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Abstract: As the raw material for tea making, the quality of tea leaves directly affects the quality of
finished tea. The quality of fresh tea leaves is mainly assessed by manual judgment or physical and
chemical testing of the content of internal components. Physical and chemical methods are more
mature, and the test results are more accurate and objective, but traditional chemical methods for
measuring the biochemical indexes of tea leaves are time-consuming, labor-costly, complicated, and
destructive. With the rapid development of imaging and spectroscopic technology, spectroscopic
technology as an emerging technology has been widely used in rapid non-destructive testing of
the quality and safety of agricultural products. Due to the existence of spectral information with a
low signal-to-noise ratio, high information redundancy, and strong autocorrelation, scholars have
conducted a series of studies on spectral data preprocessing. The correlation between spectral data
and target data is improved by smoothing noise reduction, correction, extraction of feature bands,
and so on, to construct a stable, highly accurate estimation or discrimination model with strong
generalization ability. There have been more research papers published on spectroscopic techniques
to detect the quality of tea fresh leaves. This study summarizes the principles, analytical methods,
and applications of Hyperspectral imaging (HSI) in the nondestructive testing of the quality and
safety of fresh tea leaves for the purpose of tracking the latest research advances at home and abroad.
At the same time, the principles and applications of other spectroscopic techniques including Near-
infrared spectroscopy (NIRS), Mid-infrared spectroscopy (MIRS), Raman spectroscopy (RS), and
other spectroscopic techniques for non-destructive testing of quality and safety of fresh tea leaves
are also briefly introduced. Finally, in terms of technical obstacles and practical applications, the
challenges and development trends of spectral analysis technology in the nondestructive assessment
of tea leaf quality are examined.

Keywords: fresh tea leaves; hyperspectral imaging technology; spectroscopy; analytic method

1. Introduction

The tea tree belongs to the tea group of plants in the genus Camellias of the family
Camelliaceae. Tea tree is an important economic crop. Especially for the current stage of
China, the tea industry is an important treasure to promote China’s agricultural economic
development and rural revitalization. China has a long history of tea culture and is a large
country in terms of plantation production and consumption. According to the statistics
of the China Tea Circulation Association, from 2011 to 2022, the area of tea plantation, the
total annual output of dry gross tea, and the total annual output value of dry gross tea have
increased by 157.6%, 196.0%, and 404.2%, respectively [1]. There are more than 700 known
chemical components in tea. These include primary metabolites of proteins, sugars, fats,
and secondary metabolites in the tea tree—polyphenols, pigments, theanines, alkaloids,
aromatic substances, and saponins. They not only affect the formation of tea color, aroma,
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and flavor but also play an important role in the nutritional and health effects of tea [2].
Tea’s main uses include waking up, sleeping, relieving fever, aiding in digestion, decreasing
gas, expectoration, treating fistulas, facilitating urination, facilitating the large intestine,
decreasing miasma, clearing the head and eyes, helping with dysentery, facilitating the
small intestine, decreasing headaches, sores, stroke, and sunstroke, aiding in sobriety, and
so on [3]. Often used as an herbal remedy throughout history, tea has evolved into a popular
beverage that has tremendous economic, health, and cultural value in the marketplace.
With the spread and development of tea culture, consumers are demanding more and more
regarding the quality of tea. Nowadays, the quality of tea is mainly assessed by sensory
review, physical and chemical testing, and emerging technological testing [4].

The sensory quality of tea refers to the comprehensive effect of the many compounds
in tea, especially the substances that can be dissolved in tea broth, on the sensory stimu-
lation of the human body. It is mainly composed of appearance, color, aroma, taste, and
other factors. Shape and color are the external factors of tea quality, while aroma and
taste are the internal core quality factors of tea. The evaluation of tea quality through
the sensory review method requires the reviewer to undergo a long period of training
and a lot of experience. In addition, the review results are subject to a review of the envi-
ronment, individual sensory sensitivity differences, and other factors of interference and
influence, resulting in the review of the results possessing strong subjectivity. Physical
testing techniques mainly include the use of an electronic balance and oven to determine the
quality and moisture content of tea leaves. The observation and analysis of the phenotype
and structure of tea leaves have been carried out using a microscope [5,6]. Conventional
chemical detection techniques mainly include High-Performance Liquid Chromatography
(HPLC), Gas Chromatography (GC), Mass Spectrometry (MS), Gas Chromatography-Mass
Spectrometry (GC-MS), and the titrimetric method [7]. They are diagnostic analytical
methods to detect the content of compounds in tea at the molecular level. These are usually
used in combination with emerging techniques such as HSI, MIRS, RS, NIRS, and other
scientific techniques. Physicochemical testing techniques are more mature, with more
accurate and objective results, which are necessary for the quantitative evaluation of tea
quality. However, traditional chemical methods need to be coupled with chemical reagents
to titrate the reaction or need to be observed and analyzed with the aid of chromatographic
instruments to analyze tea broth preparation after extraction and separation [8]. This
method of measuring plant biochemical indicators is time-consuming, labor-costly, and
complicated to operate [9]. As a result, the realization and development of tea quality
monitoring has been severely constrained. In recent years, researchers have been exploring
fast and accurate techniques to monitor tea quality. RGB imaging, multispectral imaging,
HSI, nuclear magnetic resonance imaging (NMRI), NIRS, RS, electronic noses, electronic
tongues, etc. are often applied in emerging technologies to realize non-destructive and
rapid detection of tea quality.

As the raw material for tea production, the quality of tea leaves directly affects the
quality of finished tea. The ratios of polyphenols to amino acids, polysaccharides, and
caffeine content of tea leaves are one of the most important factors affecting the aroma,
nutrition, and color of finished tea, while the fiber content determines the tenderness of
tea leaves [10]. Non-destructive monitoring of the quality and material content of fresh tea
leaves in situ can not only accurately grasp the growth of the tea tree but also assist in the
decision-making process of tea-picking programs to ensure the quality of tea leaves [11].
Spectroscopic detection technology is widely used in rapid non-destructive testing of the
quality and safety of agricultural products due to its advantages of rapidity, accuracy,
and on-line real-time detection [12–14]. Spectral analysis is a qualitative and quantitative
analysis of the composition of a sample using the unique absorption or emission spectral
features of different substances in different spectral ranges. Due to its advantages of rapid,
non-destructive, multiple simultaneous testing, and portability, spectral analysis finds wide
applications in the quality testing of fresh tea leaves. At present, the most commonly used
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spectral analysis methods include HSI, NIRS, MIRS, Terahertz spectroscopy (THz), RS, and
Fluorescence spectroscopy (FS).

NIRS obtains information by measuring the absorption and reflection of Near-infrared
(NIR) light from a sample. NIR light is absorbed in the frequency band associated with
molecular vibrations and chemical bonding and, therefore, provides information about
the composition of the sample. MIRS focuses on the mid-infrared band and provides
information on molecular vibrations and the rotation of matter. Different molecules and the
bonds between them are uniquely characterized in the mid-infrared spectrum. The THz
band is located between the microwave and infrared bands, which is highly penetrating.
This is suitable for studying crystal structures, plant cell walls, moisture, and more. RS
provides information about molecular vibrations and rotations based on the frequency shift
of the light that is scattered from the sample. It has both high sensitivity and resolution. FS
is based on the fluorescence signal emitted by the sample when exposed to excited light
and is used to analyze fluorescently active substances. It is sensitive to biomolecules and
pigments. These spectroscopic techniques help in the study of the chemical structure of
fresh tea leaves’ moisture, aroma composition, and pigment composition determination.
Although these spectroscopic techniques have a wide range of applications in tea research,
HSI is able to provide both rich spectral information and high-resolution spatial informa-
tion. This grants HSI unique advantages in tea research in terms of quality assessment,
authenticity identification, and growth environment monitoring. In addition, hyperspectral
reflectance data, mid-infrared spectral data, Raman data, and terahertz data are all acquired
by spectral techniques, and generally speaking, the steps of their data processing all include
noise reduction, dimensionality reduction, feature extraction, and modeling. The data
analysis of HSI includes image information analysis in addition to spectral information
analysis. Therefore, in this paper, in order to keep readers abreast of the latest spectral tech-
nology at home and abroad in tea fresh leaves and the research and application progress,
through China’s knowledge network and the Web of Science literature database, this study
employs the key words tea fresh leaves and spectral collation to review the last ten years
of relevant literature. This study focuses on the principle of HSI technology, the analysis
method, and its application in the non-destructive evaluation of the quality and safety of
fresh tea leaves. At the same time, the principles and applications of other spectroscopic
techniques are briefly introduced, including the application of MIRS, NIRS, RS, and other
spectroscopic techniques in the nondestructive testing of the quality and safety of fresh
tea leaves. Finally, the challenges and development trends of spectral analysis techniques
in nondestructive testing of tea quality are discussed in terms of technical difficulties and
practical applications.

