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Abstract: Wheat bran (WB) is the primary by-product of wheat processing and contains a high
concentration of bioactive substances such as polyphenols. This study analyzed the qualitative and
quantitative components of polyphenols in wheat bran and their effects on ulcerative colitis (UC)
using the dextran sulfate sodium (DSS)-induced colitis model in mice. The potential mechanism of
wheat bran polyphenols (WBP) was also examined. Our findings indicate that the main polyphenol
constituents of WBP were phenolic acids, including vanillic acid, ferulic acid, caffeic acid, gallic
acid, and protocatechuic acid. Furthermore, WBP exerted remarkable protective effects against
experimental colitis. This was achieved by reducing the severity of colitis and improving colon
morphology. Additionally, WBP suppressed colonic inflammation via upregulation of the anti-
inflammatory cytokine IL-10 and downregulation of pro-inflammatory cytokines (TNF-α, IL-6,
IL-1β) in colon tissues. Mechanistically, WBP ameliorated DSS-induced colitis in mice by inhibiting
activation of the MAPK/NF-κB pathway. In addition, microbiome analysis results suggested that
WBP modulated the alteration of gut microbiota caused by DSS, with an enhancement in the ratio of
Firmicutes/Bacteroidetes and adjustments in the number of Helicobacter, Escherichia-Shigella, Akkermansia,
Lactobacillus, Lachnospiraceae_NK4A136_group at the genus level. To conclude, the findings showed
that WBP has excellent prospects in reducing colonic inflammation in UC mice.

Keywords: wheat bran polyphenols; ulcerative colitis; inflammation; intestinal barrier function;
gut microbiota

1. Introduction

Ulcerative colitis (UC) as a kind of inflammatory bowel disease (IBD) is character-
ized by clinical symptoms such as diarrhea, blood in the stool, weight loss, and colonic
ulcers [1,2]. If left untreated and uncontrolled, UC can progress into colon cancer [3,4]. The
pathogenesis of UC is intricate, and although its mechanisms of onset and development
have not been fully elucidated, studies have suggested that it is closely linked to the im-
mune system and intestinal microbes [5]. Currently, the primary treatments for UC involve
the use of anti-inflammatory medications and immunosuppressants [6]. However, these
drugs often come with severe side effects and adverse reactions when used long term [7].
Further studies have demonstrated that certain natural compounds, such as polyphenols,
flavonoids, and dietary fiber, have the potential to prevent and alleviate UC symptoms [8,9].

Polyphenols are a group of phytochemicals that are abundant in various plants com-
monly found in diets. They have been widely studied for their diverse bioactive effects,
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including antioxidation, anti-inflammation, and bacteriostasis, which contribute to human
health [10]. Relevant data support the notion that a diet rich in polyphenols can both
prevent and alleviate the symptoms of IBD [11,12]. Interestingly, the majority of polyphe-
nols, accounting for approximately 90% to 95%, are not assimilated by the small intestine.
Instead, they accumulate in the colon as a substrate for fermentation, are decomposed and
metabolized by intestinal microflora, and then absorbed by the human body, thus affecting
the onset and progression of IBD [13,14].

The pathogenesis of UC has been linked to dysfunctional intestinal barriers and dys-
biosis within the intestinal microbiome [15]. Activation of the mitogen activated protein
kinase (MAPK) and nuclear factor kappa-B (NF-κB) inflammatory signaling pathway has
been reported as the primary cause of intestinal barrier injury, which can mediate inflamma-
tory responses and promote inflammatory cytokine synthesis [16]. The destruction of the
intestinal barrier allows endotoxins and bacteria to invade the intestinal mucosa, leading
to intestinal inflammation, disruption of the homeostasis of the intestinal microbiota, and
its subsequent exacerbation [4,17]. In recent studies, it has demonstrated that polyphenols
possess anti-inflammatory activity, and they can reduce colon inflammation in mice by
maintaining the structural integrity of the intestinal barrier and reducing the expression
and secretion of inflammatory factors [18]. Additionally, researchers have demonstrated
that polyphenols can enhance the balance of gut microorganisms by elevating beneficial
bacteria and reducing the presence of harmful bacteria [19]. Ritchie et al. found that a
diet enriched with polyphenols from sorghum bran reversed the reduction in gut micro-
biota diversity and richness induced by DSS, and restored the Firmicutes-to-Bacteroidetes
ratio [20]. Similarly, Zhao et al. reported that the consumption of honey polyphenols could
mitigate intestinal inflammation by alleviating oxidative stress damage, downregulating
pro-inflammatory cytokines gene expression, and restoring the DSS-affected intestinal mi-
crobiota through a reduction in harmful bacteria and an increase in beneficial bacteria [21].
Importantly, some studies have shown the vital function of short-chain fatty acids (SCFAs)
in preserving intestinal homeostasis [22]. Therefore, it is worthwhile investigating whether
dietary supplementation of polyphenols can improve colitis by regulating the intestinal
microbiota’s equilibrium through SCFAs.

