subscript “0” refers to the chromaticity values of the untreated LMR.

Grain Morphology Assessment

The morphological characteristics of the LMR samples were examined under a stere-
omicroscope (SZM, SUNNY, Yuyao, China) with lateral illumination. The images captured
with the stereomicroscope were exported using the MvImage software (version 1.0.5,
SUNNY, China).

2.3.4. Physicochemical Properties of LMR Starch
Starch Extraction

Starch was extracted from LMR following the method described by Li et al. [15].
Initially, 10 g of LMR was soaked in 30 mL of water at 26 ◦C for 3 h, milled, and then
centrifuged at 5000× g for 5 min. The resulting rice sediment was dried at 40 ◦C for 8 h to
obtain dried rice flour. The rice flour was subsequently mixed with 30 mL of 0.2% sodium
hydroxide solution and stirred for 12 h to facilitate the removal of protein. The rice slurry
was centrifuged at 3000× g for 15 min, and the supernatant was discarded. The sediment
was resuspended in 30 mL of water, followed by neutralization using hydrochloric acid
solution. The neutralized slurry was centrifuged, and the sediment was washed with 30 mL
of water three times. The generated starch was freeze-dried, passed through a 200-mesh
sieve, and stored for further analysis.

X-ray Diffraction (XRD)

The crystalline structure of the LMR starch was analyzed using an X-ray diffractometer
(Model D8 ADVANCE, BRUKER, Ettlingen, Germany) in accordance with the method
described by Ren et al. [16]. The XRD patterns were obtained using a voltage of 40 kV and
a current of 40 mA. The scanning range was from 5◦ to 40◦ (2θ), with a scanning speed
of 5◦/min and a step size of 0.02◦. The relative crystallinity was determined using JADE
software 5.0 (Materials Data Inc., Livermore, CA, USA).

Fourier Transform Infrared Spectroscopy (FTIR)

The Fourier transform infrared (FTIR) spectra of starch samples were collected using a
Nicolet IS50 spectrometer (Thermo Nicolet Corporation, Waltham, MA, USA) equipped
with a universal attenuated total reflectance (ATR) accessory, following the protocol de-
scribed by Huang et al. [17]. The spectra were scanned over the range of 4000 to 400 cm−1,
with a resolution of 4 cm−1 and an accumulation of 64 scans. Subsequently, all spectra
were automatically baseline-corrected using OMNIC 8.0 software. The spectra from 1200 to
800 cm−1 were deconvolved with a half-bandwidth of 19 cm−1 and an enhancement factor
of 1.9. The absorbance ratios at 1047/1022 cm−1 and 995/1022 cm−1 were calculated to
estimate the short-range ordered structure of starch.

2.3.5. Analysis of Volatile Organic Compounds (VOCs)

Volatile organic compounds were analyzed using gas chromatography–mass spec-
trometry (GC-MS) (TQ8040, Shimadzu, Japan) [18]. To this end, 5 g of samples and
20 µL of 4-methyl-2-pentanol (at a concentration of 8.02 ng/µL in hexane) as an inter-
nal standard were added into a 20 mL headspace glass vial. The DVB/CAR/PDMS
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50/30 µm fiber was used to extract volatile compounds for 30 min at 50 ◦C. The fiber was
then thermally desorbed in the GC injector port at 250 ◦C for 4 min. Separation of the
compounds was achieved using a DB-WAX column (30 m × 0.25 mm × 0.25 µm, Agilent
Technologies, Santa Clara, CA, USA) [19]. The compounds were identified by matching
the mass spectra with the NIST 17 mass spectral library and the Kovats’ retention index
(RI) (calculated from C7 to C40 alkanes) with the NIST Chemistry WebBook database
https://webbook.nist.gov/chemistry/name-ser/ (accessed on 8 March 2023). The relative
contents of volatile compounds were calculated based on the internal standard method.

2.4. Statistical Analysis

All experiments were performed in triplicate and the results were presented as
means ± standard deviations (SD). To determine significant differences, ANOVA with
Tukey’s post hoc test (p < 0.05) was performed using XLSTAT (version 19.5, Addinsoft, Paris,
France). The multivariate analysis of the volatile data matrices was imported into the on-
line platform Metaboanalyst https://www.metaboanalyst.ca/ (accessed on 23 March 2023).
The data were pretreated by applying logarithmic transformation and Pareto scaling to
achieve standardization and normalization, respectively.