2. Spectral Technology
2.1. Hyperspectral Imaging Technology

HSI is a combination of spectral detection technology and image technology. The
difference between active and passive hyperspectral techniques is whether an active light
source is required. Depending on the hyperspectral imaging method, the active hyper-
spectral imaging system is divided into four categories, namely swing-sweep, push-sweep,
condensed acquisition, and snapshot [15]. The core devices of active hyperspectral imaging
systems are generally light sources, spectroscopic elements, detectors, and data acquisition
and processing systems [16]. Its working principle diagram is shown in Figure 1. The light
source is an important part of an active hyperspectral imaging spectroscopy system. The
three commonly used light sources are tungsten halogen lamps, quantum cascade lasers,
and light-emitting diodes. The spectroscopic elements are mainly diffraction gratings and
tunable filters. Detectors are key devices for converting optical signals into electrical signals
in hyperspectral imaging systems. Currently, there are two main types of detectors used in
hyperspectral imaging systems, namely line array detectors and surface array detectors.
Optical signals can be converted into analog current signals, which are amplified, and
the modulus to digital conversion of the current signals is used to acquire images. Data
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acquisition and processing systems are used to acquire spectral images collected from the
camera and process and analyze these images.

Figure 1. HSI working principle diagram.

While imaging the spatial features of the analyzed target, each spatial pixel is dispersed
into dozens or even hundreds of narrow bands to achieve continuous spectral coverage [17].
Spectroscopic detection techniques utilize a series of spectral bands in a narrow wavelength
range to capture spectral information reflected or emitted by an object. These bands
typically include wavelengths in the visible, infrared, and ultraviolet ranges. Each band
captures a different spectral signature of the object, thus providing detailed spectral data.
Hyperspectral images are acquired through the use of hyperspectral cameras or sensors.
These devices are capable of capturing images in a variety of wavelength ranges, often
including hundreds to thousands of spectral channels [18]. Due to its benefits of high-
spectrum resolution and the capacity to offer image and spectral information, HSI has
steadily become a research hotspot and has been employed in a wide range of applications,
including the quality inspection of fresh tea leaves. It mainly includes analyzing the
chemical composition of tea, identifying the type and origin of tea, and detecting impurities.

2.2. Other Spectroscopic Technologies

The NIRS and MIRS components mainly include an optical system, a detector, signal
acquisition, and a processing module [1]. The working principle of the infrared spec-
troscopy system is shown in Figure 2. NIRS is a technique used to determine which
functional groups are contained in a molecule based on the characteristic frequencies of the
infrared absorption spectra, thus identifying unknown classes of compounds for qualitative
analysis [19]. MIRS is composed of molecules with vibrational fundamental frequencies,
multiple and broad absorption bands, high absorption intensities, and significant absorp-
tion characteristics that provide more information about frequencies and intensities. Most
of the characteristic vibrational peaks of typical functional groups are distributed in the
mid-infrared region [2]. Compared with NIRS, it has the advantages of relatively easy mod-
eling and stable results. The in situ RS test system mainly consists of a Raman spectrometer,
a Raman optical system, and a sample detection chamber [3]. The working schematic of
the RS system is shown in Figure 3. RS and infrared spectroscopy are complementary to
each other. Infrared spectroscopy is suitable for studying the polar bonding vibrations of
different atoms, while RS is suitable for studying the non-polar bonding vibrations of the
same atom [20].
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Figure 2. Infrared spectrometer working principle diagram.

Figure 3. RS working principle diagram.

The THz system consists of a dual-laser-controlled intelligent electronic device,
two distributed feedback lasers, and two fast scanning modes [4]. Its working schematic is
shown in Figure 4. THz evaluates terahertz light using absorption, reflection, transmission,
and other properties of a substance, which can be used for qualitative analysis of com-
pounds [21]. The principle is to analyze the components of a mixture in the THz by using
the absorption and transmission properties of a substance based on its absorption spectrum,
refraction spectrum, dielectric coefficient, and other properties. The FS system consists of
an excitation light source and a spectrometer [7]. Its working schematic is shown in Figure 5.
FS is a method of quantitative and qualitative substance analysis based on the phenomenon
of photoluminescence of substances and the investigation of fluorescence characteristics
and intensity. [22]. Fluorescent compounds with different structures have unique excitation
and emission spectra. Therefore, the shapes and peak positions of the excitation and emis-
sion spectra of fluorescent substances can be compared with the spectrograms of standard
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solutions for qualitative analysis. At low concentrations, the fluorescence intensity of a
solution is proportional to the concentration of the fluorescent substance: F = Kc, where F
is the fluorescence intensity, c is the concentration of the fluorescent substance, and K is the
scale factor, which is the basis for the quantitative analysis of fluorescence spectra [23].

Figure 4. THz working principle diagram.

Figure 5. FS working principle diagram.

In Table 1, the advantages and disadvantages of several spectroscopic techniques are
compared. In the analysis of tea fresh leaves, these spectroscopic techniques can be applied
to study pigments, antioxidant substances, functional components, aroma substances, and
the molecular structure of tea.
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Table 1. Comparative analysis table of spectroscopic techniques.

Spectral
Technology Wavelength (nm) Technical Principle Benefits Shortcomings

NIRS 780–2500

multiple- and
combined-frequency

absorption of vibrations of
hydrogen-containing groups

X-H (X = C, N, O) [24].

high penetration depth,
weak background signal
interference, high spatial,

and temporal resolution [25].

spectral data processing is
complex and susceptibleto
moisture interference [26].

MIRS 2500–25,000

absorption of functional
groups in molecules that

exhibit violent fundamental
frequency vibrations in the

mid-infrared band [27].

high absorption intensity,
high sensitivity, no sample

pretreatment required.

shallow penetration depth,
susceptible to moisture

interference.

THz 30,000–3,000,000
absorption of molecular

vibrations and rotations in
the terahertz band [28].

low photon energy, good
penetration, wide frequency

range, and high
characterization capability.

time-consuming and
expensive equipment [29].

RS /

molecular vibration
information is obtained by
utilizing the frequency shift

and intensity change of
scattered light when the
sample interacts with the

laser light source [30].

efficient, non-destructive and
moisture free.

susceptible to fluorescence,
high background signal

interference,
weak signal [31].

FS 200–800

characterization of
fluorescence and its intensity
based on the phenomenon of

photoluminescence of
a substance.

high sensitivity, selectivity
and ease of use [32].

not widely enough applied,
environmentally sensitive [33].

3. Hyperspectral Information Analysis Method for Tea Fresh Leaf Quality Testing

Hyperspectral information includes one-dimensional spectral information and
two-dimensional spatial (image) information [34]. Spectral information can reflect the
internal structure of the sample such as the molecular composition and can be applied for
the quantitative and qualitative analysis of tea fresh leaves. Image information can reflect
the external quality characteristics such as size, shape, and defects of the sample, which can
be made use of for a qualitative examination of tea fresh leaves. The fusion of spectral and
image technologies can not only study the internal composition content of the analyzed
object but also visualize and analyze its distribution, which can be employed to capture the
spectral information and spatial distribution of the target object.