Wheat bran is the main by-product of white flour processing and is produced in large
quantities globally. It contains a high percentage of nutrients, including carbohydrates
(64.51%), protein (15.5%), and minerals (2.92%), as well as various bioactive substances
such as polyphenols, flavonoids, and dietary fiber [23,24]. According to Suchowilska et al.,
the polyphenol extract from wheat bran contains various phenols such as caffeic acid,
gallic acid, p-coumaric acid, chlorogenic acid, ferulic acid, and others [25]. However, the
full physiological functions of WBP have not been discovered. In this study, the primary
polyphenol components in WBP were identified by UPLC-ESI-QTOF-MS2. Additionally,
we examined the in vivo anti-inflammatory capacity of WBP and its potential mechanism of
action using the DSS-induced mouse UC model. Meanwhile, the intestinal flora and SCFAs
metabolites from the intestinal contents of mice were evaluated. Using all the collected
data, we performed a correlation analysis between these indices and the intestinal flora
with and without WBP administration. This analysis aims to enhance the understanding of
the health benefits of WBP in alleviating UC symptoms in mice.

2. Materials and Methods
2.1. Materials and Reagents

Wheat bran was supplied by the Canadian International Grains Institute
(Winnipeg, MB, Canada). Dextran sodium sulfate (DSS) (36–50 kDa) was obtained from
MP Biomedicals (Santa Ana, CA, USA).

2.2. Extraction of Polyphenols from Wheat Bran

The wheat bran was dried in an oven at 40 ◦C and crushed using a grinder (HC-350Y,
Wuyi Haina Electric Appliance, Wuyi, China). The resulting powder was then passed



Foods 2024, 13, 225 3 of 18

through a 100-mesh sieve. Next, the wheat bran powder was weighted to 100 g and
mixed with 70% methanol at a ratio of 1:20 of material to liquid. Following ultrasonication
for 45 min (50 ◦C, 800 W), the sample extraction was centrifuged at room temperature
(RT) for 10 mins (4000 rpm) to obtain the supernatant; the above operation was repeated
three times, and then the supernatant was pooled. The obtained supernatant was frozen
and then freeze-dried to produce the wheat bran polyphenol (WBP) extract, which was
stored in the refrigerator at −80 ◦C.

2.3. Composition Analysis of Wheat Bran Polyphenols

The main polyphenol component of wheat bran was identified using UPLC-ESI-Q-
TOF-MS2 (Agilent 6530 Q-TOF LC/MS, Santa Clara, CA, USA). Firstly, the WBP extract
was dissolved in a 70% methanol solution at a concentration of 10 mg/mL. After being fully
dissolved, the solution was drawn up into a syringe, filtered using a 0.22 µm polyvinyli-
dene fluoride (PVDF) membrane, and injected into a sample vial for further analysis.
Subsequently, the substances were separated using an Agilent SB-C18 column (1.8 µm,
2.1 mm × 100 mm). The mobile phases comprised 0.1% formic acid aqueous solution (A)
and pure acetonitrile (B). The gradient elution program was set as follows: 0–5 min A, 5–15%
B; 5–7 min A, 15% B; 7–12 min A, 15–20% B; 17–22 min A, 20–30% B; 22–24 min A, 30–35% B;
24–30 min A, 35–65% B; 30–33 min A, 65–95% B; 33–36 min A, 95–15% B; and 36–38 min A,
15–5% B. The temperature of the column was maintained at 35 ◦C, the flow rate was set to
0.3 mL/min, and the injection volume was 5 µL. For the MS conditions, the ESI source was
set to negative ionization mode, using full scan mode to obtain mass spectral data across
the m/z range of 50–1000. The ESI conditions were set at the following values: drying
gas temperature at 350 ◦C; drying gas flow at 10 L/min; fragment voltage at 135 eV; and
capillary voltage at 4000 V. As for the MS/MS conditions, the collision voltage was set at
15 eV, 25 eV, and 35 eV for analysis.

The quantitative analysis of WBP was carried out by HPLC-VWD (Agilent 1260 HPLC,
Santa Clara, USA) and by establishing the corresponding standard curve for phenolic acids.
In addition, the liquid chromatographic conditions were based on the method of Zhou et al.
with minor modifications [4]. The peaks were then identified by comparing the retention
time of compounds between samples and standards. Six reference standards including
ferulic acid (0.59 mg), caffeic acid (0.59 mg), p-coumaric acid (0.58 mg), protocatechuic
acid (1.14 mg), vanillic acid (0.24 mg), and gallic acid (1.13 mg) (Yuanye Bio-Technology,
Shanghai, China) were weighed and dissolved in 5 mL of 70% methanol and then diluted
with 70% methanol to required concentrations.

