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Abstract: The ever-increasing world population and environmental stress are leading to surging
demand for nutrient-rich food products with cleaner labeling and improved sustainability. Plant
proteins, accordingly, are gaining enormous popularity compared with counterpart animal proteins
in the food industry. While conventional plant protein sources, such as wheat and soy, cause concerns
about their allergenicity, peas, beans, chickpeas, lentils, and other pulses are becoming important
staples owing to their agronomic and nutritional benefits. However, the utilization of pulse proteins
is still limited due to unclear pulse protein characteristics and the challenges of characterizing them
from extensively diverse varieties within pulse crops. To address these challenges, the origins
and compositions of pulse crops were first introduced, while an overarching description of pulse
protein physiochemical properties, e.g., interfacial properties, aggregation behavior, solubility, etc.,
are presented. For further enhanced functionalities, appropriate modifications (including chemical,
physical, and enzymatic treatment) are necessary. Among them, non-covalent complexation and
enzymatic strategies are especially preferable during the value-added processing of clean-label pulse
proteins for specific focus. This comprehensive review aims to provide an in-depth understanding of
the interrelationships between the composition, structure, functional characteristics, and advanced
modification strategies of pulse proteins, which is a pillar of high-performance pulse protein in future
food manufacturing.

Keywords: pulse protein; composition; structure–property relationship; functional property; physical
modification; non-covalent complexation; food application

1. Introduction

By 2050, the world’s population will exponentially increase to over 10 billion from the
current 7.9 billion, according to the World Health Organization (UNFPA, 2020). A major
challenge of food scarcity will arise from climate change, the rapid growth of the global
population, and imbalance in food production, which may inevitably lead to severe human
malnutrition. Protein-energy malnutrition (PEM) is responsible for six million deaths
worldwide annually [1]. The main source of dietary protein is highly reliant on animal-
derived products, such as muscles, eggs, dairy, and their processed products, although
livestock farming generates more pollution including sewage and greenhouse gas than
crop production [2–4]. For instance, Heller and Keoleian compared the environmental
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burdens of beef production with the plant-based meat analog from Beyond Meat and they
found that beef production results in 47–99% more energy, land, and water consumption
plus 89% more greenhouse gas emissions [5]. Similar studies by Poore and Nemecek also
confirmed that the resource consumption of plant-based dairies was significantly lower
than the real ones [6,7]. Therefore, increasing the production and consumption of plant
protein can be one of the potential solutions for addressing the challenges in sustainable
agricultural and food development.

Pulse crops have drawn increasing attention in the food industry due to their low
production cost, non-GMO status, and high yield of nutritious proteins [8]. According to
the Food and Agriculture Organization (FAO) of the United Nations in 2023, pulses, the
seeds of leguminous plants, serve 36 food and feed purposes and offer benefits to both food
security and environmental sustainability. In terms of nutritional composition, pulse seeds
contain more than 30% protein, carbohydrates including digestible and resistant starch, and
dietary fibers, as well as essential vitamins and minerals and bioactive phytochemicals [9].
For these reasons, pulses have been suggested as wholesome alternatives to animal proteins.
With their advantages of hypoallergenicity, broad acceptance, and better bioaccessibility,
pulse proteins have gained popularity in the supply chain [10]. However, pulse crops,
unlike common staple crops (e.g., soybeans), originate from a vast array of sources and
showcase a remarkable diversity of species [11,12]. As a result, pulse proteins derived from
different crops are distinguished from each other in structure, composition, and especially
in functional properties. To achieve the full potential of pulse proteins in food applications,
it is important to gain a comprehensive understanding of primary pulse crop varieties,
their geographic distribution, their production quantities, and, most notably, the specific
differentiations in protein attributes.

At present, despite extensive research in the manufacturing of pulse protein isolates
and their functions in food products, pulse protein isolates are still underused in food
processing due to their limited solubility [13–15]. The primary limiting factor is the poor
aqueous solubility of pulse protein isolates, in which the harsh isolation conditions of prepa-
ration processes including soaking, tempering, milling, and alkaline extraction followed
by isoelectric precipitation and drying can compromise protein structure and thus protein
functionalities, which largely depend on solubility [10,16,17]. Therefore, it is crucial to
seek appropriate strategies to effectively enhance the functional properties of pulse protein
isolates. Modifications of pulse protein isolates have been demonstrated in the literature by
chemical, biological, physical, or a combination of these methods as promising strategies to
enhance their functionalities as alternative protein compositions to animal-derived prod-
ucts [9,18,19]. It is well known that protein functionalities are governed by their varied
heterogeneous structures as well as the resultant physicochemical properties, i.e., amino
acid sequence, secondary/ternary structures, surface potential and charge distributions,
hydrophilic and hydrophobic characteristics, aggregation behaviors, etc. [9,19,20], which
are all tunable for appropriate food applications [20].

In this article, firstly, the origins and general compositions of pulse crops are introduced.
Then, we focused on their protein fractions, especially the relationship between protein
structures and functionalities, i.e., interfacial properties, aggregation behavior, solubility, etc.
Finally, various modification strategies to pulse proteins, mainly including chemical (cova-
lent and non-covalent), physical, and biological treatment, were systematically elucidated,
aiming to summarize the state-of-the-art modifications that have been attempted to boost
the performance and functionalities of pulse proteins in food applications.

2. Materials and Methods
2.1. Data Sources

A thorough search was conducted to gather studies investigating strategies aimed at
enhancing the functional properties of pulse proteins and broadening their applications
in the food industry. The systematic review focused on published articles in the English
language, excluding reviews, spanning the years 2010 to 2023, with a specific emphasis on
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the last three years. The databases utilized for collecting relevant articles were Web of Sci-
ence (https://webofscience.clarivate.cn/wos/alldb/basic-search, accessed on 15 July 2023)
and Elsevier (https://www.sciencedirect.com/, accessed on 15 July 2023). Additionally,
partial worldwide data on pulse proteins and protein crystal structures were obtained from
Our World in Data (https://ourworldindata.org/, accessed on 17 July 2023) and the PDB
database (http://www.rcsb.org/pdb/, accessed on 17 July 2023), respectively.

2.2. Search Strategy

The search strategy employed the following keywords: (pulse crops OR pulse protein
isolates OR pea protein OR chickpea protein OR cowpea protein OR lentils protein OR bean
proteins OR faba bean protein OR mung bean protein) AND (solubility OR water holding
capacity OR oil holding capacity OR emulsifying properties OR foaming properties OR
gelation properties OR bioactive properties) AND (chemical modification OR complexation
OR interaction OR physical modification OR biological modification) OR interaction OR
[food application]. All the initial literature records were exported in full-record format. Fol-
lowing this, through a meticulous review of the complete texts, studies deemed irrelevant
were systematically excluded. Relevance assessments were conducted by all authors, and
consensus was reached through collaborative evaluation. Ultimately, a total of 473 articles
that met the established criteria were retained for further in-depth analysis.

2.3. Software Used

Within the scope of this work, the following software applications were employed:
Origin 2023 (OriginLab, Northampton, MA, USA), PowerPoint 365 (Microsoft, Bellvue,
MA, USA), and Photoshop 2023 (Adobe Systems Incorporated, San Jose, CA, USA) for
the generation of visual representations. Data processing was conducted using Microsoft
Office 365 Excel (Microsoft, Bellvue, MA, USA).