3.1. Spectral Information Analysis

Raw spectral data usually need to undergo some pre-processing and analysis before
they can be used for specific research or applications. The main reason for this is that
its acquisition may be affected by a variety of interfering factors such as noise, baseline
drift, light scattering, etc. [35]. Therefore, the data need to be processed for noise reduction
as well as baseline correction. In addition, the raw data may contain a large amount
of redundant information or unnecessary details, and the key information needs to be
extracted using the feature band selection method. Furthermore, the analysis phase requires
modeling according to the research objectives in order to obtain the required information
or conclusions from the data. The steps of spectral data parsing include data preprocessing,
feature band extraction, modeling, and model evaluation.
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3.1.1. Spectral Data Preprocessing

Spectral data preprocessing is a key step before analyzing spectral data, aiming at
eliminating interference and improving data quality for subsequent analysis. Spectral data
preprocessing mainly includes normalization, baseline correction, and noise reduction.
The normalization method balances the distribution of variables and mean values by
scaling the components of the data to a relatively consistent scale, which can attenuate
the influence of factors such as light-range variation and sample sparsity on spectral
information [36]. The normalization methods are Max-Min Normalization (MMN) and
Vector Normalization (VN) [37,38]. MMN is a linear mapping of data to a specified range,
usually [0, 1]. This process involves two key values: minimum (min) and maximum (max).
By linearly transforming the data points, the min value is mapped to 0, the max value to 1,
and the values in between will be distributed equiprimordially over this range. VN, on the
other hand, distinguishes MMN, which, instead of mapping the data to a specific range,
normalizes the data by changing its magnitude and direction. Its goal is to map data points
to unit vectors.

Baseline correction is mainly used to correct the baseline shift problem in spectroscopy
due to measurement variations of spectroscopic instruments or changes in measurement
environment parameters [39]. Baseline correction methods include multiple scattering
correction (MSC), standard normal variation (SNV), detrending (DT), orthogonal signal
correction (OSC), and moving average (MA) [40–44]. The MSC method is used to correct
the baseline translation and offset phenomena of spectral data by ideal spectra, which can
effectively eliminate the scattering phenomena generated by uneven particle distribution
and particle size, thus enhancing the correlation between spectra and data [45]. Similar to
MSC, the SNV can also be used to correct the spectral errors caused by scattering between
samples, but the algorithms are different. SNV is the process of subtracting the spectral
value of each sample from the mean of the spectral value of that sample and dividing it
by the standard deviation of the spectral value of that sample. This makes the processed
spectral data conform to the standard normal distribution. It is mainly employed to
eliminate the effects of diffuse reflections due to solid particle size, surface scattering, and
variations in optical range [46]. Moreover, OSC is also used to eliminate errors arising from
the surface scattering and baseline drift of spectral signals [47]. OSC is used to remove the
information in the spectral matrix that is not related to the components to be measured
by orthogonal projection and then carry out multivariate correction calculation. After
achieving the purpose of simplifying the model, it then improves the predictive ability of
the model [48]. MA is used to take the average of the data in a certain time period and
use this average to represent the data in that time period, thus achieving the purpose of
smoothing the data [49]. Spectral data contain information about the sample, but there
may be some unrelated underlying trends in the data. These trends can be long-term
variations in the data, usually related to time. They can also be trends due to other factors,
such as temperature changes, instrument drift, etc. DT removes the trend or drift from the
data [50]. DT usually involves fitting a trend model. Examples include linear regression or
polynomial fitting, and then subtracting the estimates of this model from the raw data to
obtain corrected data [51].

Noise reduction processing is performed by using various signal processing techniques
and mathematical algorithms in order to remove or reduce the noise and retain the useful
signal. Some of the methods for noise reduction are Savitzky–Golay smoothing (SG), first-
order derivative (FD), second-order derivative (SD), Fourier Transform (FT), and Wavelet
Transform (WT) [52–54]. SG smoothing reduces noise by smoothing the signal using a
polynomial fit within a sliding window [55]. In addition, different window sizes and
numbers of polynomials can be selected to balance the smoothing and noise suppression
effects according to practical needs. The adaptability of SG smoothing methods to noise
suppression and smoothing operations has led to their widespread use in spectral analysis.
SG smoothing is often combined with FD and second-order derivatives for noise reduction
in raw spectral data. The FD is the rate of change of the original signal and represents
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the slope or gradient in the signal. By calculating the FD, rapid changes or edges in the
signal can be highlighted, thus helping to detect features and boundaries in the signal.
The FD can help reduce high-frequency noise in a signal. The SD is the rate of change of
the FD, which indicates the curvature in the signal. Calculating the SD helps to highlight
features in the signal more strongly, especially spikes or troughs in the signal. This helps
in identifying extreme points in the signal. SD can further reduce high-frequency noise
and provide clearer information about features. The FT converts a signal from the time
domain to the frequency domain, thereby breaking the signal into components of different
frequencies. High- or low-frequency components can be selectively filtered out to extract
the signal components of interest and reduce the effect of noise. Compared to FT, WT is
a more flexible tool for signal analysis, as it is capable of local and multi-scale analysis of
spectral data. The WT is used to effectively reduce noise and improve the signal-to-noise
ratio of spectral data by decomposing the signal into wavelet functions at different scales
and by analyzing and processing the different frequency components of the signal while
retaining useful feature information. This makes spectral data easier to interpret and utilize.
In Table 2, the characteristics and advantages and disadvantages of various pretreatment
methods are summarized.

Table 2. Comparison table of different pretreatment methods.

Preprocessing Methodologies Specificities Advantages Disadvantages

normalization
MMN linear scale simple calculation sensitivity to outliers

VN resizing vectors maintaining spectral features dependent on the selected
spectral range

baseline
correction

MSC
detection and correction of

multiple scattering signals in
spectra

eliminating the effect of
multiple scattering on

spectral data
computationally complex

SNV linear transformation data standardized and easily
interpretable

not applicable to non-normal
distributions

DT eliminating trend reducing the interference of
trends in analysis information loss

OSC orthogonal transform elimination of
cross-interference

higher real-time
requirements

MA calculation of the
average value

trend identification,
noise reduction produce lagged effect

noise reduction

SG polynomial fitting excellent fitting effect computationally complex

FD calculating the rate of change highlighting trends and
changes in data increased noise in the data

SD calculating curvature highlighting curvature and
variation in data enhanced noise sensitivity

FT frequency and time domain
transformation ability to handle cyclical data computationally complex

WT wavelet functions converted
to different scales

capable of handling
non-stationary and
non-linear signals

complexity of processing

3.1.2. Characteristic Band Screening

Since raw data may contain a lot of irrelevant information, feature band selection
can help identify and enhance task-relevant information [56]. This helps to improve the
interpretability of the data. Also, feature band selection can reduce the dimensionality of the
data, thus reducing the cost of data storage and processing. The selection of representative
feature bands can reduce the size of the dataset without losing important information. The
methods for feature band selection are stepwise discriminant analysis (SDA), the successive
projection algorithm (SPA), the competitive adaptive reweighting algorithm (CARS), the
genetic algorithm (GA), principal component analysis (PCA), random frog (RF), and Monte
Carlo-uninformative variable elimination (MC-UVE) [57–63].
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The goal of SDA is to improve classification accuracy by selecting the most relevant
variables while reducing unnecessary dimensions. This helps to reduce the risk of overfit-
ting and improve the generalization ability of the model. The SPA is a forward variable
selection algorithm that eliminates redundant information in the original spectral matrix
and minimizes the covariance of the variables in the spectrum [64]. CARS is a variable
selection algorithm based on PLS and the Darwinian evolutionary principle of “survival of
the fittest”, which filters the wavelengths by the size of absolute regression coefficients and
excludes the variable bands with small weights [65]. The GA is an optimization algorithm
that simulates the biological evolution process and is applied to solve complex optimization
problems. Through constant selection, crossover, and mutation operations, the GA can
search for combinations of feature bands with high adaptation, thus realizing the extraction
of feature bands of spectral data [66]. PCA is a commonly used dimensionality reduction
technique, which transforms the original data into a new set of orthogonal variables called
principal components by linear transformation [67]. In spectral data feature band extraction,
PCA can be employed to find the principal components that contribute most to the vari-
ability of the data and use them as feature bands. The key to the RF is continuous iteration,
where a subset of features is gradually improved through natural selection and randomness
operations to find the optimal combination of feature bands for classification, regression, or
other data analysis tasks. The MC-UVE method utilizes Monte Carlo sampling methods to
estimate the informativeness of individual bands in spectral data, which helps to identify
bands that are informative for a specific task, and then the uninformative variables are
eliminated to extract the final set of feature bands [68]. In Table 3, the characteristics and
advantages and disadvantages of each feature extraction method are listed.

Table 3. Comparison table of feature extraction methods.