2.4. Animal Experiments

C57BL/6 J female mice aged 6 to 8 weeks old, were purchased from Hunan Shrek
Jingda Experimental Animal Co., Ltd. (Changsha, China), and these animals were housed
under controlled environmental conditions with a temperature of 22 ◦C, a humidity of
55 ± 0.5%, and a 12-h light/dark cycle. The whole experimental process is illustrated
in Figure 1. After one week of acclimation, mice were randomly divided into 4 groups
(n = 10 mice per group), including the control group (CON), model group (MOD), low-dose
WBP treatment group (LWB), and high-dose WBP treatment group (HWB). During the
experimental period, we measured the weight of the mice every day, and the volume of
the gavage was carried out according to the dose of 1 mL/100 g body weight (BW). WBP
solution with different concentrations (100 and 500 mg per kg BW) was given to the LWB
and HWB group, and normal saline was given to the CON and MOD group. From day
one to day seven, the mice had a normal diet and distilled water. On the 8th day, the
distilled water of the MOD group and the two WBP groups was replaced with a distilled
water solution of 2.5% DSS (w/v), and the CON group continued to drink distilled water.
Each mouse was scored with disease activity index (DAI); the criteria of DAI are shown in
Table S1. On the 15th day, mice feces were collected in the metabolic cages and fasted for
12 hours starting at 9 p.m. At 9:00 in the morning on the 16th day, the mice were anes-
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thetized and killed via cervical dissection after taking the whole blood from their eyeballs.
Then, the mice were dissected, and the colon, liver and cecum were subsequently collected.
The collected organs were washed with PBS solution, carefully blot-dried with filter paper
and preserved at −80 ◦C until further analysis. Distal colon tissue near the anal portion
was fixed with 4% paraformaldehyde for subsequent analysis. The entire blood sample
was centrifuged at 4000× g for 15 min at 4 ◦C to collect serum, which was kept frozen at
−80 ◦C until further analysis. All mice were anesthetized with isoflurane before dissec-
tion. The animal experiment was approved by Jiangxi University of Chinese Medicine
Experimental Animal Science and Technology Center (JZLLSC20220492, 29 March 2022).
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2.5. Hematoxylin and Eosin (H&E) Staining and Immunofluorescence Staining

After the colonic tissue was completely fixed with 4% paraformaldehyde, it was
embedded in paraffin and sliced into sections with a thickness of 5 µm before being
dewaxed. Then, the sections were stained using hematoxylin and eosin, and the resulting
stain observations were photographed and analyzed with an inverted microscope. The
detection of the tight junction protein (ZO-1) in colonic tissues was conducted through
immunohistochemistry [26]. The fixed colon tissue was sectioned and dewaxed, and
then the antigen repair and BSA closure were performed. Subsequently, the slices were
then incubated with the primary antibody specific for the target (ZO-1), followed by the
secondary antibody labelled with fluorescence. Finally, the sliced sections were analyzed
under a fluorescence microscope and their fluorescence intensity was measured through
ImageJ software 1.53v (National institutes of health, Bethesda, MD, USA).

2.6. Inflammatory Cytokine Measurement in the Colon

The homogenized colon tissue was centrifuged, and the supernatant after centrifu-
gation was used for detection. The levels of interleukin-6 (IL-6), tumor necrosis factor-
alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-10 (IL-10) in the colon tissue
of mice were determined by a double-antibody sandwich method employing enzyme-
linked immunosorbent assay (ELISA) kits (MEIMIAN, Yancheng, China) according to the
given instructions.

2.7. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted from colon tissues using the RNAeasy™ Animal RNA
Isolation Kit with Spin Column (Beyotime, Shanghai, China), following the protocol of
the kit. Briefly, the homogenized colon tissue was lysed and then centrifuged to take the
supernatant, and finally total RNA was collected by the centrifugal column method. Then,
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we used a cDNA reverse transcription kit to reverse-transcribe the extracted RNA into
cDNA. After that, TB Green™ Premix Ex Taq™ II (TliRNaseH Plus) (TaKaRa, Beijing, China)
was added into the cDNA and quantified using the CFX Connect™ Fluorescent quantitative
PCR detection system (BIO-RAD, Hercules, CA, USA). The related gene expression levels
were objectively calculated using 2−∆∆Ct method, while beta-actin was used as the internal
reference gene. Table S2 provides the primer sequence list of ZO-1, Claudin-1, Occludin,
MAPK p38, JNK, NF-κB p65 and IκB-α.

2.8. Determination of Content of Short-Chain Fatty Acids (SCFAs)

The extraction of short-chain fatty acids (SCFAs) was carried out according to the
previously reported method with slight adaptations [27]. Fecal samples (50 mg) were
mixed with deionized water (0.35 mL) and 10% sulfuric acid (17.5 µL) and sonicated in
an ice bath for 10 min. After allowing mixture to stand for 20 min, the supernatant was
collected by centrifugation at 10,000× g for 15 min at 4 ◦C. Then, the precipitate was mixed
with 0.35 mL of deionized water and 17.5 µL of 10% sulfuric acid; the above operation
was repeated once and the supernatant was combined. The supernatant was subsequently
filtered through a 0.22 µm microporous membrane for the follow-up gas chromatography
(GC) analysis. The gas chromatographic conditions were slightly adapted with reference to
the method reported previously. The type of gas chromatographic column was an Agilent
DB-WAX capillary column (30 m × 0.25 mm × 0.25 µm), and the temperature procedure
was the same as the method of Guo et al. [6]. Finally, a corresponding standard curve was
established to quantify the content of SCFAs in fecal specimens.

2.9. 16S rRNA Sequencing of Microbial Flora from the Cecal Feces

For 16S rRNA gene sequencing, the cecum content specimens were sent to Shanghai
Majorbio Bio-pharm Technology Co., Ltd. (Shanghai, China). Subsequently, the sequencing
results were analyzed via the Majorbio company’s cloud platform (www.MajorBio.com,
accessed on 25 July 2023).

2.10. Statistical Analysis

All biochemical measurements and data obtained from reverse transcription poly-
merase chain reaction (RT-PCR) were analyzed using GraphPad 9.0.0 software. Significant
differences among different groups in the 16S rRNA sequencing data were analyzed using
a Kruskal–Wallis or Wilcoxon rank sum test. For multiple comparison tests, Duncan’s
method was employed following a one-way ANOVA. SPSS software (version 19.0, SPSS,
Chicago, IL, USA) was used for data analysis of the gut microbiota correlation. All data
were presented as the mean ± standard error of the mean (SEM), with statistical significance
being defined as p < 0.05.