3. Origins and Compositions of Pulse Crops

The term “pulse” is defined as the nutritional-dense edible legume crops that are
harvested solely for dry seeds, e.g., dry peas (Pisum sativum), pigeon peas (Cajanus cajan),
chickpeas (Cicer arietinum), cowpeas (Vigna unguiculata), lentils (Lens culinaris), common
beans (Phaseolus vulgaris), faba beans (Vicia faba), bambara beans (Vigna subterranea), mung
beans (Phaseolus aureus), black gram (Phaseolus mungo), moth beans (Phaseolus aconitifolius),
and velvet beans (Stizolobium spp.) [8,12]. The genera, species, and common names of some
typical pulses are systematically summarized in Table 1. According to the U.N. Food and
Agriculture Organization (FAO), the annual worldwide production quantities (from 1961 to
2020) of some pulses are depicted in Figure 1A. Over the past four decades, the production
of pulse crops experienced obvious upward trends; meanwhile, pulses have also become
the second most consumed crops, after cereals, for human diets around the world [11,12].
Dry beans, peas, and chickpeas are the most popular strains among all pulses, and their
annual production is approximately three times higher than those in 1961. Owing to the
reduced moisture contents, pulses exhibit a relatively long storage life compared to fresh
legumes and thus are widely cultivated all over the world [12]. Geographically, pulse crops
are grown in India, North America, China, and Europe, which exhibit excellent soil and
climate tolerance [11,21]. For example, beans are primarily produced in South America,
North America, Asia, and Africa (Figure 1B), while most peas are grown in Asia, Europe,
and North America (Figure 1C).

From the nutritional perspective, pulse crops contain carbohydrates, fibers, minerals,
vitamins, and other significant bioactive substances, with >30% protein as the most no-
ticeable attribute [12]. The macronutrient composition of several common pulses is listed
in Table 2 [22–29]. While carbohydrate is typically the highest content among nutrients,
protein ranks second in these pulse products. Due to their high protein content and being
non-demanding in farming conditions, pulses have been staple crops in regions where meat
protein is scarce. Except for chickpeas and lupins, all pulses are low in fat content (<5%,

https://webofscience.clarivate.cn/wos/alldb/basic-search
https://www.sciencedirect.com/
https://ourworldindata.org/
http://www.rcsb.org/pdb/
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w/w) [27]. Even so, a high unsaturated fatty acid profile in pulses has been reported [22].
Combined with the high content of dietary fibers, pulses including peas have been proven
to protect against cardiovascular disease and obesity [30]. In addition to macronutrients,
pulses are also rich in micronutrients that are beneficial. The diverse phytochemicals,
such as flavonoids, phenolics, tannins, saponins, phytates, oxalates, lectins, and enzyme
inhibitors, show antibacterial, anti-tumor, anti-ulcerative, and anti-inflammatory properties
in addition to suppressing cholesterol levels [31,32]. Furthermore, pulses are also abun-
dant in vitamins and minerals, particularly iron. For example, beans are rich in vitamin
K, carotene, and numerous forms of vitamin B, including folic acid, pantothenate while
chickpeas are abundant in riboflavin, niacin, folate, and the precursor of vitamin A [22,33].
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Figure 1. (A): The annual production quantity of pulse crops worldwide from 1961 to 2020 (FAO,
2020); (B): The distribution of bean production worldwide in 2020; (C): The distribution of pea
production worldwide in 2020 (data obtained from Our World in Data, https://ourworldindata.org/,
accessed on 17 July 2023).

To raise public awareness of the nutritional and health benefits of pulses, which
represent potential candidates to stimulate sustainable food development and global food
supply, FAO has designated 2016 as the International Year of Pulses [31,34]. Nevertheless,
protein in pulses is unarguably the primary nutritional contribution, and hence pulse
proteins are elaborated on in the next section, mainly about their primary structures
and composition.

Table 1. Generic and species names and common names of pulses [22,25].

Genus Species Common Name

Phaseolus vulgaris Common bean (Kidney, navy, great northern bean)
lunatus Lima bean (Butter bean)

coccineus Runner bean (Scarlet runner)
acutifolius Tepary bean
dumosus Year bean

Vigna angularis Adzuki bean
radiata Mung bean (Green gram bean)
mungo Black gram bean

aconitifolia Mat bean, Moth bean
unguiculata Cowpea (Black-eyed pea)
subterranea Bambara bean (Earth pea)

https://ourworldindata.org/
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Table 1. Cont.

Genus Species Common Name

Lupinus mutabilis Lupin
albus White lupin

angustifolia Blue lupin (Narrow-leafed lupin)
luteus Yellow lupin

Pisum sativum Pea
Cicer arietinum Chickpea
Lens culinaris Lentil

Cajanus cajan Pigeon pea (Red gram bean)
Lablab purpureus Lablab bean (Hyacinth bean)

Canavalia gladiate Sword bean
Psophocarpus tetragonolobus Winged bean

Cyamopsis tetragonoloba Guar bean
Mucuna pruriens Velvet bean

Macrotyloma uniflorum Horse gram bean

Table 2. Macronutrient content of several common pulses (g/100 g dry matter).

Protein Starch Dietary Fibre Fat Ash

Pea [22,25–27,35] 14–31 30–50 3–20 1–4 2.3–3.7
Chickpea

[22,24,25,27,35] 19–27 33.6–51.7 2.9–20.75 2–7 1.8–3.5

Cowpea
[24,25,27,29,35] 24–28 33.1–63.6 10.06–34 1.26–2.22 2.9–4.4

Pigeon pea
[27,35] 19.3–22.4 NR 6.4–7.25 2.74 0.04–2.13

Lentil
[22,25,27,35] 23–31 37–59 7–30.5 1–3 2.1–3.2

Lupin [22,25] 32–44 1–9 14–55 5–15 2.6–3.9
Faba bean

[22,26,28,35] 19–39 27–50 25–29.6 1.53–3.2 1.14–7.1

Mung bean
[23,24,35] 14.6–32.6 29–58 3.8–6.15 0.17–7 0.17–5.87

Common bean
[25] 17–27 31–43 18–30 1–5 3.2–5.2

4. Composition and Structure of Pulse Protein Isolates
4.1. Amino Acid Composition

The nutritional properties and functional characteristics of pulse protein isolates are
determined by their amino acid compositions and sequences (primary structure) as well as
the derived higher-level structures, i.e., secondary, tertiary, and quaternary, during their
folding and complexation. On this basis, the additional advanced structures are assembled
through dynamic bonding such as hydrogen bonds, hydrophobic contacts, electrostatic
interaction, and disulfide bonds [36]. The amino acid (AA) composition of several selected
pulse proteins is given in Table 3 [9,11,25,27,37–40]. It is notable that the contents of
essential amino acids, including lysine, leucine, aspartic acid, glutamic acid, and arginine,
are relatively high in pulse proteins. Particularly, lysine, a well-known limiting essential
AA in cereals, is abundant in pulse proteins; for example, the lysine content is about 7.7 g
per 100 g in chickpea and pea proteins [37,38]. However, according to the sequences,
pulse proteins are deficient in two essential AAs, methionine and tryptophan. Therefore,
it is viable to complement pulse with tryptophan-rich proteins such as canola protein
to offer a complementary essential AA composition [11,40]. Variations in AA profiles of
different pulse proteins are caused by their species, growth environments, and differences
in measurement methods [12,27,37]. For example, aspartic acid (Asp) and glutamic acid are
the most abundant in pea, chickpea, lentil, mung bean, lupin, and cowpea proteins, while
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the content of Asp is relatively low in faba beans. According to Tang et al., the protein
isolates from lentils, peas, and pigeon peas have a higher content of essential AAs (Leu,
Lys, Ile, Met, Phe, Val, Thr, and Try) than other pulse proteins [27]. Ge et al. found that
panda bean (Vigna umbellate (Thunb.) Ohwi et Ohashi) protein isolate presents an excellent
amino-acid composition and protein efficiency ratio [41]. Additionally, the different ratios
of hydrophilic and hydrophobic AAs greatly affect the protein secondary structure, spatial
structure, and functional properties of pulse protein isolates [21,37,42].