Method Specificities Advantages Disadvantages

SDA stepwise selection and exclusion
of variables reduced data dimensions data sensitivity

SPA continuous-projection
iterative computation

elimination of
redundant information noise sensitivity

CARS dynamically adjusting
feature weights

enhances image contrast
and detail sensitivity to noise and artifacts

GA simulation of biological
evolutionary processes For high-dimensional data higher computational costs, results

dependent on parameterization
PCA linear transformation reduced data dimensions loss of partial detail information

RF
simulating a frog jumping

randomly to find an
optimal solution

reduced computational
complexity and risk

of overfitting
unstable results

MC-UVE simulation of Monte
Carlo Sampling

no a priori
information required noise sensitivity

3.1.3. Model Building

Spectral data modeling typically includes categorical modeling and regression mod-
eling. Both classification modeling and regression modeling use statistical and machine-
learning techniques to process spectral data for different purposes. Classification modeling
is used to classify data into different categories and can be applied in the qualitative analysis
of fresh tea leaf quality testing. Regression modeling is used to predict continuous output
values, which can be applied in the quantitative analysis of fresh tea leaf quality testing.
The methods for classification modeling are the Random Forest Classifier (RF), the K Near-
est Neighbor Classifier (KNN), the Linear Discriminant Classifier (LDC), Support Vector
Machines (SVMs), Extreme Learning Machines (ELMs), and the Naive Bayes Classifier
(NB) [69–73]. Methods for regression modeling are Partial Least Squares Regression (PLSR),
Multiple Linear Regression (MLR), Support Vector Regression (SVR), Extreme Learning
Machine Regression (ELMR), Gaussian Process Regression (GPR), Stochastic Gradient
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Boosting (SGB), Kernel-based Extreme Learning Machines (KELM)s, and Random Forest
Regression (RFR) [74–78].

The RF classifier is used to classify by integrating multiple decision tree models
by voting or averaging. The KNN classifier makes classification decisions based on the
neighbors of the data points. It is based on the assumption that the training samples
that are close to a particular data point have similar category labels. Therefore, the KNN
classifier decides the category of a new data point by summing the category labels of the K
nearest neighbors weighted according to the distance [79]. The main goal of the LDC is to
maximize the separation between different categories by maximizing the variance between
categories and minimizing the variance within categories [80]. This makes it perform well
in many classification problems, especially when the separation between categories is high.
However, a limitation of the LDC is that it assumes that the data follow a multivariate
normal distribution and are not applicable to nonlinear problems. For nonlinear problems,
it is often necessary to use other classification methods such as SVM. The basic idea of
SVM is to map the sample feature data into an n-dimensional space, where the size of n
depends on the kernel function and the number of sample feature dimensions, and then
construct the optimal classification hyperplane in the space [69]. A Naive Bayes Classifier
uses Bayes’ theorem to estimate the posterior probability of each category for a given
feature case and then selects the category with the highest posterior probability as the
final classification result [81,82]. ELM is a fast and simple machine learning algorithm that
achieves classification or regression tasks by randomly initializing the weights of hidden
layer neurons and then training a linear output layer.

PLSR is particularly suitable for high-dimensional datasets and situations where
multicollinearity problems exist. It reduces the dimensionality of the data by finding the
combination of independent variables that has the highest correlation with the depen-
dent variable, which better captures the structure of the data and builds the regression
model [74,83]. MLR is a statistical method widely employed to build regression models
to analyze and predict the relationship between the dependent variable and one or more
independent variables. SVMR maximizes the interval between the training samples and
the hyperplane by finding the optimal hyperplane in the feature space for the prediction of
continuous target variables [75,84]. ELMR achieves better performance with single training
by random initialization and fixing the input layer weights. KELM is an extension of
the traditional ELM that introduces the kernel trick, which enables the ELM to handle
nonlinear problems. GPR is a nonparametric model that utilizes a Gaussian process prior
to regression analysis of input data. SGB works by integrating multiple decision trees, each
trained based on a randomly selected subset of data and a subset of features, and finally
voting or averaging to obtain a combined result. RFR regresses by constructing multiple
decision trees and averaging them [78]. In Table 4, this paper organizes the characteristics
and advantages and disadvantages of each classification model and regression model.

3.1.4. Model Evaluation

The common evaluation criteria of model prediction performance are the prediction set
correlation coefficient (RP), the correction set correlation coefficient (RC), the coefficient of
determination (R2), prediction standard deviation (RMSEP), correction standard deviation
(RESEC), and residual prediction deviation (RPD). The RP is a measure of the correlation
between the model’s predictions on the prediction set and the actual observations. The
correlation coefficient can take values between −1 and 1, with closer to 1 indicating that the
model’s predictions are more correlated with the actual values. In some fields, a correlation
coefficient of 0.7 or higher may be considered good predictive performance. In practice,
it is usually desirable to be close to 1. The RC is a measure of the correlation between
the model’s predictions on the correction set and the actual observations. Again, closer
to 1 indicates better performance. However, an RC that is too high may show signs of
overfitting. In general, an RC in the range of 0.7 to 0.9 may be a more appropriate range [85].
The R2 is a measure of how well the model fits the observed data. It takes a value between



Foods 2024, 13, 25 12 of 27

0 and 1 and indicates the proportion of variance of the target variable that is explained by
the model. The closer the value is to 1, the better the model fits the observed data and is
able to explain more of the variance. In some fields, a value above 0.7 may be considered
a better fit. Higher values are required for applications where high precision is required.
RMSEP is a measure of how discrete the model’s prediction error is over the prediction set.
It is usually asserted that the smaller this value is, the better, indicating that the model’s
predictions are more stable. The RESEC is a measure of how discrete the model’s predic-
tion error is on the calibration set [86]. Again, it is desired that this value be as small as
possible. Residual prediction bias indicates how much the model’s predictions in the pre-
diction set deviate from the actual observations. A smaller bias indicates that the model is
more accurate.

Table 4. Comparison table between each classification model and regression model.

Types Method Specificities Advantages Disadvantages

classification
modeling

LD finding linear
decision boundaries

effective dimensionality
reduction and categorization

of data
sensitivity to outliers

KNN voting mechanism based on
neighboring samples

for multi-category and
non-linear problems noise sensitivity

RF integration based on
multiple decision trees

high accuracy and
overfitting resistance

high memory and
computing resource usage

SVM maximum margin criterion ideal for handling
high-dimensional data computationally complex

ELM single hidden layer
feed-forward neural network fast training speed handling nonlinear

problems poorly

NB based on bayes theorem simple and fast calculation

assumptions of
independence of

characteristics may not
be realistic

regression
Modeling

PLSR minimizing the covariance reducing dimensionality
and multicollinearity

easily overfitted and
sensitive to noise

MLR minimize the residual sum
of squares simple, highly interpretable easily influenced by

collinearity

SVMR maximum margin criterion suitable for handling
high-dimensional data computationally complex

ELM single hidden layer
feed-forward neural network fast training speeds handling nonlinear

problems poorly

KELM single-layer neural networks
combined with kernel tricks

efficient handling of
non-linear problems computationally complex

GPR
based on Bayesian theory

and statistical
learning theory

suitable for dealing with
high-dimensional data,

nonlinear problems
computationally complex

SGB Integration based on several
decision trees

efficient handling of
large-scale data noise sensitivity

RFR Integration based on
multiple decision trees high robustness noise sensitivity

3.2. Image Information Parsing

Hyperspectral image information-parsing methods include region of interest selection,
image correction, dimensionality reduction, and modeling. In the study of HSI features,
it is usually necessary to select the region of interest (ROI) on the leaves of fresh tea. The
selection of ROI can help to reduce the dimensionality of the data, reduce the amount
of computation, and focus on a specific region for detailed analysis. Black and white
correction of raw images is required to eliminate noise interference and other light source
interference in the camera [87]. HSI has high dimensionality and redundant data, resulting
in a time-consuming computational process. There is an urgent need for dimensionality
reduction processing of hyperspectral data. The methods of dimensionality reduction
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processing mainly include feature selection and feature extraction. Feature selection is
feature band selection [88]. In order to extract the spatial texture features of the image,
feature extraction of the hyperspectral image is also required. Texture feature extraction
methods include the Gray-Level Co-occurrence Matrix (GLCM), the Gray-Level Difference
Matrix (GLDM), the Autocorrelation Function (AF), the Local Binary Pattern (LBP), and the
Wavelet transform (WT) [85–87]. The GLCM is a statistical tool used to describe the texture
of an image. It calculates the gray-level symbiosis between pixels in an image, including
information such as the angle, the distance, and gray-level differences. The GLDM is
used to measure the differences between gray levels in an image. The AF measures the
correlation of gray values between pixels in an image. The LBP is a nonparametric method
used for the analysis of image texture. It encodes image texture features by comparing
the gray values of a pixel with its neighboring pixels and then LBP histograms or other
statistical information can be computed. The WT can be used to capture multi-scale texture
information in hyperspectral images. Image spatial texture feature extraction can capture
the detailed information in the image, which helps to identify and distinguish different
textures and improve the performance of image analysis and classification. After the image
dimensionality reduction process, it then needs to be modeled and analyzed. The modeling
method of image information is similar to Section 3.1.3 and will not be repeated here.