3. Results
3.1. The Polyphenols Composition of WBP

The UPLC-ESI-QTOF-MS2 analysis of WBP tentatively identified 10 key compounds
by combining literature reports and matching databases. These results are presented in
Table 1, with phenolic acids identified as the primary compounds in WBP. Compound 3 had
an m/z of 169.0142 for [M−H]− in the negative ion mode, with a typical fragment ion of
m/z 125.0234 [M−H−CO2]−, which was identified as gallic acid according to the literature
report [28]. Compound 4 had an m/z of 153.0183 for [M−H]− in the negative ion mode,
with a typical fragment ion of m/z 109.0291 [M−H−CO2]−, which was presumed to be
protocatechuic acid. Compound 5 exhibited an m/z of 179.0341 for [M−H]− in negative ion
mode, and its typical fragment ion was m/z 135.0443 [M−H−CO2]−, which was presumed
to be caffeic acid based on the literature [29]. Compound 6 was identified as vanillic acid
by its [M−H]− m/z 167.0321 and fragment ions at 152.0121 [M−H−CH3]− and 108.0231
[M−H−CH3−CO2]−, while compound 9 was identified as ferulic acid by its [M−H]− m/z

www.MajorBio.com
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193.0494 and fragment ions at 178.0261 [M−H−CH3]− and 149.0603 [M−H−CO2]− [30].
Their secondary mass spectra are shown in Figure S1.

Table 1. Polyphenol composition identified in WBP (wheat bran).

Number tR(min) m/z Formula Type Major
Fragment Identification

1 0.749 191.0185 C6H8O7 [M-H]−
85.0294;

111.0088;
173.0082

Citric acid

2 2.425 203.0819 C11H12N2O2 [M-H]− 116.0503;
142.0652 L-Tryptophan

3 3.141 169.0142 C7H6O5 [M-H]− 125.0234 Gallic acid
4 4.276 153.0183 C7H6O4 [M-H]− 109.0291 Protocatechuic acid
5 4.667 179.0341 C9H8O4 [M-H]− 135.0443; Caffeic acid

6 5.262 167.0321 C8H8O4 [M-H]− 108.0231;
152.0121 Vanillic acid

7 5.824 163.0388 C9H8O3 [M-H]− 119.0491; p-Coumaric acid

8 6.352 563.1381 C26H28O14 [M-H]−
353.0677;
383.0768;
473;1098

Isoschaftoside

9 6.706 193.0498 C10H10O4 [M-H]− 149.0603;
178.0261 Ferulic acid

10 9.651 579.1714 C27H32O14 [M-H]− 271.0607 Narirutin

The HPLC-VWD analysis (Figure 2) suggested that the major six phenolic com-
pounds were gallic acid (138.15 ± 0.24 µg/g), protocatechuic acid (84.09 ± 0.95 µg/g),
caffeic acid (115.02 ± 0.47 µg/g), vanillic acid (176.59 ± 1.59 µg/g), p-coumaric acid
(6.36 ± 0.15 µg/g), and ferulic acid (159.86 ± 1.11 µg/g). All of these compounds were
identified and quantified by comparing with their respective reference standards (Table 2).
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(A) The HPLC profile of WBP; (B) the HPLC profile of mixed standards: (1) gallic acid, (2) protocate-
chuic acid, (3) caffeic acid, (4) vanillic acid, (5) p-coumaric acid, (6) ferulic acid.
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Table 2. The contents of individual phenolic acid compounds in WBP extracts.

Num. Compound Molecular
Formula Standard Curve Correlation

Coefficient Content (µg/g)

1 Gallic acid C7H6O5 y = 0.0031x − 0.0072 0.9993 138.15 ± 0.24

2 Protocatechuic
acid C7H6O4 y = 0.0015x − 0.0207 0.9996 84.09 ± 0.95

3 Caffeic acid C9H8O4 y = 0.0004x − 0.0014 0.9986 115.02 ± 0.47
4 Vanillic acid C8H8O4 y = 0.0055x − 0.0051 0.9996 176.59 ± 1.59
5 p-Coumaric acid C9H8O3 y = 0.0002x − 0.0025 0.9990 6.36 ± 0.15
6 Ferulic acid C10H10O4 y = 0.0002x − 0.0024 0.9993 159.86 ± 1.11

Data are expressed as mean ± SEM of three independent samples. Each measurement procedure was performed
in triplicate.

3.2. WBP Alleviated the Symptoms of UC Induced by DSS in Mice

After administration of DSS, the general condition and the DAI of the mice were
assessed. As presented in Figure 3A, the mice in the CON group showed a gradual
increase in body weight (BW), and the increase was not significant. Conversely, the other
three groups showed a significant decrease (p < 0.01) in BW after DSS treatment according
to Figure 3B. Specifically, the weight of the MOD group, LWB group, and HWB group
decreased by 12.7%, 8.7%, and 9.0%, respectively. Notably, the rate of weight loss was
significantly reduced in both the LWB group (p < 0.01) and the HWB group (p < 0.01)
compared with the MOD group. Meanwhile, the DAI scores were significantly decreased in
the HWB group (6.33 ± 0.52, p < 0.05) and the LWB group (6.33 ± 1.03, p < 0.05) compared
to the MOD group (7.67 ± 0.21), indicating a decrease in disease severity, as shown in
Figure 3C. These results indicate that dietary intake of WBP can alleviate the symptoms of
UC caused by DSS.
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3.3. WBP Reduced the Colon Tissue Damage in Mice with Colitis