Table 3. Amino acid composition of pulse proteins (g/100 g dry matter) [9,11,25,27,37–40].

Amino Acid Pea Chickpea Lentil Mung
Bean Lupin Cowpea Faba Bean Pigeon

Pea

Essential AA
Isoleucine (Ile, I) 0.4–4.9 0.4–4.1 0.5–5.0 1.0–4.7 1.2–3.2 4.3–4.4 1.1–4.3 4.8
Leucine (Leu, L) 1.3–8.4 0.5–7.0 0.8–7.9 1.8–8.4 2.0–7.4 7.1–7.5 2.0–8.2 7.5
Lysine (Lys, K) 1.4–7.7 0.9–7.7 0.5–7.2 1.7–4.2 1.2–7.6 3.9–6.6 1.9 4.4

Methionine (Met, M) 0.2–3.3 0.1–1.9 0.1–2.9 0.3–1.9 0.2–0.3 1.2–1.3 0.2–0.8 1.2
Phenylalanine (Phe, F) 0.2–8.1 0.4–5.9 0.6–7.8 1.1–5.7 1.0–3.3 4.0–5.6 1.2 3.9

Threonine (Thr, T) 0.9–4.5 0.1–3.6 0.6–3.8 0.8–3.2 1.0–4.3 2.5–3.7 1.0–13.0 2.8
Tryptophan (Trp, W) 0.2–1.0 0.2–1.1 0.7–0.8 0.3–1.0 0.2–0.3 0.3–1.1 0.2–1.1 NR

Valine (Val, V) 0.4–5.2 0.4–3.8 0.7–5.3 1.2–5.2 1.1–3.5 4.6–4.9 1.2 4.7
Arginine (Arg, R) 1.2–8.7 0.5–10.3 0.9–7.8 1.7–6.3 2.8–10.9 7.3 2.6–10.3 NR
Histidine (His, H) 0.5–2.8 0.2–3.4 0.4–3.4 0.7–3.6 0.7–3.1 2.8–3.5 0.9–2.7 4.0

Non-essential AA
Alanine (Ala, A) 0.8–4.8 0.3–4.8 2.0–4.2 3.5–4.4 0.9–2.8 3.7–4.3 1.2–4.2 4.5

Aspartic acid (Asp, D) 2.1–11.9 0.6–11.4 1.1–11.3 8.4–13.5 2.8–8.4 7.8–11.9 3.1 8.2
Cystine (Cys, C) 0.4–1.6 1.3–2.3 0.0–1.0 0.8–1.8 0.3–0.6 1.0–1.8 0.4–1.9 2.2

Glutamic acid (Glu, E) 2.9–18.5 1.7–17.3 2.4–15.1 6.1–21.7 6.2–26.1 6.0–18.5 4.6–13.0 6.2
Glycine (Gly, G) 0.8–4.8 0.3–4.1 1.0–4.8 4.1–4.26 1.0–3.7 4.1–4.2 1.2–4.2 4.6
Proline (Pro, P) 0.8–4.6 0.2–4.6 0.9–3.8 2.8–4.2 1.1–4.3 2.8–3.6 1.2–3.9 3.0
Serine (Ser, S) 0.8–5.7 0.1–4.9 1.1–4.9 2.5–5.0 1.3–6.0 2.6–5.6 1.3 2.7

Tyrosine (Tyr, Y) 0.6–3.8 0.2–3.7 0.5–3.2 3.3–3.4 1.0–4.3 3.2–5.0 0.9 3.2

4.2. Protein Fractions and Structures

Based on solubility in water, saline, dilute acid or alkali, and alcohol, pulse proteins are
empirically divided into four primary fractions known as albumin, globulin, glutelin, and
prolamin, respectively [24,43]. The reported range of primary protein compositions is given
in Table 4 [23,25,39,44–47]. Pulse protein isolates are predominantly constituted by globulin
and albumin at approximately 50–80% and 10–20% of total storage proteins, respectively,
where glutelin (10%) and prolamin (less than 5%) are minor constituents. These subunit
compositions vary considerably in structures and functions [42,48], which are presented in
greater detail below.

Table 4. Osborne protein composition of pulse proteins (g/100 g dry matter).

Albumin Globulin Glutelins Prolamins

Pea [43,45] 18–25 55–65 3–4 4–5
Chickpea [44] 8–12 53–60 19–25 3–7
Lentil [39,46] 16–17 51–70 11 3–4

Mung bean [23,39] 16.3 62 13.3 0.9
Faba bean [47] 18.4–21.9 61.6–68 10.2–12.2 3.4–4.3
Cowpea [25] 4–12 58–80 10–15 1–3
Lupin [25] 9–22 44–60 6–23 a

a = Sum of glutelin and prolamin.

Albumins are small, compact globular units, ranging in molecular weight from 5 to
80 kDa, and typically composed of two polypeptide chains. They have a three-dimensional
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structure that is abundant in α-helices and a well-preserved skeleton composed of eight cys-
teine residues [9]. Protease inhibitors, lectins, amylase inhibitors, and enzymatic proteins
are common in pulses belonging to albumins [45,49]. As shown in Table 4, pea and faba
beans contain higher albumins than other pulses. Nutritionally, albumins provide a good
supply of essential amino acids (tryptophan, lysine, and threonine) and a higher percentage
of sulfur-containing amino acids (cysteine and methionine) than globulins [49,50]. How-
ever, Ghumman et al. found that albumins presented lower in vitro digestibility than
globulins when they compared the functional properties of different subunit fractions from
pulse crops [48]. Albumins also presented better foaming properties in pulses due to their
excellent aqueous solubility [48].

Globulins are the dominant protein components found in pulses and can be further
classified into main legumin (11 S) and vicilin (7 S) proteins based on their sedimentation
coefficients (S = Svedberg Unit), with minor levels of a third type known as convicilin [9,21].

Legumin is a hexameric protein with a stiff conformation and considerable quaternary
structure, with a molecular mass of 300 to 400 kDa [9,51]. It is composed of six subunit
pairs (each around 60 kDa), which interact noncovalently, and is further assembled through
two trimeric intermediates (Figure 2A). Each legumin subunit is constructed from two parts:
a heavy acidic α-chain of ~40 kDa and a light basic β-chain of ~20 kDa, connected by a
disulfide bond. This structure can dissociate when reacted with reducing agents [9,11].
According to the composition of hydrophilic and hydrophobic amino acids, the α-chain
is predominately glutamic acid and has leucine as the N-terminal amino group, while
the β-chain has more alanine, valine, and leucine and has a glycine terminal. As a result,
the hydrophilic acidic subunits are mostly exposed in aqueous solutions, while the basic
subunits are embedded in the inner hydrophobic cavity [21,37,52].
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Vicilin is an oligomeric protein with a trimeric structure that ranges in molecular mass
from 150 to 190 kDa. Each monomer is between 50 and 70 kDa and consists of three subunits
(α, β, and γ), which are linked together primarily by electrostatic forces and noncovalent
hydrophobic interactions [53]. Due to the deficiency of sulfur-containing AAs, no disulfide
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bond is present between vicilin protein molecules. Nevertheless, vicilin includes significant
amounts of arginine, lysine, aspartic acid, and glutamic acid [21,37]. As an example,
demonstrated in Figure 2B, a pea vicilin monomer can be divided along a pseudo-dyad
axis into two homologous components that share a core region and extended arms to
form N- and C-terminal domains. That central region is composed of β-barrels, while its
extended arms are comprised of α-helices. In addition, each monomer has a core region
that is established by α-helices and β-barrels extending from the core and combining with
the neighboring monomers to form a trimeric structure [53]. Despite certain similarities
between pulse vicilin, there is a large variance in mass, surface charge, and glycosylation of
proteins. For example, vicilin proteins from lentils and cowpeas are glycosylated, while
faba bean lacks carbohydrates in its structure [43,54]. Shrestha et al. identified the protein
fraction composition of lentils and yellow peas based on molecular weight estimates from
sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis [55]. They found
that soluble proteins from them were identified as legume-like and vicilin-like, whereas
vicilin-like proteins predominated in mung bean.