3.3. Information Analysis for Fusion of Image and Spectral

Fusion is the fitting of an image’s spatial and spectral reflectance features into a
single image. Thus, hyperspectral images integrate spectral and spatial texture features to
optimize predictive capabilities. Typically, the fusion process can be performed at different
levels, which can be categorized as signal level, pixel level, feature level, and decision
level. Among them, signal-level image fusion is a problem of optimal concentration or
distribution detection of signals and has the highest time and space requirements for
alignment. Pixel-level fusion needs to process a large amount of data, which takes a
relatively long time to process, is easily affected by noise, and cannot process data in real
time. Decision-level fusion is the involvement of feature extraction of image data and some
auxiliary information. This valuable information is combined to obtain a comprehensive
decision-making result to improve recognition and interpretation. Feature-level fusion is
used to extract the original information from the sensors, and then the feature information is
comprehensively analyzed and processed, which can retain more original information [89].
Constructing a model after fusing features is similar to Section 3.1.3.

4. Application of Spectroscopic Techniques in Tea Fresh Leaf Quality Testing
4.1. Application of Hyperspectral Reflectance Information in Fresh Tea Leaf Quality Testing
4.1.1. Quantitative Analysis Applications

Based on hyperspectral reflectance information, many researchers have quantified
the physicochemical constituents such as tea polyphenols, anthocyanins, carotenoids,
and catechins of tea fresh leaves to evaluate the quality of tea fresh leaves. Zhang et al.
selected SG, MA, and FTIR preprocessing methods for comparative analysis [75]. The
PCA method was used to extract the characteristic bands. The estimation model of the
relationship between spectral reflectance and tea polyphenol content of tea fresh leaves
was established using MLR, ALR, and OLS. Among them, the least squares model had the
highest accuracy, and the correlation coefficient of the prediction set was 0.99. It indicated
that the prediction value of the tea polyphenol content in the test samples had a small error
in the measured value, and it could be realized to estimate the tea polyphenol content of
tea fresh leaves on-line by using hyperspectral technology. Anthocyanins are important
chemical components of tea, which have a significant impact on the color, flavor, antioxidant
properties, and medicinal value of tea. Therefore, the detection of anthocyanin content
in tea fresh leaves is critical for assessing the quality and value of tea. Dai et al. applied
four different pre-processing methods to eliminate the effects of unfavorable factors [76].
PLS models were established using the processed data. For total anthocyanins, the PLS
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model with MSC-S-G-FD treatment had the best Rp and RPD values and the lowest
RMSEP, showing excellent predictive performance. Sonobe et al. and Wang et al. used
the PROSPECT-D model and 2-Der-PLSR inversion to estimate the carotenoid content in
tea fresh leaf blades, respectively [9,90]. The results showed that HSI combined with the
variable selection method can be used as a fast and accurate method to predict carotenoid
content. Kang et al. determined EC, EGC, ECG, and EGCG of catechins in green tea
new shoots using hyperspectral imaging [40]. The PLSR model was used, and with few
exceptions, hyperspectral reflectance explained more than 79% of each catechin in the new
shoots. The moisture content of tea is an important indicator for the quality testing of
fresh tea leaves and has a significant impact on both the quality and shelf life of tea. Dai
et al. utilized four different algorithms (SG, MSC, SNV, and OSC) to preprocess the raw
data, and used stepwise regression analysis to extract characteristic wavelengths from
the preprocessed data. MLR and PLSR were used to establish the quantitative analysis
model of the water content of tea fresh leaves [41]. The best prediction model was the
SG-OSC-SW-PLSR model, and the correlation coefficients of the model correction set, cross-
validation set, and prediction set were 0.8977, 0.8342, and 0.7749, respectively, and the
minimum root-mean-square errors were 0.0091, 0.0311, and 0.0371, respectively. Both Wang
et al. and Mao et al. used the SPA and competitive adaptive reweighted sampling selected
feature wavelengths to establish a water content regression model [42,43]. The coefficients
of determination of the models were all above 0.90, which can be used to evaluate the
freshness of tea leaves and provide a basis for acquisition and tea withering. Sun et al.
quantitatively assessed the water content of fresh tea leaves [91]. The most effective
wavelengths were first extracted using four feature selection algorithms, SPA, CARS, SPA-
sr, and CARS-sr. On this basis, a spectrum-based prediction model was established by using
MLR after processing 20 different combinations of algorithms. The prediction coefficient
of determination of the combined algorithms of SG-MSC and CARS-sr was 0.8631, and
the RMSEP = 0.0163. The visualized distribution map of the tea leaves was able to more
intuitively and comprehensively evaluate the water content of the tea leaves in each image
element, which provided a new method for plant irrigation evaluation. It provides a new
method for plant irrigation evaluation. It can be seen that hyperspectral technology can
effectively realize the detection of water content in tea fresh leaves.

In addition, HSI data are widely used for the determination of nitrogen content and
chlorophyll content of tea fresh leaves, which can provide a reference for the growth and
fine management of tea plants. Nitrogen plays a pivotal role in the operation of tea planta-
tions and has an important impact on the growth, productivity, and nutritional status of tea
trees. Cao et al. proposed a method for estimating nitrogen content in tea tree fields based
on the combination of a multispectral imaging system and hyperspectral data [92]. Firstly,
28 wavelengths were selected from hyperspectral data combined with 27 multispectral
indices as raw data through competitive adaptive reweighted sampling. Subsequently, five
variables were selected by variable combination. The results showed that the multispectral
and hyperspectral data combined with SVR could effectively monitor soil nitrogen levels
under field conditions, with R2 and RMSE of 0.9186 and 0.0560, respectively. Wang et al.
proposed the use of SNV to preprocess hyperspectral data of mature leaves of tea trees
with different nitrogen applications [52]. PLSR was utilized to predict the nitrogen con-
tent. The results showed that the diagnostic accuracy of the LS-SVM model for different
nitrogen applications and nitrogen status reached 82% and 92%, respectively, with a good
prediction effect. Wang et al. proposed to estimate the nitrogen content by using wavelet
coefficients extracted from the CWT technique with different decomposition layers of the
CWT. Finally, the CWT (lscale)-VCPA method established the best model performance, and
the R2 of the model was 0.95 [53]. The accuracy was improved by 11% compared with the
traditional spectral processing method. In situ determination of chlorophyll-b content as
a marker for evaluating light stress and response to environmental changes in tea trees
can be used to improve tea tree management. Sonobe et al. tested the performance of
four machine learning algorithms, RF, SVM, Deep Belief Networks, and KELM, in evaluat-
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ing tea data under different shade treatments [93]. The RMSE of KELM was 8.94 ± 3.05,
showing the best performance. These results suggest that combining hyperspectral re-
flectance and KELM has the potential to track changes in the chlorophyll content of shaded
tea leaves. Mao et al. determined the corresponding leaf physicochemical parameters and
pre-processed the raw hyperspectral data collected using MSC, FD, and S-G algorithms [54].
After that, UVE and SPA were used to screen the pre-processed hyperspectral data for
characteristic bands. Finally, CNN, SVM, and PLS were utilized to establish a quantitative
prediction model for SPAD content. The best prediction model had an R2 of 0.730.