Histological analysis was performed to examine the histopathological condition of
the colon. As shown in Figure 3D,E, the mean length of the colon in the CON group was
7.29 ± 0.37 cm. The colonic length in the two dosage groups of WBP was 5.44 ± 0.26 cm
(LWB) and 5.42 ± 0.59 cm (HWB), respectively, which was significantly greater than that in
the MOD group, which measured 4.56 ± 0.19 cm (p < 0.01). H&E staining (Figure 3F) of the
distal colon showed that the colon sections of mice in the CON group showed an intact
epithelial cell surface with a clear tissue structure, and the mucosal layer and crypts were
visible. However, the intake of DSS led to the disruption of the normal colon structure,
resulting in an increased infiltration of inflammatory cells. This in turn caused extensive
surface epithelial cell erosion, mucosal damage and crypt distortion. Notably, in comparison
to the MOD group, the LWB and HWB groups exhibited a noticeable improvement in the
structure of the epithelial recess, indicating partial repair. Furthermore, the severity of
inflammation was reduced in these groups. To summarize, the administration of WBP was
found to mitigate DSS-caused colon tissue damage in mice by promoting an increase in
colon length and preserving colon tissue structure.

3.4. WBP Regulated the Levels of Inflammatory Cytokines in Colonic Tissues

The impact of WBP on the severity of colonic inflammation was investigated by
detecting the expression of inflammatory factors (TNF-α, IL-1β, IL-6, IL-10) in colonic tissue
using ELISA kits. The expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β)
in colon tissues were found to be upregulated significantly in the MOD group compared
to the CON group (p < 0.0001), as demonstrated in Figure 4A–D. After the treatment
with WBP, the expression of these three pro-inflammatory cytokines was remarkably
downregulated in both dose groups (p < 0.001). In contrast, the expression of the anti-
inflammatory cytokine IL-10 in colon tissues was significantly downregulated in the MOD
group (p < 0.001), and WBP was able to inhibit this change. However, only the high-dose
group exhibited a significant effect on the expression of IL-10 (p < 0.05). The HWB group
demonstrated a superior anti-inflammatory activity compared to the LWB group in terms
of regulating colonic inflammatory factors. In summary, WBP has the ability to alleviate
colonic inflammation in mice by regulating expression of inflammatory factors.

3.5. WBP Improved the Intestinal Barrier Function in Mice

To estimate the protective effect of WBP, the gene expressions of tight junction (TJ) pro-
teins (ZO-1, Occludin, Claudin-1) were examined. Figure 4E–G demonstrates a significant
decrease in the mRNA expression of these three TJ proteins in the MOD group (p < 0.01),
suggesting severe damage to intestinal barrier function after DSS treatment. Intragastric ad-
ministration of WBP effectively reversed this phenomenon in mice. The mRNA expression
of ZO-1 and Claudin-1 was significantly increased in both the LWB (p < 0.05) and HWB
(p < 0.01) groups, compared with the MOD group. In the immunofluorescence result of
ZO-1 protein (Figure 4H,I), the high dose of WBP (HWB) significantly enhanced the expres-
sion of ZO-1 protein (p < 0.01). In conclusion, WBP improves the intestinal barrier function
in mice by increasing TJ protein expression, especially ZO-1. Moreover, the HWB group
demonstrates a more pronounced effect in enhancing the expression level of TJ proteins
compared to the LWB group.
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indicated by different letters in each column (p < 0.05).

3.6. WBP Regulated the Conduction of NF-κB and MAPK Signaling Pathways

Figure 4B displays the expression of the mRNA level of NF-κB p65 in the control
group (CON) and the two WBP dose groups (LWB: 1.01 ± 0.03 and HWB: 0.93 ± 0.08).
Both WBP dose groups exhibited a remarkably (p < 0.01) lower mRNA expression than the
MOD group (1.59 ± 0.15). Conversely, there was a significant decrease (p < 0.001) in the
mRNA expression of IκB-α—a vital protein that regulates the NF-κB signaling pathway—in
the MOD group in comparison to the CON group. Nevertheless, after treatment with
WBP, the mRNA expression of IκB-α was significantly upregulated in both the LWB
(p < 0.01) and HWB (p < 0.001) groups (Figure 5A,B). As for the MAPK signaling pathway
(Figure 5C–E), the mRNA expression levels of p38 (p < 0.05), JNK, and ERK (p < 0.001) were
remarkably downregulated in the MOD group after treatment with DSS compared to the
CON group. However, in the LWB and HWB groups, WBP administration attenuated the
downregulation of gene expression of these three MAPK pathway-related proteins in the
MOD group. Notably, in the LWB group, the mRNA expression of ERK (p < 0.01), JNK,
and p38 (p < 0.05) was substantially higher compared to the MOD group. Additionally, the
HWB group exhibited a more significant beneficial effect on the mRNA expression of JNK
(p < 0.01), and its treatment effects on the other two proteins were consistent with the LWB
group. These findings indicate that WBP exerts its anti-inflammatory effect via modulating
the expression of related genes in pathways associated with inflammation. Furthermore, a
higher dose of WBP may yield more favorable outcomes.
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Figure 5. The mRNA expression level of inflammatory pathway-related proteins. (A,B) The mRNA
expression levels of NF-κB-related pathway proteins IκB-α and p65; (C–E) the mRNA expression
levels of MAPK-related pathway proteins JNK, ERK, and p38. Data are presented as mean ± SEM
(n = 6). Significant differences between groups are indicated by different letters in each column
(p < 0.05).