Convicilin, a constituent of globulin, has been found as the third minor storage protein
in pulses, in addition to legumin and vicilin [56]. A convicilin molecule is about 70 kDa and
is often found as a trimer of about 210 kDa (or 290 kDa including an N-terminal extension)
comprised of three convicilin molecules or as heteromeric trimers of convicilin and vicilin
(Figure 2C). The structure and composition of convicilin are distinct from that of both
legumin and vicilin, however; it contains sulfur-containing AAs, unlike vicilin, and a high
charge density in the N-terminal extension [9,53,57].

Glutelin and prolamin are also present in trace amounts in pulses. Glutelin con-
tains considerable quantities of methionine and cysteine, unlike globulin. The abundance
of sulfur-containing AAs facilitates the formation of disulfide bonds between protein
molecules, which promotes aggregation [58]. It was reported that the high glutelin content
in grains, such as rice, is associated with low aqueous solubility [59]. Notably, chickpeas
have a relatively high glutelin content (19–25%) among pulse crops (Table 4) and, therefore,
have been reported for relatively low protein solubility [14,60]. On the other hand, prolamin
is an alcohol-soluble protein with a high proportion of proline and glutamine, like most
cereal proteins, comprising a minor portion (less than 5%) of the total proteins in pulses [61].
Therefore, it is believed that pulses with high glutelin and prolamin concentrations have
better protein quality [25,48].

Despite the similarities in protein composition among different pulses, the functionali-
ties of pulse protein isolates are greatly affected by these slight alterations from variety and
growth environments [12,27,37]. Albumins promote the foaming characteristics of pulse
protein isolates, whereas globulin has the opposite effect [48]. Other functional features,
such as emulsification and gelation, are also significantly affected by overall protein struc-
ture. For instance, some research found that yellow pea vicilin, which has higher water
solubility and surface hydrophobicity than legumin, leads to enhanced emulsifying proper-
ties [42,62]. Additionally, it was asserted that yellow peas with high globulin contents have
better protein extractability due to their excellent solubility. Likewise, pea vicilin demon-
strates an appropriate capacity for heat gelation, unlike legumin [42,62]. Therefore, pulse
protein isolates with a high vicilin/legumin proportion can be preferable for their food
application as functional ingredients. In summary, the various structures of pulse proteins
determine their functional properties, which further influence their practical applicability
and competitiveness in the market. In the next section, the functionalities and current food
applications are discussed.

5. Functionality and Food Application of Pulse Protein Isolates

The functional properties of pulse protein isolates determine their eventual use in the
food industry and play a significant role in food nutrition, sensory, texture, and organoleptic
qualities. Among these properties, solubility, water/oil-holding capacity, emulsifying
properties, foaming, gelation, and bioactivity are the most crucial functional qualities
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and are receiving wide attention [10,21]. In many reports, these characteristics differ
greatly depending on the source and protein structure, as mentioned before, as well as the
processing conditions (pH, temperature, and ionic strength) [27,37]. An overview of these
functionalities is provided below.

5.1. Solubility

Solubility is one of the most important protein properties affecting its bioavailability
and other related functionalities, such as interfacial characteristics, digestibility, and gelling
properties [11]. The ratio of hydrophilic to hydrophobic residues and their arrangement in
AA sequences determine how soluble the protein molecule is in aqueous media. Protein
solubility is hampered by the formation of aggregates, which are brought on by hydropho-
bic interactions between protein molecules caused by hydrophobic surface patches [7,30].
In addition, pH, temperature, type, and strength of the salt ions, as well as other factors
in the solution environment, all have a significant impact on the solubility of pulse pro-
teins [33,43]. In terms of pH, proteins are least soluble at their isoelectric point due to a
zero net surface charge, which causes protein molecules to aggregate into bigger structures.
On the other hand, when the pH values are higher or lower than the protein’s isoelectric
point, proteins exert a negative or positive net charge on the solution, and the electrostatic
repulsion between charged molecules promotes the solubility of the proteins [42]. V-shaped
solubility characteristics against pH, with better solubility under extremely acidic (below
pH 3) or alkaline (above pH 9) environments and lowest solubility at the isoelectric point
(pH 4–5), have been reported for lentil, green mung bean, pigeon pea, cowpea, pea, and
chickpea protein isolates (Figure 3A) [27]. The surface charge (zeta potential) and electro-
static repulsion of pulsed proteins can be affected by ions in solution, which then impact
their solubility. It has been noted that while sulfate, hydrogen phosphate, ammonium,
and potassium salts promote ion–water interactions, thiocyanate, perchlorate, barium,
and calcium salts encourage protein–water interactions and organize the hydrated layer
surrounding the protein to stimulate solubility [12,43].
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5.2. Water/Oil Holding Capacity

The terms “water holding capacity” (WHC) and “oil holding capacity” (OHC) describe
how much water and oil, respectively, can be absorbed per gram of pulse protein. As with
solubility, the WHC and OHC of proteins also are determined by the ratio of hydrophilic to
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hydrophobic amino acids on protein particles’ surfaces [11,33,44]. These two characteristics
are crucial when evaluating the quality, texture, and mouth feel of pulse protein products.
For example, pea protein isolates (PPIs) with high WHCs were employed to stabilize the
gel structure of a dough [63], in which the absorbed water is used to prevent flour from
dissolving. Additionally, pulse protein isolates with high OHCs, such as pea, lentil, and
faba bean, are often applied in meat/fat analogs and bakery products [64,65]. In general,
protein isolates from most pulse crops present higher WHCs and OHCs than those of
flour [11,42].

5.3. Emulsifying and Foaming Properties

Pulse proteins have both emulsifying and foaming properties, which are both exten-
sively used in food. These two characteristics, like WHC and OHC, are influenced by pro-
teins’ amphiphilic nature [11,12]. An emulsion is a mixture of two immiscible liquid phases,
typically water and oil, in which one liquid is distributed inside the continuous phase of
the other. Due to their different densities and immiscibility, the two phases’ interface is
thermodynamically unstable. The applications of pulse proteins in emulsion-based foods
like milk analogs, batters, cakes, soups, and mayonnaise require their capability of forming
or retaining a stable oil/water interface. By creating an interfacial film around oil phases
diffused in an aqueous system, pulse protein isolates could function as emulsifiers, prevent-
ing structural changes like coalescence, creaming, sedimentation, or flocculation [39,62].
Two indexes are frequently used to assess the emulsifying capabilities of pulse protein
isolates: emulsifying activity (EA) and emulsifying stability (ES). EA quantifies how much
oil can be emulsified per unit of protein, while ES quantifies the emulsion’s capacity to
withstand structural changes over a predetermined period. Emulsifying qualities of the
protein isolates in various pulses and their varieties vary greatly. Tang et al. [27] compared
the EA and ES of pulse protein isolates from lentils, green mung beans, pigeon peas, cow-
peas, peas, and chickpeas. Pea proteins were found to possess the best EA and ES of 0.76
and 0.62 cm/cm (heating for 30 min), respectively. Ground peas, kidney beans, cowpeas,
lentils, and horse gram protein isolates had EAIs and ESIs ranging from 4.7 to 26.6 cm2/g
and 7.2 to 95.4 min, respectively. [48]. Electrostatic charge repulsion (which is dependent
on the surface charge distribution and pH) and the continuous phase viscosity both have
an impact on emulsifying stability. A study on mung bean protein isolates revealed that the
pulse proteins had a higher ES in acidic environments (pH 3) and a higher EA in alkaline
conditions (pH 10), with the worst emulsification properties at the isoelectric point [66].