3. Results and Discussion
3.1. Effects of SS Treatment on Moisture Content and Distribution

Figure 1A depicts the influence of SS processing temperature and duration on the
moisture content of LMR grains. Notably, the moisture content of SS-treated LMR exhibited
a diminishing trend with prolonged time and increased temperature, with the most rapid
reduction occurring within the initial 2 min. Specifically, when LMR grains underwent
treatment at temperatures of 120 ◦C, 140 ◦C, and 160 ◦C for 8 min, their moisture contents
decreased from 15.06% to 12.9%, 11.4%, and 10.0%, respectively. Optimal drying conditions
are pivotal in preserving the quality of rice during storage. In this investigation, under the
mild treatment condition of 120 ◦C for 4 and 6 min, the moisture content decreased from
15.06% to 13.5% and 13.2%, respectively. Typically, the recommended moisture content
threshold for cereal grains for storage falls below 13–14% [20]. Consequently, LMR grains
treated at 120 ◦C for 4 to 6 min could be stored without necessitating additional drying
or moisture adjustments. While higher temperatures accelerated the reduction in mois-
ture content (Figure 1A), moderate tempering could mitigate the degradation of bioactive
compounds and microstructure induced by prolonged high temperatures [21]. This ap-
proach could, in turn, facilitate the preservation of taste, texture, and a low proportion of
broken rice [22].

The distribution of water curves in LMR subsequent to superheated steam treat-
ment was assessed based on transverse relaxation time (T2) utilizing LF-NMR. Two dis-
tinct water distributions were identified, as depicted in Figure 1B, T21 (0.1–10 ms) and
T22 (10–1000 ms), signifying bound water and free water, respectively [21]. The percentage
of the total area within distinct T2 intervals serves as an indicator of the relative con-
centration of H protons in each interval, designated as P2 and graphically depicted in
Figure 1C. The results underscore that the summit area corresponding to T21 was the most
pronounced, indicating a superior presence of bound water content in LMR. The investi-
gation revealed that the P21 of untreated LMR constituted 92.39% of the total peak area.
Moreover, heightened SS treatment intensity resulted in a reduction in the P21 proportion,
primarily attributed to the significant decrease in T21 rather than alterations in T22. This
finding is in concordance with earlier observations suggesting that SS treatment exerts a
more pronounced effect on bound water in grains characterized by low moisture content,
with a comparatively minor impact on free water [23]. Additionally, the leftward shift in
the T21 peak implies that SS steam treatment affects water migration in LMR, particularly
concerning bound water.

https://webbook.nist.gov/chemistry/name-ser/
https://www.metaboanalyst.ca/
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Figure 1. Effect of SS treatment on moisture content (A), T2 relaxation time distribution (B), and T2
peak ratio (C) of LMR. Different letters in the (A) indicate a significant difference (p < 0.05).