The above study shows that for quantitative analysis of HSI reflectance data in fresh
tea leaves, the commonly used data preprocessing methods are FD, SD, and SG smoothing,
the feature selection is commonly used in CARS and SPA, and the models are PLSR and
SVM. However, when measuring different indexes, it is necessary to screen out specific data
preprocessing methods and estimation models in combination with the actual situation in
order to ensure that rapid detection is realized.

4.1.2. Qualitative Analysis Applications

Qualitative studies on tea fresh leaves based on hyperspectral reflectance information
have varietal classification and quality identification. Spectral information helps to capture
small differences between varieties, thus giving unique spectral fingerprints to different tea
varieties. Yan et al. used MSC and SNV for spectral preprocessing. The improved BP neural
network, traditional BP neural network, and SVM fresh tea variety identification models
were constructed. The results showed that the SVM model had the highest recognition
accuracy of 96% [94]. Since different degrees of withering lead to changes in chemical
composition and organizational structure in tea, these changes can be reflected in spectral
data. Therefore, spectral information can help to realize the recognition of the degree of
withering of tea leaves. Tu et al. collected hyperspectral data from the canopy of tea trees
and classified tea varieties according to the spectral characteristics of the tea canopy [95].
Using appropriate spectral preprocessing methods, the overall accuracy of support vector
machines for tea variety classification can reach more than 95%.

High-grade tea leaves have a high content of nutrients and low-grade tea leaves have
relatively low content. Spectral analysis can be used to assess the quality and grade of
tea by determining the content and proportion of chemical components in tea. Wang
et al. combined hyperspectral technology with MBKA-Net for overall quality identification
of tea leaves at different picking periods [17]. Firstly, the spectral information of six
different tea-picking periods was obtained. Secondly, the MBKA method was proposed to
realize the classification of tea leaves in different harvesting periods by effectively mining
spectral features through multi-scale adaptive extraction. Ultimately, MBKA-Net obtained
96.18% correctness, 97.14% precision, and 97.18% recall. The study shows that the use
of the variable screening method can effectively reduce the redundancy of hyperspectral
information, simplify the model, and improve the model discrimination precision.

4.2. Application of Image and Spectral Information Fusion for Tea Fresh Leaf Quality Detection

HSI can provide detailed information on the surface microstructure and texture char-
acteristics of tea leaves, but it has not been applied alone in the analysis of tea fresh leaf
quality. It is often combined with hyperspectral reflectance information, and by fusing these
two types of information, a more comprehensive and diverse set of tea leaf characteristics
can be obtained. It is often applied for the qualitative analysis of tea leaves, including
disease identification and variety classification.

Tea leaves usually have unique surface texture characteristics, and the change in
hyperspectral image information after disease can distinguish healthy tea leaves from
diseased ones and determine whether they are diseased or not. Lu et al. used hyperspectral
images to identify white star disease and anthracnose in tea [96]. Preprocessing was first
performed to select the best feature wavelengths for the spectral data using SPA. The
diseases were then classified for prediction using SVM and ELM. The results showed that
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the prediction accuracy of the ELM model was higher than SVM with different kernel
functions (RBF, Sigmod, and polynomial) in each disease category, and the recognition rate
reached 90%. Yuan et al. proposed a new method for detecting anthracnose in tea trees
based on hyperspectral imaging [97]. Two new disease indices, the tea anthracnose ratio
index and the tea anthracnose normalized index, were first established based on sensitive
bands. Based on the optimized spectral feature set, a disease scab detection strategy
combining unsupervised classification and adaptive two-dimensional thresholding was
proposed. The results showed that the overall accuracy of disease scab identification
was 98% at the leaf level and 94% at the pixel level. Zhao proposed a multi-step plant
adversity identification method based on HSI and CWT [98]. It was used to classify
tea green leafhopper, anthracnose, and sunburn for anomaly detection. The method
achieved an overall accuracy (OA) of 90.26~90.69%, with anthracnose having the highest
OA (94.12~94.28%), followed by tea green leafhopper (93.99~94.20%), and sunburn having
the lowest OA (82.50~83.91%).

Yan et al. used the fusion of image and spectral features as a tool for the recognition
of Longjing fresh tea varieties [94]. The improved BP network was used to show the
best performance, with a recognition accuracy of up to 100%, which was better than the
results of analyzing with spectral features or images alone. Ning et al. used the data
from the fusion of spectral and texture feature values as the input values of the LDA,
SVM, and ELM models to establish a shriveling degree discriminative model [99]. When
the fused data of combined spectral and textural eigenvalues were used as model inputs,
the model was better than the model built based on a single eigenvalue. The overall
discrimination rate reached 94.64%. The above studies have shown that the establishment
of a characterization model for the integration of information is an important tool for the
future use of hyperspectral “map-integrated” characterization.

4.3. Application of Other Spectroscopic Techniques in the Quality Testing of Fresh Tea Leaves

NIRS is widely used in quantitative and qualitative analyses of fresh tea leaves because
of its sophisticated data processing methods, high accuracy, and reliability. In recent years,
the effectiveness and accuracy of near-infrared spectroscopy have been fully verified in the
detection of water content, catechins, caffeine, and other chemicals in tea, as well as the
identification of tea varieties and the identification of tea quality. MIRS has a wide range of
applications in chemical analysis and materials research, but relatively few applications in
food and agriculture. Some studies have applied mid-infrared spectroscopy for the detec-
tion of dry matter, catechins, and caffeine content in tea, as well as the identification of tea
varieties and the geographical origin of tea. However, due to the shallow penetration depth
of the mid-infrared band, most of the studies on tea quality detection have been conducted
in the near-infrared band. Compared with infrared spectroscopy, RS has the advantages
of a wider determination range, convenient spectral analysis, favorable determination of
aqueous solution, and simple preparation and processing of specimens. It is used to detect
the carotenoid and chlorophyll content of fresh tea leaves. THz was characterized by low
photon energy and good penetrability, and thus was used to detect the presence of tea
stems, insects, and other foreign objects in tea. In recent years, FS has been widely used
in the fields of tea grade evaluation, species differentiation, and heavy metal detection.
Using FS at low concentrations, the fluorescence intensity of the solution is proportional
to the concentration of the fluorescent substance. Therefore, FS was often used to detect
the content of specific elements and important active ingredients in tea fresh leaves. This
section summarizes the qualitative and quantitative studies of NIRS, MIRS, THz, RS, and
FS in the quality detection of tea fresh leaves. It mainly includes variety identification,
quality grading, disease discrimination, and the detection of tea polyphenols and other
components’ content, as shown in Table 5.
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Table 5. Qualitative and quantitative studies of spectroscopic techniques in tea fresh leaf quality.

Spectroscopy Quantitative Analysis Qualitative Analysis

NIRS

moisture content [100,101], catechin,
caffeine [102,103], theanine [104], nitrogen

content [105], tea polyphenol [106],
flavonoids [107], EGCG [108], Heavy metals [109].

Tea varieties [110], Tea quality grade [111,112], Tea
maturity [113], Traceability of Tea Raw
Materials [114], diseases [115], Tea tree

growing environment [116].

MIRS Dry Matter of Tea [117],
Tea polyphenols, flavonoids [118] Tea varieties identification [106,119]

THz Tea tree cold injury detection [120].
Separation of tea leaves from foreign matter [121],

Determination of the degree of oxidation of
tea leaves [122].

RS Carotenoid measurement [123,124],
Chlorophyll measurement [125]

Quality Identification [126],
Anthracnose Identification [127]

FS Chlorophyll measurement [128] Pesticide Residue Determination [129],
Diagnosis of leaf spot disease [130].