Foaming is crucial in some specific food applications, such as milk tea, whipped
toppings, mousses, chiffon cakes, ice cream mixes, etc. [67]. Foam is a dispersion of gas
bubbles formed when air bubbles are trapped by thin liquid layers [68]. Foam generation
depends on the interfacial tension between two immiscible phases (aqueous and air),
just as emulsions, and requires an energy input (sparging, whipping, or shaking) [14,60].
Foams are thermodynamically unstable because of the large free energy present at the
gas–liquid interface, which causes them to agglomerate and become disproportionate,
thereby decreasing the interfacial area. Due to their capacity to lower surface tension
from the amphiphilic properties and create sturdy interfacial membranes through protein–
protein interplay, pulse protein isolates can stabilize the air/water interfaces of foams.
The foaming properties of pulse protein isolates are evaluated by their foaming capacity
(FC) and foam stability (FS), where FC is the ratio of the volume of the whipped foam of
the protein solution to the solution volume, and FS is the amount of time needed for the
foam to lose a specific amount of volume [27,67]. The source of protein, environmental
factors (like temperature and pH), and whipping strength all affect foaming performance.
Different pulse proteins (beans, peas, and chickpeas) exhibited greater foaming in the acidic
and alkaline pH ranges while exhibiting lower values at pH levels near the isoelectric
point [21,69]. Tang et al. [27] reported the FCs and FSs of protein isolates from different
pulses (Figure 3B) and found that mung bean protein isolates demonstrated a higher
original FC. Cowpea and chickpea protein isolates had relatively poor foaming qualities,
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while lentil, mung bean, pea, and pigeon bean protein isolates showed excellent FSs (above
0.8 mL/mL after 90 min resting) [27]. Toews and Wang also reported that chickpea protein
isolates had a 201–228 percent foaming capacity, but these percentages were noticeably
lower than those for other pulses [70]. Ge et al. reported that panda bean protein isolates
presented superior emulsifying and foaming abilities, compared to soy protein isolates and
pea protein isolates [41]. As previously expounded upon, pulse proteins exhibit discernible
variations in their foaming properties, attributable to disparities in protein composition
and structural attributes. However, a comprehensive exploration elucidating the specific
protein structures and compositions that promote improved foaming capacity and stability
is currently lacking, which is worthy of in-depth research.

5.4. Gelation Properties

Gel is a three-dimensional spatial network structure formed by the interaction between
molecules and polysaccharides, and protein combinations are the most typical gelling
composites in food products. Gel-like food products retain their unique structure and resist
flow under force, especially heating and then cooling [60,67]. Gelation controls morphology,
texture, and viscoelasticity, which affect foods’ general rheological and taste attributes. In
viscous products like mousse, soup, gels, curds, and meat substitutes, gelation is a crucial
functional characteristic of pulse protein isolates. The interaction of heat-induced denatured
protein molecules to form a three-dimensional spatial structure that encloses water, oil, and
other food matrices is the primary cause of the gelation of pulse proteins under temperature
changes [71]. The protein content needed to produce a stable gel from a liquid is defined
as the least gelling concentration (LGC), and it is used to measure the gelation properties
of pulse proteins. Therefore, proteins with lower LGC values have a better capacity to
form stable gel structures. Protein concentration, pH, ionic strength, amino acid ratio, and
interactions with other elements are just a few of the variables that affect the thickening
process of protein gels. The LGC values of protein isolates from different pulses were
measured in the range of 80 g/L (pigeon bean) to 160 g/L (mung bean) [27]. Previous
work found that proteins from cowpeas, chickpeas, and pigeon beans presented relatively
better gelation properties due to processing more ordered secondary structures such as
α-helices, β-sheets, and β-turns than the others [27]. For chickpea protein isolates, the
effects of pH, ionic strength, and ionic species were examined. The LGC value needed
to form a gel at pH 3.0 was higher (180 g/L) compared to that in neutral environments
(140 g/L) and adding 0.1 M NaCl significantly decreased the LGC value. Additionally, the
findings revealed that the gel strength for the samples containing CaCl2 was greater than
that for the samples containing NaCl at pH 3.0, meaning the type of cation has an impact
on the gelation process [37,72].

5.5. Bioactive Properties

Pulse protein isolates are widely used as food ingredients mainly due to their macronu-
trient supplementation and physicochemical functional properties. However, due to the
intensive development of the protein’s biological activity in recent years, it has caught the
increasing attention of researchers. Pulse proteins are considered to have antimicrobial
properties as well as the ability to reduce the risk of certain diseases, such as type 2 diabetes,
metabolic syndrome, and obesity [73]. Pulse proteins’ ability to interact with elements of
bacterial, fungal, or viral cells is what is thought to be responsible for their antimicrobial
activity, such as the binding of lectins with hyphae [73]. Abdel-Shafi et al. proved that the 7S
and 11S globulins from cowpea, employed in minced meats, were inhibitory to several food-
borne spoilage and pathogenic bacteria with a minimum inhibitory concentration (MIC)
of 10 to 200µg/mL [74]. In addition, pulse lectins from lentils and lablab beans exhibit
activities against some viruses, such as severe acute respiratory syndrome coronavirus-2
and influenza virus [75,76]. Meanwhile, lectins, hemagglutinins, and enzyme inhibitors in
pulse protein isolates have been demonstrated to help in reducing serum glucose levels
and alleviating obesity [73]. By decreasing peroxisome proliferator-activated receptors,
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decreasing adiposity, favorably influencing adipokines, and enhancing short-chain fatty
acid-producing microorganisms in the intestine, chickpea protein isolates may prevent
adipogenesis and raise glucose transporter-4 levels while decreasing insulin sensitivity [31].
Additionally, it has been discovered that replacing animal proteins with pulse proteins
lowers levels of apolipoprotein, non-high-density lipoprotein, and low-density lipoprotein
cholesterol, which are linked to cardiac diseases [21,77].

Indeed, additional research has revealed that the pulse protein peptides produced
by protein degradation have increased biological activity, especially in antihyperten-
sive, antioxidant, anticancer, and antidiabetic properties [78]. According to Daskaya-
Dikmen et al. [79], bioactive peptides from pulse crops inhibited the angiotensin-converting
enzyme (ACE) and significantly changed the substrate’s C-terminal peptide sequence
(Figure 4A). The growth of colorectal cancer cells in vitro was reported to be inhibited
by bioactive peptides from common beans through the loss of mitochondrial membrane
potential, depolarization of the mitochondrial membrane, and increased generation of
intracellular reactive oxygen species (Figure 4B) [78]. Moreover, bioactive peptides de-
rived from black beans showed inhibitory potential on DPP-IV, which could inactivate
incretin hormones leading to diabetes (Figure 4C) [80]. Owing to these biological activities,
an increased consumption of pulse proteins in the diet could be considered an effective
promotion of health benefits.