3.2. Effect of SS Treatment on Lipase, LOX, and POD Inactivation

Enzymatic hydrolysis and oxidation, catalyzed by lipase and lipoxygenase, may
contribute to the occurrence of rancidity and the generation of off-flavors in cereals. This,
in turn, could shorten the shelf life of cereal products. As illustrated in Figure 2A, the
efficacy of lipase inactivation in LMR exhibited a strong correlation with the duration and
temperature of the SS processing. A reduction of 43.6% in lipase activity was observed
in samples subjected to SS treatment at 120 ◦C for 2 min. Subsequent prolongation of
the SS processing time to 4, 6, and 8 min resulted in more substantial decreases in lipase
activities, reaching 58.9%, 70.5%, and 71.7%, respectively. A similar declining pattern was
observed in SS-treated samples at 140 ◦C and 160 ◦C, with final reduction degrees of lipase
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activities reaching 77.1% and 81.8%, respectively (Figure 2A). It is evident that SS treatment
effectively inactivates lipase activity, and the inactivation rates vary considerably among
different cereals. For instance, previous research reported a lipase activity reduction of
approximately 30% in buckwheat grains after SS processing at 140 ◦C for 5 min [6]. In
contrast, our findings show an approximate 70% reduction in lipase activity for LMR under
comparable SS treatment conditions. Similar results were also documented for brown
rice [24] and black glutinous rice [25], suggesting the significantly superior heat transfer
efficiency of rice grains compared to that of wheat grains [26].
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Figure 2. Effect of SS treatment on residual activities of lipase (A), lipoxygenase (B), and peroxidase
(C) in LMR. Different letters in the figure indicate a significant difference (p < 0.05).
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Figure 2B depicts a sharp decline in LOX activity (by 81.3%) upon SS treatment,
and this reduction was comparatively more pronounced than that observed for lipase
(Figure 2A). These findings align with those of Xu et al. [27], who demonstrated that lipase
activity was less heat-labile than lipoxygenase in wheat germs. Nonetheless, Poudel and
Rose reported that the lipase activity of whole wheat flour decreased more rapidly than
that of lipoxygenase following the steam treatment of wheat grains [28]. Thus, the thermal
resistance of lipase and lipoxygenase may vary depending on the specific heat treatment
methods employed and the duration of treatment.

Peroxidase (POD) plays a pivotal role in promoting oxidative rancidity, particularly in
the case of polyunsaturated fatty acids facilitated by lipase, thereby expediting undesirable
chemical changes. Previous research has demonstrated the superior thermal stability
of POD compared to lipase and LOX, making it a commonly employed benchmark for
determining the optimal thermal treatment necessary for enzyme inactivation [29]. In the
current investigation, the activity of POD in LMR exhibited a gradual decline following
treatment at 120 ◦C for 2, 4, 6, and 8 min, resulting in reductions of 46.7%, 51.7%, 61.8%,
and 66.0%, respectively (Figure 2C). However, increasing the SS temperature to 140 ◦C did
not yield significant improvements in inactivation effectiveness. In contrast, a substantial
reduction of 86.7% in POD activity was achieved when LMR was subjected to treatment at
180 ◦C for 8 min. These findings are consistent with those reported by Guo et al. [9,28], who
demonstrated that the inactivation of POD proved more challenging than that of lipase and
lipoxygenase under comparable SS treatment conditions.

3.3. Effects of SS Treatment on Color and Surface Morphological Properties of LMR

Rice color constitutes a vital attribute influencing consumer perception and product
acceptance. The application of SS treatment induced alterations in the color parameters
of LMR, as outlined in Table 1. The control sample exhibited L* (lightness), a* (redness),
and b* (yellowness) values of 67.28, 2.10, and 24.47 (Table 1), respectively, signifying the
baseline color attributes of LMR. Initial exposure to SS at 120 ◦C for 2 min yielded no
discernible changes in LMR coloration. Notably, the most pronounced increase in L* value
(73.05) was recorded in LMR kernels subjected to SS treatment at 160 ◦C for 8 min, followed
by those treated under conditions of 160 ◦C for 6 min (72.38), 140 ◦C for 8 min (71.93),
and 120 ◦C for 8 min (71.73). This enhanced lightness can be attributed to the puffing
effect on rice kernels, leading to the exposure of the inner white starchy endosperm [30].
This phenomenon displayed a positive correlation with the degree of kernel puffing
(R = 0.76, p < 0.05). Likewise, incremental SS temperature and prolonged exposure periods
yielded slight elevations in a* values (Table 1). Given that SS processing is predominantly
an oxygen-free process (except during the initial phase), it is reasonable to surmise that
the Maillard reaction, rather than enzymatic reactions, is the principal driver behind these
color variations [31,32]. In support of this, Jittanit et al. [33] reported that condensed water
from SS could facilitate the migration of reducing sugars and amino acids, both essential
components for Maillard reactions.

