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Abstract: The aim of this study was to investigate the impact of a pulsed electric field (PEF) on the
structural and functional properties of quinoa protein isolate (QPI). The findings revealed a significant
alteration in the secondary structure of QPI following PEF treatment, converting the random coil into
the 3-sheet, resulting in an improvement in structure orderliness and an enhancement of thermal
stability. The PEF treatment led to a reduction in particle size, induced structural unfolding, and
increased the surface hydrophobicity, resulting in a statistically significant enhancement in the
solubility, foaming, and emulsifying properties of QPI (p < 0.05). Specifically, PEF treatment at
7.5 kV/cm for 30 pulses was identified as the optimal condition for modifying QPI. This study
provides a basis for the precision and range of application of pulsed electric field treatment and offers
the possibility of improving the physical and chemical properties of quinoa protein.
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1. Introduction

Quinoa (Chenopodium quinoa Willd.) has a long history of cultivation and consumption.
Quinoa also has a high tolerance to climatic extremes such as frost and drought and
soil conditions such as high salinity [1], which gives it great application prospects in
agricultural cultivation and food processing [2]. With the development of modern society
and the pursuit of a healthy diet by consumers, the global trend of quinoa consumption has
gradually expanded [3]. Quinoa has a protein content ranging from 15.6% to 18.7% [4]. The
biological value of quinoa protein is 73%, comparable to that of beef (74%) and much higher
than that of other crops such as rice (56%) [5]. Quinoa is considered a protein-rich food and
rich in lysine (59 g/kg), which is lacking in most cereals [6]. Quinoa is a gluten-free food
and is a suitable food for people suffering from celiac disease [7]. Compared with animal
albumin, plant proteins perform poorly in functional properties, such as solubility [8]. More
research is needed to improve the processing characteristics of quinoa protein to achieve its
commercial exploitation and utilization.

In recent years, nonthermal treatments (ultrasonic, high-pressure microfluidics, and
pulsed electric field treatments) have attracted widespread attention because of their low
energy consumption, environmental friendliness, and maximized retention of food nutri-
ents [9]. Nonthermal treatments can assist or substitute for traditional food processes and
provide consumers with a healthier and higher-quality experience [10]. As a burgeoning
and potential nonthermal food processing technology, PEF is progressing from the labora-
tory to industrial production [11]. Studies on the application of PEF in food processing have
shown that it can inactivate microorganisms [12] and extract active ingredients [13], modify
biomacromolecules [14], enhance chemical reactions [15], and accelerate the ripening of fer-
mented foods [16]. In the processing of proteins, PEF treatment can induce the cooperative
movement of proteins on the temporal scale of microseconds, and molecular rearrangement
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of proteins by the alternating force produced by high-frequency pulse polarity reversal [17],
which can change the structure of proteins and then change their properties [18]. Studies
have indicated that a PEF treatment (>30 kV/cm, 288 us) can modify soybean protein
isolate by inducing dissociation, denaturation, and repolymerization of the protein, lead-
ing to changes in characteristics by altering the spatial structure of the protein [19]. PEF
treatment has the potential to become a key technology for protein food processing in the
future [20]. However, more research data and functional optimization are needed to realize
the application potential of PEF in food industrial production.

In this study, we investigated and clarified the mechanism of a pulsed electric field
on the characteristics of QPI, and provided a basis for the application precision and range
of pulsed electric field treatment. In addition, this study has provided a new idea for
improving the structural and functional properties of quinoa protein.

2. Materials and Methods
2.1. Materials

Quinoa seed was obtained from Shanxi JiaQl Agricultural Technology Co., Ltd.
(Shanxi, China). N-hexane was obtained from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). Sodium dodecyl sulfate (SDS), Coomassie Brilliant Blue G-250 destain-
ing solution, 3-mercaptoethanol (BME), protein marker (14.4-97.4 kD), and 1-anilino-8-
naphthalene sulfonate (ANS) were obtained from Beijing Solaibao Technology Co., Ltd.
(Beijing, China). All other chemical reagents were of analytical grade.

2.2. Extraction of a Native Quinoa Protein Isolate (N-QPI)

The method of extraction of the quinoa protein isolate refers to Alrosan et al. [21].
Quinoa was milled into flour and defatted twice with 1:5 (w/v) n-hexane. The degreased
quinoa flour and deionized water mixture at 1:12 (w/v) was adjusted to pH 11 (NaOH,
0.1 mol/L) and stirred at 45 °C for 3 h. Then, the sample was centrifuged (4000 r/min,
20 min), and the supernatant was collected (adjusted pH to 4.5, HCl, 0.1 mol/L). After
standing for 30 min, the supernatant was centrifuged for 20 min (4000 r/min), the sediment
was collected, washed twice with deionized water, centrifuged (4000 r/min, 20 min), and
the sediment pH was adjusted to 7.0 (NaOH, 0.1 mol/L). Then, the sample was lyophilized
and crushed to obtain the native quinoa protein isolate (N-QPI). The protein content of
N-QPI was measured as 83.2% using the Kjeldahl method (Method 930.29, N x 6.25) [22].