Foods 2023, 12, x FOR PEER REVIEW 12 of 24 
 

 

7S and 11S globulins from cowpea, employed in minced meats, were inhibitory to several 
foodborne spoilage and pathogenic bacteria with a minimum inhibitory concentration 
(MIC) of 10 to 200 µg/mL [74]. In addition, pulse lectins from lentils and lablab beans ex-
hibit activities against some viruses, such as severe acute respiratory syndrome corona-
virus-2 and influenza virus [75,76]. Meanwhile, lectins, hemagglutinins, and enzyme in-
hibitors in pulse protein isolates have been demonstrated to help in reducing serum glu-
cose levels and alleviating obesity [73]. By decreasing peroxisome proliferator-activated 
receptors, decreasing adiposity, favorably influencing adipokines, and enhancing short-
chain fatty acid-producing microorganisms in the intestine, chickpea protein isolates may 
prevent adipogenesis and raise glucose transporter-4 levels while decreasing insulin sen-
sitivity [31]. Additionally, it has been discovered that replacing animal proteins with pulse 
proteins lowers levels of apolipoprotein, non-high-density lipoprotein, and low-density 
lipoprotein cholesterol, which are linked to cardiac diseases [21,77]. 

Indeed, additional research has revealed that the pulse protein peptides produced by 
protein degradation have increased biological activity, especially in antihypertensive, an-
tioxidant, anticancer, and antidiabetic properties [78]. According to Daskaya-Dikmen et 
al. [79], bioactive peptides from pulse crops inhibited the angiotensin-converting enzyme 
(ACE) and significantly changed the substrate’s C-terminal peptide sequence (Figure 4A). 
The growth of colorectal cancer cells in vitro was reported to be inhibited by bioactive 
peptides from common beans through the loss of mitochondrial membrane potential, de-
polarization of the mitochondrial membrane, and increased generation of intracellular re-
active oxygen species (Figure 4B) [78]. Moreover, bioactive peptides derived from black 
beans showed inhibitory potential on DPP-IV, which could inactivate incretin hormones 
leading to diabetes (Figure 4C) [80]. Owing to these biological activities, an increased con-
sumption of pulse proteins in the diet could be considered an effective promotion of 
health benefits. 

 
Figure 4. Antihypertensive mechanism (A), anticancer mechanism (B), and antidiabetic mechanism 
(C) of pulse bioactive peptides [78]. 

5.6. Food Application 
Traditionally, pulse crops, as a staple food along with cereals in many parts of the 

world, were mainly consumed with simple cooking such as soaking and boiling [38]. 
Nowadays, with the advances in food processing technology and the requirement for pre-
cision health, pulse protein isolates are separated from grains and then used solely as raw 
materials or food additives in the formulated products [12,40]. Nadeeshani et al. reviewed 
the utilization of pulse protein in food and industrial applications [38]. As given in Figure 
5, various pulse protein isolates are employed in different types of food processing, such 
as animal-source food alternatives, bakery goods, snack foods, and nutritional products 
[44,45,62–64,67]. For instance, Schoute et al. [81] discovered that substituting 20% to 40% 
wheat flour for chickpea protein flour can effectively lower the production of acrylamide 
during biscuit preparation, as well as preserve the color and texture of the biscuits. In 
addition, pea peel protein was recognized as a value-added food ingredient to produce 
healthy snack crackers and dry soup [82]. Furthermore, research has explored the use of 

Figure 4. Antihypertensive mechanism (A), anticancer mechanism (B), and antidiabetic mechanism
(C) of pulse bioactive peptides [78]. Reproduced with permission from the copyright owner, published
by KLUWER ACADEMIC PUBLISHERS (DORDRECHT), 2021.

5.6. Food Application

Traditionally, pulse crops, as a staple food along with cereals in many parts of the
world, were mainly consumed with simple cooking such as soaking and boiling [38].
Nowadays, with the advances in food processing technology and the requirement for
precision health, pulse protein isolates are separated from grains and then used solely
as raw materials or food additives in the formulated products [12,40]. Nadeeshani et al.
reviewed the utilization of pulse protein in food and industrial applications [38]. As given
in Figure 5, various pulse protein isolates are employed in different types of food process-
ing, such as animal-source food alternatives, bakery goods, snack foods, and nutritional
products [44,45,62–64,67]. For instance, Schoute et al. [81] discovered that substituting
20% to 40% wheat flour for chickpea protein flour can effectively lower the production
of acrylamide during biscuit preparation, as well as preserve the color and texture of the
biscuits. In addition, pea peel protein was recognized as a value-added food ingredient to
produce healthy snack crackers and dry soup [82]. Furthermore, research has explored the
use of yellow pea and red lentil flours to create high-quality, nutritionally dense expanded
cellular snacks [83].
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Among these applications, choosing the appropriate pulse protein isolates with pro-
cessing technology in processing animal protein alternative foods, such as meat, egg, and
milk analogs, is the most discussed topic currently [22,62]. Due to the low resource con-
sumption and high nutritional benefits, replacing animal proteins with plant proteins is
considered environmentally friendly and beneficial for sustainable agriculture [77]. For
example, pea and mung bean protein isolates were used instead of milk to produce plant-
based yogurt that possessed a good flavor profile and taste quality [84]. Ramos-Diaz et al.
investigated the application of faba bean protein isolates in meat-free alternatives to minced
meat [85]. They found that plant-based substitutes for minced meat presented comparable
or higher mechanical properties than beef minced meat, which confirmed the potential
utilization of pulse protein isolates in meat analogs. In recent years, two well-known
commercialized meat substitute brands on the market, Beyond Meat, and Impossible Foods,
have gained a tremendous growth in popularity after launching whole plant-based burgers
in 2016 [38]. In food products like meat burgers, sausages, fish balls, chili, pizza toppings,
and meat sauces, pulse proteins have been frequently added to replace real meat. These
same techniques are also used in the development of egg substitutes by adding mung bean
protein isolates [86]. Moreover, these pulse-based products contain higher protein and
vitamin amounts as well as additional nutritional advantages like higher dietary fiber and
lower sodium, cholesterol, and calories over animal-based products [2,64,77].

6. Modification Strategies of Pulse Protein Isolates

Pulse protein isolates have shown great potential in various food applications, as
demonstrated in many laboratory studies [21,37]. However, commercial pulse protein
isolates are produced under harsh conditions, which usually cause protein denaturation
and poor solubility, thus creating negative impacts on the performance of other functional
properties in food products [9,42]. A multitude of studies suggests that the functional profile
of pulse protein isolates can benefit from protein structural modification (chemical, physical,
and biological methods, or others) [87,88]. Therefore, it is essential to develop technically
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and economically sustainable approaches to improve pulse proteins’ functional properties
to increase their use in food processing. An overview of protein modification techniques
and their effects on pulse proteins’ functionalities is given in the following sections.

6.1. Chemical Covalent Modifications

Chemical covalent modification is an unambiguous strategy for precisely altering
pulse protein structure to improve functional properties. Typically, chemical covalent
modifications produce tailorable functionalities by selectively incorporating functional
groups on protein side chains through reactive residues of interest. Currently, pulse protein
isolates have been reported to undergo various chemical covalent modifications, mainly
including acylation, amidation, esterification, glycation, and phosphorylation. As seen in
Figure 6, Zha et al. described the simplified reaction process of these chemical covalent
modification methods [9].
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Protein acylation is the process of adding acyl groups to protein molecules, and acety-
lation and succinylation are the two main forms that have been successfully performed on
pulse protein isolates. Shah et al. performed a hydrophobic modification of pea proteins by
using succinic anhydride, octenyl succinic anhydride, and dodecyl succinic anhydride [87].
Modified pea proteins exhibited better functional properties and performance as additives
in an eggless cake formulation. Charoensuk et al. indicated that succinylation at low
succinic anhydride addition altered mung bean protein charge and significantly improved
emulsifying properties [88]. The process of glycosylation entails the affixing of carbohydrate
moieties to lysine residues or the N-terminus of a protein, which is usually accompanied by
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the Maillard reaction. Caballero and Davidov-Pardo suggested that Maillard conjugation
could improve the emulsification properties of pea protein isolates [89]. Additionally, Zhao
et al. utilized the Maillard reaction to enhance the functionality of pea protein isolate by
covalently linking it with xylo-oligosaccharides [90]. Phosphorylation introduces a phos-
phoryl group (PO3) functional group to a specific reactive amino acid residue (-NH, -OH, or
-SH) on a protein molecule through a covalent bond, and this functionalization enhances the
hydrophilicity of proteins by increasing their negative surface charges. Liu et al. reported
the phosphorylation of pea protein isolates with improved solubility, emulsifying property,
emulsifying stability, foaming property, and oil absorption capacity, thus expanding the ap-
plication of peas in the food industry, such as fat mimics [91]. However, chemical covalent
modification approaches are still limited in scaled-up food production due to modification
costs including high consumption of chemical reagents and long reaction time, safety risks,
and clean label requirements.