The commercial value of rice is compromised when alterations in grain appearance
are identified as indicative of grain damage. Figure 3 provides a visual comparison of the
control group and SS-treated LMR under different processing conditions. The surface of
untreated LMR exhibits an intact and smooth texture, with no discernible fissures evident
after treatment at 120 ◦C (Figure 3C–F). Upon elevating the temperature to 140 ◦C, fissures
become visible on the surface after 6 min of SS exposure (Figure 3I). Notably, the application
of higher temperatures (160 ◦C) and/or longer durations (6 and 8 min) of SS treatment led
to the development of deeper fissures (Figure 3J,M,N). Previous studies have substantiated
the physically destructive effects of various thermal treatment techniques on the appearance
of cereal grains [30,34,35]. These morphological changes can be attributed to the moisture
gradient between the interior and exterior of the LMR grains [3]. Specifically, when LMR is
exposed to elevated temperatures, it experiences a phenomenon referred to as “flash-off” of
internal liquid water, leading to a rapid evaporation process and the consequent build-up
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of pressure within the grains, ultimately resulting in their expansion [36]. The resultant
high surface tension and compressive stress appear to breach the integrity of the kernel
layer, consequently giving rise to the formation of water- and heat-permeable fissures.
These fissures, in turn, facilitate mass and heat transfer during SS treatment [3,37].

Table 1. Effect of SS treatment on color change values (L*—brightness, a*—redness, b*—yellowness).

Treatment Conditions L* a* b* ∆E*

CK 67.28 ± 0.20 e 2.10 ± 0.11 a 24.47 ± 0.30 a –
120−2 69.42 ± 0.40 d 2.10 ± 0.15 a 24.30 ± 0.24 ab 2.14 ± 0.19 d

120−4 70.07 ± 0.27 cd 2.17 ± 0.11 a 23.42 ± 0.07 c 2.28 ± 0.20 d

120−6 70.28 ± 0.35 cd 2.20 ± 0.14 a 23.06 ± 0.36 cd 2.32 ± 0.16 d

120−8 71.73 ± 0.48 b 2.20 ± 0.15 a 22.69 ± 0.23 de 2.79 ± 0.28 bc

140−2 70.03 ± 0.14 cd 2.11 ± 0.16 a 23.50 ± 0.27 bc 2.31 ± 0.35 d

140−4 70.16 ± 0.27 cd 2.19 ± 0.13 a 23.28 ± 0.26 c 2.52 ± 0.34 d

140−6 71.22 ± 0.23 bc 2.23 ± 0.16 a 22.82 ± 0.16 cd 2.78 ± 0.28 cd

140−8 71.93 ± 0.21 ab 2.31 ± 0.15 a 22.28 ± 0.21 ef 3.15 ± 0.28 ab

160−2 70.16 ± 0.30 cd 2.12 ± 0.16 a 22.39 ± 0.29 de 2.95 ± 0.49 b

160−4 71.75 ± 0.32 b 2.26 ± 0.13 a 22.07 ± 0.23 ef 4.08 ± 0.54 ab

160−6 72.38 ± 0.33 ab 2.30 ± 0.12 a 22.00 ± 0.21 ef 5.37 ± 0.30 ab

160−8 73.05 ± 0.54 a 2.32 ± 0.10 a 21.83 ± 0.19 f 5.65 ± 0.32 a

Data presented as mean ± standard deviation. For each SS temperature, values with different superscript letters
in rows are significantly different (p < 0.05). L*—brightness, a*—redness, b*—yellowness. CK: untreatment LMR,
120−2: LMR treated with SS at 120 ◦C for 2 min, with comparable conditions applied to other cases.
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Figure 3. Surface morphology of untreated and SS-treated LMR at different temperatures and
durations. An intact and smooth texture of LMR was still maintained upon SS treatment at
120 ◦C for 6 min (E). (A): CK (untreatment LMR), (B): a diagram of complete and incomplete fissures,
(C–N): LMR treated with SS at 120–160 ◦C for 2–8 min.