2.3. PEF Treatment of Quinoa Protein Isolate (PEF-QPIs)

The PEF processing system was set up by Xin ‘an Food Technology Co., Ltd. (Guangzhou,
Guangdong, China) [23]. N-QPI was dissolved in deionized water (5% w/w). The suspen-
sion was treated by 10, 30, and 50 pulses at 7.5 kV/cm field strength, with an interval of
0.08 ms and a wavelength of 0.052. Then, the samples were lyophilized and crushed to
obtain the PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) and stored at —20 °C until use.

2.4. Scanning Electron Microscopy (SEM)

The microstructure images of N-QPI and PEF-QPIs were obtained by SEM (JSM-7500,
JEOL, Tokyo, Japan) based on the method described by Zhang et al. [24]. The N-QPI and
PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) obtained in Sections 2.2 and 2.3 were uniformly
stuck to the conductive tape separately and sputter-coated under a high vacuum with gold.
The acceleration of voltage was 10 kV.

2.5. Determination of Particle Size and Zeta Potential

The particle size and zeta-potential measurements were based on the method described
by Lyu et al. [25]. The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) obtained in
Sections 2.2 and 2.3 were dissolved in deionized water (1 mg/mL). The zeta potential and
particle size were determined after magnetic stirring at 25 °C for 2 h (Zetasizer Nano Z590,
Malvern, PA, USA).



Foods 2024, 13, 148

30f16

2.6. SDS-PAGE Analysis

The SDS-PAGE procedure of operation was based on the method described by Mir
et al. [26]. Acrylamide separation and concentration gel were 12% and 4% apart, respec-
tively, and used for SDS-PAGE analysis. The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30,
50 pulses) obtained in Sections 2.2 and 2.3 were mixed with sample buffer and bromophe-
nol blue reagent (5 mg/mL), respectively, stirred at 25 °C for 2 h, and boiled in a the
water bath for 10 min. In addition, 20 uL/mL -mercaptoethanol along with the sample
buffer was used for reduction electrophoresis. The SDS-PAGE analysis used 14.4-97.4 kDa
mixed protein markers (Beijing Solaibao Technology Co., Ltd., Beijing, China) as a reference.
The operating voltage was 100 V for the sample concentrate and 150 V for the sample
separate at a steady current of 40 mA (DYY-7C electrophoresis apparatus, Beijing, China).
After electrophoresis, the gel was stained with Coomassie Brilliant blue G-250 for 2 h and
decolorized with the destaining solution for 6 h and tap water for 2 h.

2.7. Determination of Fourier-Transform Infrared Spectroscopy

The Fourier-transform infrared spectroscopy measurement was based on the method
described by Ling et al. [27]. The secondary structure of the samples was determined using
FTIR spectrometer (Tesor 27, Bruker Co., Bremen, Germany). The N-QPI and PEF-QPIs
(7.5kV/cm 10, 30, 50 pulses) obtained in Sections 2.2 and 2.3 were separately mixed with
KBr (1:200, m/m) to analyze the spectra with a wavelength range of 4000-400 cm~!. Omnic
and Peak Fit v4.12 software were used to analyze the spectra.

2.8. Determination of UV Spectrum

The UV spectrum measurement was based on the method described by Liu et al. [28].
The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) obtained in Sections 2.2 and 2.3
were separately dissolved in deionized water (1 mg/mL) and stirred at 25 °C for 2 h, and
the UV spectrum of 200400 nm was measured by a UV-visible spectrophotometer (Agilent
Technologies Co., Ltd., Shanghai, China). Deionized water was left as the blank. The
scanning rate was 100 nm/min, the scanning interval time was 0.25 s, the scanning width
was 1.0 nm, and the scanning minimum interval was 0.2 nm. Five scans were averaged to
obtain the final UV spectrum data.

2.9. Determination of Intrinsic Fluorescence Spectrum

The intrinsic fluorescence spectrum measurement was based on the method described
by Liu et al. [28]. The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) obtained in
Sections 2.2 and 2.3 were separately dissolved in deionized water (1 mg/mL) and stirred at
25 °C for 2 h. The emission wavelength was in the range of 300—400 nm, and the excitation
wavelength was 290 nm, as measured by a Fluorospectro Spectrometer (RF-5301 Shimadzu
International Trading Co., Ltd., Shanghai, China). Deionized water was left as the blank.