6.2. Non-Covalent Complexation Modifications

Non-covalent dynamic bonds form through intermolecular forces or interactions
with substances, such as protein–protein, protein–polysaccharide, and protein–polyphenol
interactions, resulting in protein conformation changes as well as the formation of protein
complexation [92–94]. Current research highlights the potential of combining pulse proteins
with other edible components, such as polymers or small molecules, in order to construct
multicomponent molecular complexes, thus improving the quality and nutritional value of
food products [92,94–96].

Pulse proteins contain hydrophobic groups that spontaneously form hydrophobic
cavities in aqueous solutions, allowing non-covalent interactions with hydrophobic small
molecules like epigallocatechin-3-gallate (EGCG), rutin, quercetin, chlorogenic acid, and
resveratrol [93–95,97]. In a study by Hao et al., the presence of polyphenols improves the
foaming, emulsification, and in vitro digestibility of pea protein isolates [93]. Similarly,
Han et al. observed enhanced interfacial properties in PPI–EGCG complexes compared
to pea protein alone [95]. In addition to polyphenolic compounds, specific hydrophilic
small molecules, such as arginine [98], have been shown to enhance protein functionality.
Cao et al. [98] found that adding 0.2% arginine altered the PPI structure, resulting in im-
proved emulsification and a 20% increase in protein solubility. Moreover, the interaction
between pulse proteins and edible polymers can also significantly enhance functional
properties, such as solubility and emulsification [92,99,100]. For instance, carboxymethyl-
cellulose increased mung bean protein solubility from 1.69% to 43.62% due to stronger
hydrogen bonds between protein/polysaccharide complexes with water [99]. Interest-
ingly, protein–protein interactions have been highlighted for pulse protein modification
in recent research [13,15,17,101]. With pH-shifting from pH 12 to pH 7, the fabricated
pea protein–rice complex demonstrated improved solubility and enhanced nutritional
values [13]. In another study, when PPI was in a mixture with whey protein isolates, an
increase in the nutritional and functional properties of PPI was also observed by Kris-
tensen et al. [101]. Alrosan et al. improved lentil protein solubility by combining it with
quinoa proteins at pH 12 [17]. Also, Teng et al. designed a binary whole pulse protein
complex when co-assembling pea protein with chickpea protein [15]. The novel binary
protein presented superior solubility (50% higher than chickpea protein alone) due to the
interplay between unfolded chickpea protein and pea protein during pH shifting, which
enabled their resistance to acid-induced structural over-folding.

In contrast to chemical covalent modification, non-covalent complexation strategies
are typically conducted under mild reaction conditions, offering simplicity and ease of
operation. Therefore, non-covalent complexation modification to enhance pulse protein
functionality has gained significant attention from researchers and holds promise for
practical applications in the food industry.
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6.3. Physical Modifications

Novel physical processing technologies have emerged as alternatives to traditional
heat or chemical modifications for improving pulse protein functionalities, often bearing
the label of ‘clean’ and ‘additive-free’ [102,103]. Generally, physical modifications can
be categorized into thermal (such as microwave heating, radio frequency heating, ohmic
heating, and infrared heating) and non-thermal (including ultrasonication, cold plasma,
pulsed electric fields, and high hydrostatic pressure) processes [16,104]. Non-thermal
modification is garnering substantial attention due to its innovative attributes: it minimizes
damage to nutritional and sensory properties with advantages in cleanness, sustainability,
and low energy consumption [105]. The schematic of the effect of physical modification on
pulse protein conformation is shown in Figure 7 [16].
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(1) Ultrasound induces cavitation and microstreaming currents, generating high temper-
atures and pressures for pulse protein modification, altering its spatial structure to
enhance functionality. This includes heating and localized hydrodynamic shearing
of protein molecules in a solution [18]. Many studies have demonstrated that when
pulse protein, such as pea [106,107] and chickpea protein [59,108], was subjected to
ultrasound treatment, it often leads to improved solubility and superior interfacial
properties at both oil–water and gas–liquid interfaces.

(2) Cold plasma constitutes the fourth state of matter, composed mainly of charged
ions, free radicals, and electrons, which can induce protein modifications such as



Foods 2024, 13, 6 17 of 24

oxidation, cleavage, and polymerization, thus impacting protein structure [18]. Ad-
ditionally, cold plasma modification can cause carbonylation and the cleaving of
protein backbone peptide bonds. Bu et al. investigated the effect of cold plasma
treatment on the structure and functionality of pea protein [109]. It was found that
cold plasma modification increased the surface hydrophobicity of the protein and
resulted in the formation of soluble aggregates through disulfide linkages. Altered
protein secondary structures contribute to significant enhancements in gelation and
emulsification properties [109].

(3) A pulsed electric field (PEF) involves applying a strong electric field (>0.1 kV/cm)
between two electrodes to a sample for a duration from milliseconds to nanosec-
onds [16]. Structural changes in pulse-treated proteins are driven by the response
of charged chemical groups attempting to realign with the electric field through
electrochemical reactions and polarization effects [110]. Numerous studies show
that these external electrical fields can significantly alter both secondary and tertiary
protein structures [111–113]. Chen et al. investigated the impact of a PEF on pea
proteins and their binding capacity to EGCG through computer-based computational
simulations [111]. As shown in Figure 8, PEF treatment (10 kV/cm) enhanced the
binding affinity of pea protein isolates with EGCG, increasing the binding constant by
2.35 times and binding sites from 4 to 10 [111]. The number of amino acid residues
involved in hydrophobic interactions in PEF-treated pea protein increased from 5
to 13.

Foods 2023, 12, x FOR PEER REVIEW 17 of 24 
 

 

ultrasound treatment, it often leads to improved solubility and superior interfacial 
properties at both oil–water and gas–liquid interfaces. 

(2) Cold plasma constitutes the fourth state of matter, composed mainly of charged ions, 
free radicals, and electrons, which can induce protein modifications such as oxida-
tion, cleavage, and polymerization, thus impacting protein structure [18]. Addition-
ally, cold plasma modification can cause carbonylation and the cleaving of protein 
backbone peptide bonds. Bu et al. investigated the effect of cold plasma treatment on 
the structure and functionality of pea protein [109]. It was found that cold plasma 
modification increased the surface hydrophobicity of the protein and resulted in the 
formation of soluble aggregates through disulfide linkages. Altered protein second-
ary structures contribute to significant enhancements in gelation and emulsification 
properties [109]. 