3.4. Effects of SS Treatment on Starch Structure
3.4.1. Long-Range Ordered Structure of Starch

The utility of X-ray diffraction becomes evident in its ability to identify the densely
packed helical structures, denoting crystalline formations within starch granules. Char-
acterized by regular three-dimensional geometrical patterns, these structures enable the
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assessment of both the relative crystallinity and the long-range structure of starch [38].
Figure 4A and Table 2 present the X-ray diffractograms and relative crystallinity data,
respectively, for starch samples derived from SS-processed LMR. The untreated samples
exhibited the conventional A-type crystalline pattern observed in starches, featuring two
broad single peaks at 15◦ and 23◦ (2θ) and dual peaks at 17◦ and 18◦ (2θ) [39]. Remarkably,
SS treatment induced no significant alterations in the diffraction pattern, suggesting that
the crystal form of LMR starch remained unchanged. In contrast to untreated LMR starch,
the distinct peak proximate to 20◦ in SS-treated LMR starch progressively increased in
prominence with elevated SS temperature and prolonged treatment duration (Figure 4A).
This distinctive pattern represents a classic V-type diffraction, indicative of potential inter-
actions between starch molecules and polar organic substances during the heat treatment
process. This suggests the formation of complexes such as amylose–lipid complexes [40].

Foods 2024, 13, x FOR PEER REVIEW 11 of 18 
 

 

120−6 33.29 ± 0.44 b 0.73 ± 0.01 ab 0.73 ± 0.02 c 

120−8 33.19 ± 0.45 b 0.72 ± 0.01 ab 0.74 ± 0.01 bc 

140−2 33.32 ± 0.24 b 0.72 ± 0.02 ab 0.73 ± 0.02 c 

140−4 33.10 ± 0.77 b 0.72 ± 0.01 ab 0.75 ± 0.01 ab 

140−6 33.05 ± 0.52 b 0.72 ± 0.01 ab 0.74 ± 0.01 bc 

140−8 32.98 ± 0.31 b 0.72 ± 0.02 ab 0.74 ± 0.02 bc 

160−2 33.08 ± 0.56 b 0.72 ± 0.01 ab 0.74 ± 0.01 bc 

160−4 32.92 ± 0.34 b 0.72 ± 0.01 ab 0.76 ± 0.01 ab 

160−6 32.88 ± 0.40 b 0.72 ± 0.01 ab 0.75 ± 0.01 ab 

160−8 32.87 ± 0.59 b 0.71 ± 0.02 b 0.77 ± 0.01 a 

Data presented as mean ± standard deviation. For each SS temperature, values with different super-

script letters in rows are significantly different (p < 0.05). CK: untreatment LMR, 120−2: LMR treated 

with SS at 120 °C for 2min, with comparable conditions applied to other cases. 

 

Figure 4. The XRD diffraction patterns (A) and FTIR spectra (B) of LMR starch samples treated with 

SS. CK: untreatment LMR, 120−2: LMR treated with SS at 120 °C for 2min, with comparable condi-

tions applied to other cases. 

Prior investigations have reported that the moisture content of rice grains, con-

strained within the range of 11.1% to 13.8% during hot air processing, prevents starch 

gelatinization even at elevated temperatures [29,41]. Nonetheless, a noteworthy decline of 

5.52% in relative crystallinity was observed in the 160 °C-8 min SS-treated LMR starch. 

This reduction reflects a disruption in crystalline structure attributable to partial gelatini-

zation [16]. During the early phases of SS processing, an elevation in moisture content is 

anticipated due to the condensation of SS vapor on the rice grain surface [29]. This likely 

induces partial gelatinization in SS–LMR, facilitated by the conjunction of initial conden-

sation and elevated temperatures. Subsequent to this initial phase, a continual reduction 

in LMR moisture content renders starch gelatinization no longer feasible under the evolv-

ing conditions. 

3.4.2. Short-Range Ordered Structure of Starch 

Fourier transform infrared spectroscopy (FTIR) has proven instrumental in charac-

terizing the extent of short-range ordered structures in starch, as evidenced by recent work 

[42]. The deconvoluted FTIR spectra of the LMR starches, depicted in Figure 4B, reveal 

specific absorbances at 1047 cm−1 and 995 cm−1 that correlate with the ordered structure 

and crystalline region of starch, while the absorption peak at 1022 cm−1 is indicative of the 

disordered and amorphous region of starch. Consequently, the ratios of 1047/1022 cm−1 

and 995/1022 cm−1 are commonly employed to assess alterations in the degree of short-

range molecular order and the double helix, respectively [43]. The results presented in 