2.10. Determination of Surface Hydrophobicity

The surface hydrophobicity measurement was based on the method described by
Mir et al. [26]. The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) obtained in
Sections 2.2 and 2.3 were separately dissolved in deionized water (0.5 mg/mL), and gradi-
ent dilution ranged from 0.05 mg/mL to 0.5 mg/mL. ANS (8 mmoL, 20 uL) was added
to each above-diluted sample (4 mL), and the mixture was reacted in the dark for 10 min.
The excitation wavelength was 390 nm, the emission wavelength was 470 nm, and the
slit width was 5.0 nm, as measured by a Fluorospectro Spectrometer (RF-5301 Shimadzu
International Trading Co., Ltd., China). The protein concentration was plotted against the
fluorescence intensity, and the surface hydrophobicity index was the slope of the curve
calculated by linear regression.
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2.11. Differential Scanning Calorimetry

The differential scanning calorimetry (DSC) measurement was based on the method
described by Zhang et al. [24]. The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses)
obtained in Sections 2.2 and 2.3 were separately added to a standard aluminum pot (3 mg),
sealed and equilibrated at 25 °C for 4 h. At a rate of 10 °C/min, the samples heated in
DSC were heated from 30 °C to 130 °C (Mettler-Toledo, Greifensee, Switzerland) under a
nitrogen purge environment (50 mL/min).

2.12. Determination of the Functional Properties of the Quinoa Protein Isolates
2.12.1. Determination of Solubility

The solubility measurement was based on the method described by Zhang et al. [29].
The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) obtained in Sections 2.2 and 2.3 were
separately dissolved in deionized water (10 mg/mL). The mixture was magnetically stirred
at 25 °C for 2 h, centrifuged (4000 r/min, 20 min), and the solubility of the supernatant
was determined by the Kjeldahl nitrogen determination method. The absorbance was
measured at a wavelength of 540 nm. P is the protein solubility, %; Ny is the total protein
content, mg/mL; Nj is the protein content in the supernatant, mg/mL. The determination
of solubility was calculated with the following equation:

P(%) = (N;/Np) x 100 Q)

2.12.2. Determination of Emulsifying Properties

The measurement of the emulsifying properties was based on the method described
by Chen et al. [30]. The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30, 50 pulses) obtained in
Sections 2.2 and 2.3 were separately dissolved in deionized water (10 mg/mL). The mixture
was magnetically stirred at 25 °C for 2 h and homogenized with soybean oil (3:1 v:v) by FSH-
2a adjustable high-speed homogenizer for 1 min (10,000 rmp/min, Hangzhou Research and
Experimental Instrument Co., Ltd., Hangzhou, China). Then, 100 pL from the emulsion was
sampled to 0.1% SDS solution (10 mL), and vortexed for 5 s. The absorbance was measured
at the wavelength of 500 nm, and measured again after 30 min. Ay is the absorbance of the
sample at 500 nm wavelength for 0 min; D is the dilution coefficient (40); Ny is the initial
protein concentration (g/mL); ¢ is the optical path length (1 cm); 0 is the fraction of oil
used to form the emulsion (0.25); AA is the change of absorbance from 0 to 30 min; t is the
time interval (30 min). The EAI (emulsion activity index) and ESI (emulsion stability index)
were calculated with the following equation:

EAI(m?/g) = (2 x 2.303 x Ag x D)/(Np X ¢ x 6 x 10000) @)
ESI(min) = (Ag/AA) x t ®)

2.12.3. Determination of Foaming Properties

The foaming capacity (FC) and foaming stability (FS) measurements were based on
the method described by Lyu et al. [25]. The N-QPI and PEF-QPIs (7.5 kV/cm 10, 30,
50 pulses) obtained in Sections 2.2 and 2.3 were separately dissolved in deionized water
(10 mg/mL). The mixture was magnetically stirred at 25 °C for 2 h and homogenized
by FSH-2a adjustable high-speed homogenizer for 2 min (10,000 rmp/min, Hangzhou
Research and Experimental Instrument Co., Ltd.). The FC was measured by comparing
foam volume after homogenizing with the sample liquid volume. The FS was measured
after 30 min in the same way as the FC. V) is the volume of foam after homogenization, mL;
V is the initial volume of quinoa protein solution, mL; V3 is the foam volume measured
after standing for 30 min, mL. The determination of FC and FS was calculated with the
following equation:
FC(%) = (Vo/V) x 100 4)
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FS(%) = (V30/Vp) x 100 ®)

2.13. Statistical Analyses

The indices involved in the experiment were measured three times. The mean value
and standard deviation of the data were analyzed by SPSS 17.0. Graphs were drawn by
Origin 8.5. The FTIR spectra were analyzed by Peak Fit V4.12.