(3) A pulsed electric field (PEF) involves applying a strong electric field (>0.1 kV/cm) 
between two electrodes to a sample for a duration from milliseconds to nanoseconds 
[16]. Structural changes in pulse-treated proteins are driven by the response of 
charged chemical groups attempting to realign with the electric field through elec-
trochemical reactions and polarization effects [110]. Numerous studies show that 
these external electrical fields can significantly alter both secondary and tertiary pro-
tein structures [111–113]. Chen et al. investigated the impact of a PEF on pea proteins 
and their binding capacity to EGCG through computer-based computational simula-
tions [111]. As shown in Figure 8, PEF treatment (10 kV/cm) enhanced the binding 
affinity of pea protein isolates with EGCG, increasing the binding constant by 2.35 
times and binding sites from 4 to 10 [111]. The number of amino acid residues in-
volved in hydrophobic interactions in PEF-treated pea protein increased from 5 to 13. 

 
Figure 8. The schematic of pulsed electric field modification applied to enhance EGCG-binding ca-
pacity of pea protein isolate [111]. 

(4) High pressure modifies pulse protein through compression, disrupting noncovalent 
interactions, forming new non/semi-covalent bonds, and affecting factors like hydro-
gen bonds, electrostatic interactions, hydrophobic interactions, and semi-covalent 
bonds like disulfide bonds, ultimately shaping pulse protein conformation [18]. Hall 
et al. explored the effect of high-pressure modification on the structure and function-
ality of lentil, pea, and faba bean proteins, and 4 min pressure treatment (600 MPa, 5 
°C) resulted in superior solubility, water-holding capacity, emulsifying, and foaming 

Figure 8. The schematic of pulsed electric field modification applied to enhance EGCG-binding ca-
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(4) High pressure modifies pulse protein through compression, disrupting noncovalent in-
teractions, forming new non/semi-covalent bonds, and affecting factors like hydrogen
bonds, electrostatic interactions, hydrophobic interactions, and semi-covalent bonds
like disulfide bonds, ultimately shaping pulse protein conformation [18]. Hall et al.
explored the effect of high-pressure modification on the structure and functionality
of lentil, pea, and faba bean proteins, and 4 min pressure treatment (600 MPa, 5 ◦C)
resulted in superior solubility, water-holding capacity, emulsifying, and foaming prop-
erties of pulse proteins [114]. Similarly, cowpea protein treated with high hydrostatic
pressure (400 or 600 MPa) exhibited better gelation properties [115].
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Although physical modification holds the potential for promoting the functional prop-
erties of proteins, its practical application in pulse protein processing remains constrained.
This limitation stems from the cost and complexity of physical field equipment at a large scale
for food production. Hence, a paramount priority is conducting comprehensive research
into the development of cost-effective, practical, and efficiently manufacturable physical
field equipment to address the bottleneck for industrial scale-up and commercialization.

6.4. Biological Modifications

Biological modifications of pulse proteins involve the alteration of their primary
structure, primarily targeting amino acid residues and polypeptide chains using biological
agents, including proteolytic enzymes, non-proteolytic enzymes, and microorganisms [9,18].
Biological methods are preferred in food product development for their gentle reaction
conditions, substrate specificity, and selectivity, which reduce the likelihood of adverse
reactions. As a result, biological approaches have gained increasing attention for modifying
pulse proteins.

One common method is protease hydrolysis, which involves the cleavage of specific
peptide bonds with the addition of water molecules, leading to a reduction in molecular
weight (Mw). Protease hydrolysis has been demonstrated to enhance the functional proper-
ties of pulse proteins, resulting in a more flexible and loosely structured protein. Various
proteolytic enzymes (e.g., papain, trypsin, alcalase, and neutrase) have been used in the
attempted hydrolysis [116,117]. Treated pulse proteins showed significantly improved
solubility, foaming, and emulsifying properties. These enhancements are attributed to
the increased flexibility when the protein molecular weight decreases, which allows the
molecules to have superior adsorption capabilities at oil–water or gas–liquid interfaces,
leading to an improved interface stability [118]. Additionally, Liu et al. evaluated the
antioxidant activity of mung bean protease hydrolysate through ABTS, hydroxyl scaveng-
ing, and Fe2+-chelating activity analysis and found that mung bean alcalase hydrolysate
exhibited the highest antioxidant activity, making it a promising application in the food in-
dustry [119]. Wang et al. prepared a chickpea protein hydrolysate by proteolytic hydrolysis
and found that this hydrolysate had excellent cryoprotective effects on frozen surimi [120].
The chickpea protein hydrolysate alone (4%, w/w) exhibited comparable cryoprotective
performance to that of the commercial formulation (4% sucrose and 4% sorbitol).

Microbial fermentation, a traditional modification method in food production, is
used to boost the nutritional value of protein-based foods and eliminate earthy off-flavors
associated with pulse crops [9,18]. This process also leverages protease production by
microorganisms, leading to protein hydrolysis into smaller amino acids and peptides. For
instance, Arteaga et al. [116] employed lactic fermentation with Lactobacillus plantarum to
treat pea protein isolates, resulting in reduced characteristic off-flavors and immunogenicity.
And Lactobacillus plantarum was also employed to ferment lentil flour, improving the overall
health potential of lentil protein, including bioaccessibility and antioxidant activity [121].

Additionally, non-proteolytic enzymes, such as transglutaminase (TGase), can cat-
alyze the intra- or intermolecular cross-linking of proteins through forming ε-(γ-glutamyl)
lysine (ε-(γ-Glu) Lys) isopeptide bonds, significantly enhancing the protein gelation prop-
erties [122]. Sun and Arntfield used TGase to lower the minimum gelation concentration of
pea protein from 5.5% to 3% (w/v) [123]. The resulting pea protein gel exhibited increased
gel strength and elasticity, confirmed by the increased magnitudes of both G′ and G′′

modulus. Zhan et al. reported that more pea protein was retained inside the network
under TGase treatment, leading to a denser internal structure for emulsion gel [124]. More-
over, glutaminase, another non-proteolytic enzyme, was used for protein deamidation,
converting amide groups into carboxylate groups [18]. This increases the charge density of
the protein molecule, which further reduces the isoelectric point of protein and exposes
hydrophobic regions in the protein structure. As a result, glutaminase-treated proteins
have been reported to exhibit increased solubility and improved sensory properties [125].
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7. Conclusions and Future Research Perspectives

Although many approaches have been developed and attempted to modify pulse
protein isolates to improve their functionality in food products, a deep understanding of
the composition and structure of pulse proteins is the key to further maximizing their uti-
lization, as well as finding more approachable, scalable, and economic methods to increase
their utilization. Till now, the interfacial behaviors, gelation properties, and hydration
effects of most pulse proteins, including peas, beans, chickpeas, and lentils, have been
widely reported. Meanwhile, the obtained protein powders, hydrogels, or dispersions are
playing an increasingly vital role in food formulations. It is also noteworthy that though
the clean-label nature and health benefits of pulse proteins are obvious advantages over
many other plant/animal resources, the functionalities of pulse proteins are still less com-
petitive. For example, the poor solubility of chickpea protein hinders its use as an aqueous
ingredient, and the interfacial stability of pea protein is still worth further improvement
compared with that of soybean. Thus, to enable more practical uses of pulse proteins in
foods, modification is necessary. And the diversified origins and protein structures of
pulse proteins also lead to the distinguished physicochemical properties among different
pulse protein isolates. Developing effective and efficient screening mechanisms and work-
flows is essential considering the diversity of pulse protein products. To address these
challenges, research in matching a specific protein candidate for certain food applications
can be critical in filling the gap, for example, i.e., chickpea protein for cryoprotectants,
lenticel for binders, pea protein for interfacial stabilizers, etc. Moreover, novel and green
modification strategies for pulse proteins are still highly desirable, in which non-covalent
multicomponent-based complexation, physical field-assisted modification, and enzymatic
modifications hold promise. These three aspects of modification strategies, along with
suitable applications, of pulse proteins merit further investigation and are worthy of a more
in-depth review discussion.
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