5. Discussion

Based on the above literature, our discussion on the application of spectroscopic
techniques in tea leaves mainly includes the rapid determination and prediction of tea
leaf quality components such as tea polyphenols, carotenoids, and anthocyanins. We also
included the classification of tea tree varieties, quality grading and quality identification
of tea leaves, and the identification of tea tree pests and diseases. According to Table 6,
we can see that in spectral data preprocessing, scholars mostly use SG, MSC, and SNV
to smooth and correct spectral reflectance. In feature extraction, CARS and SPA are used
extensively to reduce the dimensionality of spectral data for selecting effective wavelengths.
Among the 21 papers listed in this paper applying hyperspectral analysis of fresh tea leaves,
SG appeared nine times, MSC appeared nine times, and SNV appeared nine times. For
feature extraction methods, CARS and SPA appeared six and seven times, respectively.
The regression model PLSR is the most applied with a total of 10 occurrences. SVM in the
classification model appeared a total of five times. Moreover, according to the final better
results, PLSR, MLR, and SVM models were often used in quantitative analyses to predict
the content of inbuilt components of tea fresh leaves, with the overall study showing that
PLSR usually had better performances. In qualitative analyses, SVM models were mostly
applied to classify and diagnose, which resulted in better discriminatory performance [76].
This may be due to the influence of light and the texture of the tea leaves themselves when
collecting hyperspectral data of tea leaves. The SG and SNV can correct and eliminate this
effect to some extent. Compared to spectral reflectance features, image features have not
attracted much interest in fresh tea leaf quality assessment. This may be due to the fact that
the information obtained when using only images to characterize the quality of tea leaves
is similar to that of RGB images, whereas the cost of obtaining spectral images is much
higher than that of obtaining RGB images. However, the information obtained from RGB
images is limited, and scholars often fuse images with spectral data to analyze the quality
of fresh tea leaves. The fused data show great feasibility in the quality assessment of tea
fresh leaf quality due to the acquisition of more features, which improves the accuracy of
quality assessment prediction. This is especially true for the assessment of the presence of
diseases in tea leaves. Spectral reflectance features characterize the internal information
of the material, which makes it possible to diagnose the disease in the early stages of the
disease in tea leaves. Images are used as supplementary information to provide additional
features for the pre-diagnosis of diseases, thus improving the disease diagnosis rate. After
obtaining the phenotypic texture and color characteristics of tea leaves using images, an
SVM or linear discriminant model was constructed to diagnose the disease by combining
spectral reflectance. Generally, spectra can better characterize the component properties
related to the quality of tea fresh leaves and characterize the internal properties of the
lesions. Combined with image characterization of visible features such as color, damage,
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and texture, spectral techniques show great potential in non-destructive testing of tea fresh
leaf quality.

Table 6. Application of HSI analysis in the study of the quality of fresh tea leaves.

Appliance Pre-Process Feature Extraction Modeling Best Result Reference

Estimation of tea
polyphenols

SG, FT, Polynomial
smoothing, Neighbor

average method,
FD, SD

PCA
LSR, MLR,
Polynomial
regression

Neighbor average
method-FD-PCA-LSR

Rc = 0.99
[75]

Detection of
anthocyanin content

MSC, SNV, SG, FD
CARS, VCPA,
VCPA-IRIV

PLSR, SVR
MSC-SG-FD-VCPA-SVR

Rc = 0.96
[76]

Prediction of
chlorophylls and

carotenoids content
MSC, SNV, FD

Second derivative
and regression

coefficient
PLSR

SNV-PLSR
Rp = 0.96, Rp = 0.93

[9]

Detection of
chlorophylls

Splice correction Vegetation index PROSPECT–D
Splice correction-Vegetation

index-PROSPECT–D
R2 = 0.83

[90]

Estimating the
catechin

concentrations
/ /

PLSR, Mutual
prediction

PLSR
R2 = 0.87

[40]

Estimation of water
content

SG, MSC, SNV SR MLR, PLSR
SG-OSC-SW-PLSR

Rc = 0.83
[41]

Prediction of tea
polyphenols,

SG, MSC, FD CARS, SPA, UVE SVM, PLSR, RF
MSC-FD-SG-CARS-PLSR

R2 = 0.91
[42]

Estimation of crude
fiber contents

/ SPA, CARS PLSR, MLR SPA-MLR, R2 = 0.84 [43]

Estimation of water
content

SG, MSC, OSC
SPA, CARS, SPA-SR,

CARS-SR
MLR

SG-MSC-CARS-SR-MLR
R2 = 0.86

[91]

Detection of nitrogen
content

SNV
Vegetation index,

VCPA, CARS
PLSR, SVM, RF

SNV-CARS-SVMR
R2 = 0.91

[92]

Prediction of
nitrogen content

MSC, SNV, FD, SD /
PLSR, PLS-DA,

LS-VM
SNV-PLSR
Rc = 0.92

[52]

Estimation of
nitrogen content

SG, Detrending, FD,
MSC, SNV, CWT

SPA, CARS, VCPA PLSR
CWT-VCPA-PLSR

R2 = 0.95
[53]

Detection of
chlorophyll content

FD /
RF, SVM, DBN,

KELM
KELM

RMSE = 8.94 ± 3.05
[93]

Detection of REC MSC, SG, FD SPA, UVE PLSR, SVMR, CNN
MSC-FD-SG-UVE-SVMR

R2 = 0.80
[54]

Longjing fresh tea
Variety identification

MSC, SNV,
MSC+SNV

vegetation index,
PCA

SVM, BP neural
network

MSC+SNV-PCA-BP neural
network

Recognition accuracy = 98%
[94]

Identification of tea
variety

MNF PCA, ICA
MLC, MDC, ANN,

SVM
MNF-SVM-PCA
accuracy = 95%

[95]

Identification of tea
quality

SNV, SG / MBKA-Net
SNV-MBKA-Net

accuracy = 96.18%
[11]

Identification of
white star disease

SG, SNV, SD,
Semantic

segmentation
SPA PLS-DA, SVM, ELM

SG-SPA-ELM
accuracy = 95.77%

[96]

Detection of
anthracnose

color image
extraction ROI

vegetation index
ISODATA,

2D thresholding
ISODATA

Kappa = 0.91
[97]

Detection of
anthracnose

extraction ROI,
Continuum removal

analysis, CWA
vegetation index SVM, FLDA, RF

CWA- vegetation index-
FLDA

accuracy = 94.28%
[98]

Discriminant of
withering quality

/ SPA, GLCM, PCA
LDA, SVM, ELM,

PLS
PCA-LDA

accuracy = 94.64%
[99]

Interestingly, based on this literature, we found that research scholars are not uniform
or do not follow a certain method for selecting the region of interest (ROI) to obtain it.
When doing quantitative analyses, some authors chose to use the whole leaf area as ROI,
while some researchers avoided the main leaf veins to select ROI [41,42,76]. Since the ROI
selection methods are different, the reflectance data obtained are different, which may also
lead to inconsistent performance and bias in the final regression model. Of course, when
performing qualitative analyses such as disease discrimination, scholars usually adopted
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semantic segmentation to separate the diseased region and used the diseased region as the
ROI [11,96,97]. Simultaneously, a healthy part was selected as the ROI in order to obtain the
reflectance data of the healthy and diseased regions. However, hyperspectral reflectance
data are being used for non-destructive testing precisely because of their ability to reflect
changes in the internal composition of tea leaves. The diseased area is segmented from
the image as ROI when the leaf has already undergone qualitative changes visible to the
naked eye, whereas the part of the leaf that is manually judged to be healthy may have
changed in its internal composition. Such a result of ROI selection may also be the reason
for inaccurate final classification results.

Tables 7–11 show the literature we have compiled on the application of NIRS, MIRS,
THz, RS, and FS in tea fresh leaves. It is not difficult to find that NIRS is more widely
used compared to several other spectrometers. This may be due to the fact that the
band of NIRS is in the range of 780–2500 because the characteristic bands for observing
and analyzing the intrinsic components of tea leaves such as tea polyphenols or caffeine
are in the range of this band according to the results of existing literature. For several
processing methods of spectral data, SNV in preprocessing was the most used with a total of
11 occurrences. PCA and PLSR were more frequently used for the screening and modeling
of the characteristic bands, and according to the better results obtained, there was no one
model that was universal. The preferred data processing methods chosen for different
component quantitative analyses were inconsistent.

Table 7. Application of NIRS analysis in the study of quality of fresh tea leaves.