3.7. WBP Regulated the Production of SCFAs in Cecal Contents

Figure 6A–D shows that the MOD group had significantly lower levels of acetic acid
(3.98 ± 0.18 mg/g), propionic acid (0.53 ± 0.03 mg/g), butyric acid (0.39 ± 0.03 mg/g), and
valeric acid (0.17 ± 0.01 mg/g) compared to the CON group (p < 0.01). Nevertheless, the
supplementation with high doses of WBP (HWB) significantly reduced the levels of valeric
acid (p < 0.001), acetic acid, and propionic acid (p < 0.01). In the LWB group, the content of
acetic acid was significantly improved (p < 0.05). In summary, the supplementation of WBP
can help maintain proper levels of intestinal SCFAs in UC mice.
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Figure 6. Analysis for SCFAs in feces. (A) The content of acetic acid in feces; (B) the content of
propionic acid in feces; (C) the content of butyric acid in feces; (D) the content of valeric acid in feces.
Data are presented as mean ± SEM (n = 6). Significant differences are indicated by different letters
(p < 0.05).

3.8. WBP Attenuates Disturbances in the Gut Microbiota

Intestinal inflammation onset and progression are significantly influenced by dysbiosis
of the intestinal microbiota [31]. As depicted in Figure 7A,B, compared with the CON
group, the Sobs index (p < 0.001) and the Shannon index (p < 0.0001), which are connected
with the alpha diversity of intestinal microbiota, were significantly lower following DSS
treatment. WBP supplementation could significantly increase the Shannon index (p < 0.01).
In Figure 7C, the Venn diagram showed that 611 Operational Taxonomic Units (OTUs)
were identified from three groups (n = 5), of which 291 OTUs were mutual. The unique
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OTU counts were as follows: 161 in the CON group, 18 in the MOD group, and 23 in the
HWB group. Principal co-ordinates analysis (PCoA) revealed that both the MOD and HWB
groups were obviously separated from the CON group (Figure 7D).
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Figure 7. The impact of WBP on the modulation of intestinal flora composition in colitis mice induced
by DSS. (A,B) The Sobs and Shannon indices; (C) Venn diagram of common and unique OTUs among
different groups; (D) PCoA analysis of intestinal microbiota in different groups; (E) top ten microbial
genera in terms of abundance at the phylum level; (F) the abundance of differential microbiota at
the phylum level in three groups; (G) the ratio of Firmicutes/Bacteroidota in different groups. Data are
presented as mean ± SEM (n = 5). * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

At the phylum level, the intake of DSS resulted in a significant increase in the abun-
dance of Proteobacteria (p < 0.05), Campilobacterota and Verrucomicrobiota (p < 0.001), and a
reduction in the abundance of Desulfobacterota (p < 0.05), Firmicutes (p < 0.01), and Actinobac-
teriota (p < 0.001) (Figure 7E,F). The supplementation of WBP effectively suppresses these
variations induced by DSS except for the Desulfobacterota. The ratio of Firmicutes/Bacteroidota
exhibited a considerable reduction (p < 0.0001) in the MOD group when compared with the
CON group (Figure 7G). In contrast, after treatment with WBP, such a ratio was remarkably
increased (p < 0.01).

At the genus level, induction of DSS resulted in a rise in the relative abundance of
Bacteroides, Helicobacter, norank_f_Muribaculaceae, Escherichia-Shigella, Faecalibaculum, Akker-
mansia, and Enterococcus compared to the CON group, increasing from 0.23% to 9.61%,
2.08% to 13.77%, 6.61% to 9.54%, 0% to 15.19%, 0.29% to 8.46%, 0 to 4.58%, and 0.02%
to 5.69%, respectively (Figure 8A–D). Supplementation with WBP reversed the enhance-
ment in abundance of these bacterial genera except for the Bacteroides. Meanwhile, the
abundance of Desulfovibrio, Lactobacillus, Lachnospiraceae_NK4A136_group, Lachnoclostridium,
Enterorhabdus, unclassified_f_Lachnospirac, norank_f_norank_o_Clostridia_UCG-014, and no-
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rank_f_Lachnospiraceae was decreased in the MOD group. Moreover, the supplementation
of WBP could reverse these changes.
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and blue for negative, * p < 0.05, ** p < 0.01 and *** p < 0.001.

LEfSe (linear discriminant analysis effect size) analysis revealed those microbial com-
munities that significantly discriminated between different groups (p < 0.05, LDA score
(log10) > 4, Figure 8E). Among the examined groups, a total of 65 distinct taxa (from phylum
to genus levels) were identified; 12 and 16 bacterial genera were enriched in the MOD and
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HWB groups, respectively. p_Proteobacteria, c_Gamma-proteobacteria, and o_Emterobacterales
were the three most enriched bacteria in the MOD group, while o_Erysipelotrichales was
enriched in the HWB group.