A B

1200 1100 1000 900 800

9951047
1022

160−8

160−6

160−4

160−2

140−8

140−6

140−4

140−2

120−8

120−6

120−4

120−2

 CK

R
el

a
ti

v
e 

a
b

so
rb

a
n

ce
s

Wavenumber(cm-1)

5 10 15 20 25 30 35 40

20°
23°

18°17°

160−8

160−6

160−4

160−2

140−8

140−6

140−4

140−2

120−8

120−6

120−4

120−2

 CK

D
if

fr
a
ct

io
n

 i
n

te
n

si
ty

Diffraction angle(2q)

15°

Figure 4. The XRD diffraction patterns (A) and FTIR spectra (B) of LMR starch samples treated
with SS. CK: untreatment LMR, 120−2: LMR treated with SS at 120 ◦C for 2 min, with comparable
conditions applied to other cases.

Table 2. The ratios of FTIR absorbances at 1047/1022 cm−1 and 995/1022 cm−1 and relative crys-
tallinity of LMR starch.

Sample Relative
Crystallinity (%)

The Ratio of
Absorbances at
1047/1022 cm−1

The Ratio of
Absorbances at
995/1022 cm−1

CK 34.79 ± 0.67 a 0.74 ± 0.01 a 0.73 ± 0.01 c

120−2 33.64 ± 0.26 b 0.74 ± 0.02 a 0.73 ± 0.02 c

120−4 33.36 ± 0.32 b 0.73 ± 0.03 ab 0.73 ± 0.01 c

120−6 33.29 ± 0.44 b 0.73 ± 0.01 ab 0.73 ± 0.02 c

120−8 33.19 ± 0.45 b 0.72 ± 0.01 ab 0.74 ± 0.01 bc

140−2 33.32 ± 0.24 b 0.72 ± 0.02 ab 0.73 ± 0.02 c

140−4 33.10 ± 0.77 b 0.72 ± 0.01 ab 0.75 ± 0.01 ab

140−6 33.05 ± 0.52 b 0.72 ± 0.01 ab 0.74 ± 0.01 bc

140−8 32.98 ± 0.31 b 0.72 ± 0.02 ab 0.74 ± 0.02 bc

160−2 33.08 ± 0.56 b 0.72 ± 0.01 ab 0.74 ± 0.01 bc

160−4 32.92 ± 0.34 b 0.72 ± 0.01 ab 0.76 ± 0.01 ab

160−6 32.88 ± 0.40 b 0.72 ± 0.01 ab 0.75 ± 0.01 ab

160−8 32.87 ± 0.59 b 0.71 ± 0.02 b 0.77 ± 0.01 a

Data presented as mean ± standard deviation. For each SS temperature, values with different superscript letters
in rows are significantly different (p < 0.05). CK: untreatment LMR, 120−2: LMR treated with SS at 120 ◦C for
2 min, with comparable conditions applied to other cases.
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Prior investigations have reported that the moisture content of rice grains, constrained
within the range of 11.1% to 13.8% during hot air processing, prevents starch gelatinization
even at elevated temperatures [29,41]. Nonetheless, a noteworthy decline of 5.52% in rela-
tive crystallinity was observed in the 160 ◦C-8 min SS-treated LMR starch. This reduction
reflects a disruption in crystalline structure attributable to partial gelatinization [16]. Dur-
ing the early phases of SS processing, an elevation in moisture content is anticipated due
to the condensation of SS vapor on the rice grain surface [29]. This likely induces partial
gelatinization in SS–LMR, facilitated by the conjunction of initial condensation and elevated
temperatures. Subsequent to this initial phase, a continual reduction in LMR moisture
content renders starch gelatinization no longer feasible under the evolving conditions.