Appliance Pre-Process Feature Extraction Modeling Beat Result Reference

Detection of Water
content

SNV, Noise
reduction,

Normalization

RF, PCA, Pearson
correlation analysis

SVR
RF-Pearson correlation

analysis-SVR
Rp = 0.99

[100]

Detection of catechin,
caffeine

SG, SNV, MSC CARS-SPA MLR, LDA
SG-CARS-SPA-MLR

Rp = 0.97
[102]

Determination of tea
polyphenols

SG, SNV, Baseline CARS, SPA, RF
PLS, MLR,
LS-SVM

SNV-SPA-LS-SVM
Rp = 0.98

[103]

Detection of nitrogen
content

FD, External
parameter

orthogonalization

SPA, Ordered
prediction selection,

VCPA-IRIV
PLSR

EPO-VCPA-IRIV-PLSR
Rp = 0.97

[105]

Estimation of total
polyphenols

SNV, MSC, FD, SD / PLSR
MSC-PLSR
R2 = 0.93

[106]

Monitoring of
flavonoid content

Remove noise and
baseline, MA, SG,

SNV, MSC, FD, SD
/ PLSR

SG-SD-PLSR
Rp = 0.95

[107]

Prediction of EGCG
SG, SNV, VN,

MSC, FD
CARS, RF PLSR, LS-SVR

CARS-LS-SVR
Rp = 0.98

[108]

Detection of heavy
metals

/
correlation-based
feature selection

PLS, RBFNN
CFS-PLS-RBFNN

Rp = 0.94
[109]

Identification of tea
varieties

MSC CARS, SWR GRNN, PNN
MSC-CARS-SWR-PNN

Accuracy = 100%
[110]

Prediction of tea
quality grade

SNV, SD, FD, SD,
MSC

si-PLS, GA, PCA BP-ANN
SNV-SD-si-PLS-GA-PCA-

BP-ANN
Rp = 0.99

[112]

Discrimination of tea
maturity

FD, SD, Mean
centering, SNV,

MSC, SG
PCA

BPNN, GS-SVM,
PSO-SVM

SG-PCA-PSO-SVM
Accuracy = 98.92%

[113]

Traceability of Tea
Raw Materials

Smoothing, MSC,
FD, SD

/ PLS
MSC-PLS
R2 = 0.82

[114]

Discrimination of
diseases

MSC, SNV, SG,
KND, FD, SD

/ DPLS, DA
MSC-FD-SG-DA
Accuracy = 100%

[115]

Identification of tea
growing environment

Norris filter, SG,
MSC, FD, Mean

/
SMLR, PCR,

Si-PLS
Mean-Si-PLS

Rc = 0.96
[116].
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Table 8. Application of MIRS analysis in the study of quality of fresh tea leaves.

Appliance Pre-Process Feature Extraction Modeling Beat Result Reference

Determination of
dry matter content

Smoothing, MSC,
SNV KPCA, WPT–SA LS-SVM, PLS SNV-WPT-LS-SVM

Rp = 0.96 [117]

Determination of
polyphenols and

flavonoids
/ PCA PLS PCA-PLS

R = 0.98 [118]

Detection of tea
stalk and insect
foreign bodies

/ / KNN KNN
Accuracy = 100% [119]

Table 9. Application of THz analysis in the study of the quality of fresh tea leaves.

Appliance Pre-Process Feature Extraction Modeling Beat Result Reference

Degrees of
oxidation / PCA Hierarchical

cluster analysis PCA-HCA [120]

Detection of tea
stalk and insect
foreign bodies

/ / KNN KNN
Accuracy = 100% [121]

Assessment of
cold injury / /

two-dimensional
correlation

spectroscopy-
PLSR, average
intensity-PLSR

2DCOS-PLSR
R = 0.91 [122]

Table 10. Application of RS analysis in the study of the quality of fresh tea leaves.

Appliance Pre-Process Feature Extraction Modeling Beat Result Reference

Detection of
carotenoid content

Smooting,
Normalization,

MSC, Baseling, WT
SPA PLSR WT-SPA-PLS

Rp = 0.87 [124]

Detection of
photosynthetic

pigments

MSC, WT, SNV,
RCF, airPLS CARS PLSR RCF-CARS-PLSR

Rp = 0.89 [125]

Identification of
tea Quality

Smooting,
Normalization PCA LDA

Smooting-Normalization-
PCA-LDA

Accuracy = 100%
[126]

Anthracnose
Identification Baseline correction PCA / Baseline correction-PCA

Accuracy = 95% [127]

Table 11. Application of FS analysis in the study of the quality of fresh tea leaves.

Appliance Pre-Process Feature Extraction Modeling Beat Result Reference

Detection of
chlorophyll

content
SG SPA, UVE PLSR, BiPLS SG-SPA-BiPLS

Rp = 0.96 [128]

Determination of
Pesticide Residue

Black and white
correction PCA Spectral angle

mappe

Black and white
correction-PCA-

SAM
Accuracy = 100%

[129]

Diagnosis of leaf
spot disease SG PCA PLS-DA, SVM,

LDA
SG-PCA-LDA

Accuracy = 98.9% [130]

Comparing the application of HSI with NIRS, MIRS, THz, RS, and FS in tea leaves,
it can be found that although HSI can acquire reflectance information and spatial image
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information at the same time, the commonly used HSI band is often in the range of 400–
1100. However, HSI with a wider range of wavebands is particularly costly, which makes it
difficult to be widely used. Although water content and nitrogen can be screened out in
the 400–1100 band and some of the built-in components of tea leaves can also be screened
out in the band, similar to caffeine, gallic acid, etc., whose absorption peaks are in the
2000 band, they cannot be analyzed or the results of the analysis are poor [100,102,105].
In this regard, subsequent studies could move toward the simultaneous use of HSI and
other spectrometers to obtain more comprehensive spectral information on tea leaves,
and thus accurately analyze the quality of tea leaves. It is interesting to note that the
number of sample sets for quantitative or qualitative analyses of tea leaves is usually
between 100 and 300 [52,93]. Since spectral information is usually analyzed in conjunction
with physicochemical measurements, the workload involved in obtaining samples is very
high, which explains the small number of sample sets. However, due to this, it tends
to make the final model suffer from overfitting and poor generalization. When dealing
with spectral data, how to balance the spectral information signal-to-noise ratio is also
a key factor in the subsequent construction of a stable and accurate model when using
smoothing, correction, and other means. At the same time, when screening the feature band
dimensionality reduction, determining how to preserve the complete information as much
as possible and reduce the dimensionality of the operation is also particularly important.
Only after dealing with these steps can we construct a stable and accurate model for tea leaf
quality analysis.

6. Conclusions and Prospects

This review focuses on summarizing the principles of hyperspectral imaging technol-
ogy and the progress of analytical methods and applications in the quality testing of fresh
tea leaves. It also briefly introduces the principles and applications of infrared and Raman
spectroscopic techniques in tea quality testing. According to the previous research results
of scholars, hyperspectral imaging technology and infrared spectroscopic technology have
been proven to be effective tools for detecting the quality of fresh tea leaves. Compared
with traditional testing methods, they are fast, highly accurate, and non-destructive, and
do not require chemical reagents. The application of hyperspectral imaging technology,
infrared, and other spectroscopic techniques can be used to reliably and conveniently detect
the water content and quality material content components of tea leaves, thus promoting
the classification of tea raw materials and assisting in the harvesting of tea leaves. But, at
the same time, based on the discussion section, there are some challenges in the application
of spectroscopic technology for the quality detection of tea fresh leaves:

(1) First of all, due to the chromaticity and luminosity of the capture ability, field use of
spectroscopy to collect samples reflectance, by the light conditions, will affect the final test
results. At the same time, in determining how to detect the quality composition content of
tea fresh leaves in the tree, there are also challenges of how to select the region of interest,
obtain a more consistent reflectance of the sample, and then build a stable estimation model.

(2) Secondly, the visualization and prediction technique of hyperspectral imaging
provides great convenience for the detection of tea fresh leaves quality, but its high cost,
large amount of imaging data, and high redundancy usually require data preprocessing
by extracting the feature wavelengths through a variety of effective algorithms for dimen-
sionality reduction, as well as building a robust calibration model for extracting the depth
features. Spectral techniques such as infrared and other spectral techniques are unable to
obtain image phenotypic information, meaning some information is missing. It is especially
important to obtain multi-spectral images of the characteristic bands of tea leaf quality
substances and reduce the amount of data without losing the characteristic information of
tea leaf quality substances.

(3) Finally, after constructing the quality classification model of tea leaves and the
regression of component content detection, determining how to ensure the stability of
the model and the subsequent generalization performance and reduce the data run-
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ning memory are also important issues in spectral technology in the quality detection of
tea leaves.
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