To investigate the connection between gut microbiota and colitis phenotype in mice,
Spearman’s correlation analysis was employed. Figure 8F illustrates that both the Escherichia-
Shigella and the Helicobacter exhibited significant negative correlations (p < 0.05) with colon
length, IκB-α mRNA, SCFAs (acetic acid, propionate acid, and valeric acid), TJ proteins
(ZO-1, Occludin), and anti-inflammatory cytokine content (IL-10). Additionally, a sig-
nificant positive correlation was observed (p < 0.05) between their expression of mRNA
JNK, ERK, NF-κB, and p65, and their content of pro-inflammatory factors (TNF-α, IL-1β).
Interestingly, the Lactobacillus and Lachnospiraceae_NK4A136_group showed an opposite
result compared to the Escherichia-Shigella and the Helicobacter.

4. Discussion

UC is a chronic condition that causes inflammation in the bowels and disrupts the
balance of microbial in the gut. UC occurs in individuals of all age groups and poses a
global public health challenge [32]. At present, there is an urgent need for alternative
treatment methods due to side effects and high drug resistance of the medicines used to
treat colitis [33]. Therefore, more and more studies have focused on natural plant com-
pounds with multiple biological activities and minimal side effects. Polyphenols have
also gained significant attention as natural plant compounds and are considered potential
agents for treating UC. Many researchers have indicated that phenolic acids, as one of the
bioactive phytochemicals, have potent anti-inflammatory and antioxidant activities [34–36].
The results of the WBP characterization revealed that the polyphenols present in wheat
bran consisted primarily of phenolic acids, including ferulic acid, caffeic acid, gallic acid,
vanillic acid, protocatechuic acid, and p-coumaric acid. Maryam et al. found that ferulic
acid could ameliorate UC in rats by the inhibition of the LPS-TLR4-NF-κB and the NF-κB-
INOS-NO signaling pathways [37]. Meghna et al. reported that vanillic acid exerted its
anti-inflammatory activity via regulating the IKK-NF-κB pathway [38]. Zhu Lei et al. also
discovered that gallic acid exhibited protective properties against TNBS-triggered colitis
through inflammation inhibition and apoptosis stimulation via the NF-κB pathway [39].
Danuta et al. indicated that caffeic acid could regulate processes related to intestinal
inflammation [40]. Moreover, several research have found that protocatechuic acid and
p-coumaric acid possess antioxidant and anti-inflammatory properties [41,42], although
they were less abundant in WBP. Building on previous research reports and the identifica-
tion of phenolic substances in WBP, we suggest that WBP holds the potential as a palliative
intervention for UC.

The results of animal experiments showed that dietary supplementation of WBP ef-
fectively alleviated colitis symptoms induced by DSS. Additionally, staining results of
mouse colonic tissue sections demonstrated that WBP can alleviate colonic inflammation
by restoring crypt shape, reducing of inflammatory cell infiltration, and relieving damaged
colonic tissue. Damage to the intestinal barrier is strongly linked to UC, evidenced by
the reduction or even disappearance of TJ proteins, disrupted distribution, and height-
ened intestinal mucosal epithelial cell permeability. This ultimately leads to an increased
penetration of harmful bacteria and toxins in the colon, resulting in symptoms such as
diarrhea, shortened colon length, and colonic bleeding [43–45]. This study found that
both LWB and HWB could alleviate the reduced mRNA expression levels of tight junction
proteins (ZO-1, Claudin-1, and Occludin) present in the colonic tissue of mice induced
with colitis. Furthermore, immunofluorescence analysis revealed that a high dose of WBP
(HWB) significantly enhanced ZO-1 protein expression. Overall, WBP exerts a protective
impact on the colonic mucosa by preserving TJ protein expression in the colon, resulting in
symptom relief in colitis mice induced by DSS.

Previous research has indicated that overexpression of TNF-α and IL-1β may impair
the integrity of the intestinal tight junction barrier [46,47]. The release of various inflam-
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matory factors, including anti-inflammatory and pro-inflammatory factors, is regarded
as a key pathophysiological indicator of UC [48]. Clinical studies have demonstrated
that the severity of UC is determined by the imbalance of anti-inflammatory and pro-
inflammatory factors, while the overexpression of pro-inflammatory cytokines could lead
to mucosal inflammation in the intestines [49]. TNF-α plays a crucial role in promoting
intestinal epithelial mucosal injury in colitis as a pro-inflammatory factor that initiates
an immune response to harmful stimuli. In addition, TNF-α stimulates the synthesis of
the pro-inflammatory cytokines IL-6 and IL-1β, intensifying and aggravating the inflam-
matory reaction [27]. IL-10, a significant anti-inflammatory cytokine, decreases mouse
colitis through inhibiting the production of pro-inflammatory cytokine and suppressing
the inflammation in the intestines [50]. In this study, both the HWB and LWB treatments
demonstrated a significant reduction in pro-inflammatory factors (TNF-α, IL-6, and IL-1β)
in the colon tissues of colitis mice. Furthermore, these treatments increased the secretion
of anti-inflammatory factors (IL-10). Moreover, HWB had a more protective effect against
DSS-induced UC when compared to LWB.