3.4.2. Short-Range Ordered Structure of Starch

Fourier transform infrared spectroscopy (FTIR) has proven instrumental in characteriz-
ing the extent of short-range ordered structures in starch, as evidenced by recent work [42].
The deconvoluted FTIR spectra of the LMR starches, depicted in Figure 4B, reveal specific
absorbances at 1047 cm−1 and 995 cm−1 that correlate with the ordered structure and
crystalline region of starch, while the absorption peak at 1022 cm−1 is indicative of the
disordered and amorphous region of starch. Consequently, the ratios of 1047/1022 cm−1

and 995/1022 cm−1 are commonly employed to assess alterations in the degree of short-
range molecular order and the double helix, respectively [43]. The results presented in
Table 2 indicate a decrease in the degree of short-range molecular order with increasing
SS temperature and treatment duration. This decline might be attributed to the partial
gelatinization of starch induced by elevated temperatures during SS treatment, leading to
a decrease in crystallinity and molecular order. A similar trend has been documented in
prior SS treatments [44].

Conversely, the degree of double helix content, denoted by the 995/1022 cm−1 ratio,
experienced an elevation subsequent to SS treatment. This occurrence is likely attributable
to the realignment of amylopectin side chains as the starch undergoes heating beyond
its glass transition temperature, resulting in the formation of a new ordered double helix
structure within amorphous regions [45]. It is crucial to highlight the consistently higher
ratio of 995/1022 cm−1 compared to 1047/1022 cm−1 across all LMR starch samples,
providing evidence that not all double helices contribute to crystal formation. The converse
trends in the values of 1047/1022 cm−1 and 995/1022 cm−1 are likely a consequence of
the disruption of hydrogen bonds connecting adjacent helices induced by SS treatment,
rather than the dissociation of the double helix structure. This inference was supported by
analogous observations outlined by Xu et al. [46].

3.5. Impact of SS Treatment on Volatile Profiles

The volatile organic compounds extracted from both untreated and SS-treated LMR
grains were subjected to analysis using HS-SPME-GC-MS. A total of 59 volatile compounds
were identified based on mass spectra data from the NIST 17 library and the Kovats
retention index (RI). These compounds encompassed 4 alkanes, 2 alkenes, 10 aldehydes,
14 alcohols, 12 ketones, 5 esters, 5 furans, and 7 compounds categorized under others
(Tables S1–S3). Following SS treatment, there was a discernible reduction in the content of
each chemical class of compounds in LMR, exhibiting variable degrees of decrease (Figure 5).
The reduction in content can be attributed to the ruptured cellular coat, facilitating the
rapid release of volatile components under high-temperature conditions [47]. Furthermore,
the reduced enzymatic activity observed in SS-treated LMR could potentially decelerate
biochemical reactions and/or oxidative degradation processes, consequently resulting in
decreased concentrations of volatile compounds.
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Figure 5. Contents of volatile compounds in LMR treated by SS under different conditions.

Alcohols constituted the predominant class of volatiles in untreated LMR, representing
34% of the total volatile compounds. Notably, alcohols such as hexanol, 1-octen-3-ol, and
nonanol, characterized by low odor thresholds, significantly contributed to the overall
flavor profile of rice [48]. Aldehydes, primarily resulting from lipid oxidation and decom-
position, played a pivotal role in the overall flavor profile [49]. Polyunsaturated fatty acids,
due to their heightened susceptibility to oxidation, yield higher concentrations of hexanal
(21.78 µg/kg) compared to nonanal (13.83 µg/kg) (Tables S1–S3), the latter primarily origi-
nating from the oxidation of oleic acid. These outcomes substantiate analogous findings
reported in the literature [7,48]. Ketones, with lower odor thresholds, typically impart
undesirable flavors to food [50]. The most abundant ketone compound, 6-Methyl-5-hepten-
2-one, exhibited a considerable reduction in content (44.7~65.7%) following SS treatment,
signifying a decrease in undesirable flavors (Tables S1–S3).

Utilizing Principal Components Analysis (PCA), distinctions among LMR samples
exposed to diverse conditions of SS treatment were visually elucidated. Figure 6A demon-
strates that the two principal components collectively explain 65.7% of the total variance. A
distinct separation is clearly observed between untreated (left) and SS-treated LMR samples
(right), accompanied by noticeable shifts among sample groups subjected to distinct SS
treatment conditions. Moreover, to further unravel the metabolic differences among these
groups, Partial Least Squares Discriminant Analysis (PLS-DA) was employed. The PLS-DA
score plot in Figure 6C demonstrates significant inter-group separations, with PC1 and PC2
collectively elucidating 65.1% of the total variance. Additionally, the Variable Importance
for the Projection (VIP) was utilized to elucidate the role of each compound in the classifica-
tion and discrimination of LMR groups. The top 10 discriminants are depicted in Figure 6D,
encompassing 5 Ketones (2-Heptanone, 2-Octanone, 2,7-Octanedione, Geranylacetone,
trans-3-Nonen-2-one), 3 Alcohols (5-Ethyl-2-nonanol, 3-Methyl-1-butanol, 1-Tetradecanol),
1 Ester (Gamma-Octalactone), and 1 Furan (2-Hexylfuran).
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Figure 6. PCA score plot (A), PCA loadings plots (B), PLS-DA score plot (C), and VIP scores (D) of
the volatile profiles of the LMR. CK: untreatment LMR, 120−2: LMR treated with SS at 120 ◦C for
2 min, with comparable conditions applied to other cases.

By integrating results from both the PCA loading plot and the PLS-DA VIP score plot,
a total of 12 distinctive compounds were identified. This compilation comprises the top
10 VIP scores and an additional 2 compounds strategically positioned in the upper right
quadrant of the PCA loading plot. The alterations in their contents are visually represented
using box plots (Figure 7). The first 10 compounds showcased a negative correlation with
the temporal extent of SS treatment, contrasting with the final two esters which exhibited a
positive correlation with SS treatment time. Esters may originate from reactions involving
naturally occurring acids and alcohols. The observed heightened levels of Diisobutyl
phthalate and Dibutyl phthalate in this study could be attributed to the facilitated synthesis
induced by the SS treatment [49]. The concentrations of 3-Methyl-1-butanol, Tetradecanol,
2-Heptanone, 2-Octanone, and Geranylacetone exhibited a diminishing trend with esca-
lating SS treatment time and temperature. This aligns with the outcomes of a study by
Yang et al. [7] on superheated-steam-treated black beans, wherein a marked reduction in
the levels of 2-heptanone and 2-octanone was observed. The application of SS in barley
cooking, as investigated by Takemitsu et al. [51], yielded analogous outcomes. Utilizing
gas chromatography–mass spectrometry for the evaluation of undesirable odors in grains
demonstrated substantial mitigation of such odors in SS-based cooking in contrast to
conventional cooking methods.
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Figure 7. Box plots of 12 characteristic compounds after SS treatment. CK: untreatment LMR, 120−2: LMR treated with SS at 120 ◦C for 2 min, with comparable
conditions applied to other cases.
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4. Conclusions

This investigation has demonstrated the efficacy of SS processing in modulating the
water content and distribution in LMR, alongside its effective deactivation of lipase, LOX,
and POD activities, thereby facilitating prolonged storage of LMR. Simultaneously, alter-
ations in the color and surface morphology of LMR kernels were observed to varying
degrees under different SS treatment conditions. Notably, the application of higher temper-
atures and/or extended durations of SS exposure resulted in the formation of noticeable
fissures. In contrast, only subtle adjustments in crystallinity were observed in response
to intensified SS treatment conditions. VOC profile analysis revealed an increase in aro-
matic esters content and a concurrent reduction in undesirable ketone odors in SS-treated
LMR. Taken together, the optimal treatment condition of SS was identified as 120 ◦C for
6 min in processing LMR, ensuring desired enzyme deactivation and enhanced commercial
attributes. Additionally, these findings might contribute to elucidating the relationship
between the physicochemical properties and quality characteristics of LMR. Moreover, they
provide essential considerations for strategically selecting optimal operational parameters
for superheated steam treatment, thereby enhancing the commercial attributes of LMR.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13020240/s1, Table S1. List of volatiles (ng/g) identified
by HS-SPME-GC/MS for the untreated LMR and SS-treated LMR under 120 ◦C. Table S2. List of
volatiles (ng/g) identified by HS-SPME-GC/MS for the untreated LMR and SS-treated LMR under
140 ◦C. Table S3. List of volatiles (ng/g) identified by HS-SPME-GC/MS for the untreated LMR and
SS-treated LMR under 160 ◦C.
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