To further investigate the mechanism of action by which WBP relieves colonic inflam-
mation, we investigated the involvement of the NF-κB and MAPK signaling pathways
to inflammation regulation. NF-κB functions as a transcription factor that forms a het-
erodimer with the p65/p50 subunit and inhibitory protein IκB within the cytoplasm [51].
Upon activation of the signaling pathway, the degradation of IκB proteins enables the
translocation of NF-κB dimers into the nucleus, thereby regulating the expression of tar-
get genes [52]. Additionally, several studies have indicated that an excess of TNF-α can
stimulate the NF-κB signaling pathway [48]. In our investigation, there was a notable
enhancement in mRNA expression of NF-κB p65, accompanied by a notable reduction in
the expression of IκB-α in colitis mice. These findings propose an activated NF-κB signal
pathway in comparison to the CON group. However, after treatment with both LWB and
HWB, the mRNA expression levels of NF-κB, p65, and IκB-α were significantly reversed,
indicating that WBP possesses the ability to hinder the stimulation of the NF-κB pathway.
MAPKs, a cluster of protein serine/threonine kinases such as ERK, JNK, and p38, have
a crucial function in the synthesis of inflammatory cytokines in mammals [53]. Various
researchers have illustrated that the MAPK signaling pathway induces the secretion and
gene expression of some pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β,
thereby intensifying the inflammatory response [27,54]. In this study, both the LWB and
HWB treatments were found to inhibit the activation of the MAPK pathway by reducing
the mRNA expression of JNK, ERK, and p38. In summary, the administration of WBP
displayed inhibitory properties on activating the NF-κB and MAPK signaling pathways,
which subsequently attenuated intestinal inflammation by mitigating the secretion and
expression of pro-inflammatory cytokines.

Numerous researchers have shown that plant polyphenols could uphold the proper
functioning of the gut barrier by interacting with the gut microbiota [55]. SCFAs, as
one of the primary beneficial metabolites of intestinal flora, have the ability to exhibit
anti-inflammatory activity and protect gut barrier integrity through interaction with G-
protein-coupled receptors such as GPR109A, GPR43, and GPR41 [56]. Furthermore, the
increase in SCFA production acidifies the intestinal environment, enhances nutrient absorp-
tion, and inhibits pathogen growth [57]. In this study, a noteworthy reduction in SCFAs
levels, such as acetic acid, propionic acid, butyric acid, and valeric acid, was noted after
administering DSS. The observations were deemed significant. However, both the LWB and
HWB groups were able to increase SCFAs content through treatment. Fernando et al. found
that Lactobacillus has been linked to the biosynthesis of acetic acid and plays a big part in
maintaining intestinal barrier function [58]. Lachnospiraceae_NK4A136_group is one of the
butyric acid producers in the gut essential in maintaining immune homeostasis [1,59,60].
After the WBP treatment, the abundance of these two genera was augmented in mice
experiencing DSS-induced colitis. Moreover, previous research has found a correlation
between UC and an imbalance of intestinal flora [3,7]. The results of 16S rRNA sequencing
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indicated that the Sobs and Shannon indices, which describe the α diversity of microflora,
were larger in the HWB group compared with the MOD group. This indicates that WBP
can regulate intestinal health by maintaining the richness and diversity of the gut micro-
biome. In addition, the PCoA results suggested that the gut microflora composition of the
HWB group shared greater similarity with that of the CON group. At the phylum level,
Firmicutes and Bacteroidetes are the two most dominant phyla, accounting for more than
60% of the entire microbiome. The Firmicutes/Bacteroidetes ratio was significantly reduced
in the MOD group and had a marked increase post the WBP intervention. Stojanov et al.
found a decreased Firmicutes/Bacteroidetes ratio in patients with IBD [61]. Flaviana et al.
found that Escherichia-Shigella intensifies intestinal inflammation by secreting IL-6 and
TNF-α [62]. Peng et al. identified Helicobacter as key bacteria in colitis [63]. Akkermansia
is a mucin-degrading bacterium of the intestinal mucosa. Zhou et al. reported that the
excessive proliferation of Akkermansia in the gut leads to the direct exposure of the intestinal
surface to harmful pathogens (virus, pathogenic bacteria, etc.) after consuming a large
amount of mucosal protein, which may induce UC [4]. Meanwhile, Zou et al. found that
Lachnospiraceae_NK4A136_group functions as a probiotic, promoting immune homeostasis
by regulating the Th17/Treg balance. Lactobacillus is a well-recognized beneficial bacterium
that is utilized for immune system regulation and the treatment of gastrointestinal disor-
ders. Numerous studies have demonstrated that supplementing with different strains of
Lactobacillus can mitigate DSS-induced colitis [64–67]. In our study, there was a notewor-
thy enhancement in the abundance of Helicobacter, Escherichia-Shigella, and Akkermansia
subsequent to DSS administration in colitis-afflicted mice, while the abundances of Lach-
nospiraceae_NK4A136_group and Lactobacillus were reduced. However, in the HWB group,
the results demonstrated that WBP could reverse these changes. In summary, the above
results demonstrate that WBP has the ability to regulate the intestinal microbiota through
augmenting the prevalence of advantageous bacteria whilst diminishing the frequency of
harmful bacteria. This modulation leads to higher levels of SCFAs, ultimately regulating
intestinal inflammation.

5. Conclusions

In conclusion, this study suggests that the WBP contains abundant phenolic acids
including ferulic acid, caffeic acid, vanillic acid, and gallic acid. The administration of
WBP reduces inflammation in the colon by inhibiting the overexpression of NF-κB and
MAPK-related inflammatory signaling pathways. Furthermore, WBP maintains the normal
function and permeability of the intestinal barrier by sustaining the integrity of the intestinal
epithelial mucosa. Our results suggest that WBP has excellent potential in combating
ulcerative colitis.
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