3. Results and Discussion
3.1. Effect of PEF Treatment on Scanning Electron Microscopy (SEM) of QPIs

Figure 1A shows that N-QPI was in the form of large particles, and PEF treatment with
7.5kV/cm 10 pulses caused quinoa protein to fragment into small-diameter particles, which
may be due to the lower number of treatments (7.5 kV/cm 10 pulses group) shattering
the aggregates of quinoa protein and making its particles smaller. The reduction of the
particle size is conducive to the improvement of solubility [24]. However, PEF treatment
with 7.5 kV/cm 30 and 50 pulses resulted in a formation of aggregates and smaller particles
of quinoa protein, which was consistent with the particle size change of samples under
this condition, and the solubility decreased with the increase of particle size. In Figure 1B,
N-QPI is a porous honeycomb structure. The PEF treated QPI with 7.5 kV/cm 10 pulses
decreased in aperture and inflated in volume. The display of images of PEF-QPI treated with
approximately 30 and 50 pulses is less porous but fluffy and rough. The 7.5 kV/cm 30-pulse
treatment had a positive effect on the compactness and uniformity of the QPI’s structure,
leading to an ordered matrix with a smaller void, conducive to the formation of a stable
interfacial layer at the gas-liquid interface and the adsorption capacity of proteins at the
oil-water interface [28]. However, excessive processing (7.5 kV/cm 50 pulses) will destroy
this stable structure and reduce the protein’s foaming and emulsifying properties [24]. The
results show that the PEF treatment altered the QPI particle size and microstructure of
quinoa proteins. The more pulses used in QPI treatment, the greater the structural changes
of quinoa protein. Zhang et al. [29] reported the transformation of rapeseed protein after
pulsed electric field treatment, and along with the increase in treatment intensity, rapeseed
protein also produced significant aggregates, similar to the results of this experiment.

Figure 1. SEM images of QPIs. SEM images of QPIs at 50 pm plotting scale ((A): (A1) shows native
quinoa protein isolate (N-QPI); (A2-A4), from left to right, treated with 10, 30, and 50 pulses of PEF
at7.5kV/cm) and at 5 um plotting scale ((B): (B1) shows N-QPI; (B2-B4), from left to right, treated
with 10, 30, and 50 pulses of PEF at 7.5 kV/cm).
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3.2. Effect of PEF Treatment on the Particle Size and Zeta Potential of QPIs

The particle size distribution reflects the effect of pulsed electric field treatment on
quinoa protein particle size. The results in Figure 2A show that PEF treatment causes
quinoa proteins to migrate toward smaller particle sizes. The peak size distribution of
N-QPI was 825 nm, 615 nm for PEF-QPI 7.5 kV/cm 10 pulses, and PEF-QPI 7.5 kV/cm
50 pulses had two peak size distributions of 340 nm and 1720 nm, respectively. The results
above indicated that some quinoa proteins formed aggregates and smaller particles after
treatment with 7.5 kV/cm 50 pulses, which changed the particle size distribution of quinoa
proteins. The change above was similar to that observed by SEM.
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Figure 2. Particle size distribution (A) and zeta potential (B) of N-QPI and 10, 30, and 50 pulses
under 7.5 kV/cm-treated PEF-QPIs. All experiments were repeated three times, and different letters
indicate significant differences (p < 0.05).

The pH of the PEF-QPIs and N-QPI samples was 7.0, which is higher than the isoelec-
tric point, so the zeta potential of the QPIs was negative. The results in Figure 2B show that
the absolute value of zeta potential in 7.5 kV/cm 10, 30, and 50 pulses PEF-QPIs (32.23,
27.17, and 29.97 mV) was significantly higher than that in N-QPI (24.33 mV). Compared
with N-QPI, PEF treatment at low pulses (7.5 kV/cm 10 pulses) reduced the particle size
of QPI, exposed the negatively charged groups to the outside, strengthened the repulsive
force of PEF-QPIs, and increased the absolute value of zeta potential. With the increase
in treatment pulses (7.5 kV/cm 30, 50 pulses), QPIs formed partial aggregates, protein
particles enlarged, and the absolute value of zeta potential declined. These results indicate
a correlation between protein aggregation and zeta potential [30].
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3.3. SDS-PAGE Analysis of N-QPIs and PEF-QPIs

Chenopodium, an 11S-type globulin, is the main component protein of QPI [31].
Figure 3A shows that the quinoa protein before and after PEF treatment mainly had
two distinct bands between 43.0 and 66.2 kDa, which is consistent with Makinen’s report
that the quinoa protein is composed of 49 and 57 kDa subunits (AB-11S) that were associated
with a hexamer by noncovalent interactions [32]. PEF treatment caused no changes in the
molecular size of quinoa proteins, indicating that pulsed field treatment caused no change
to the primary structure of quinoa proteins. The addition of 3-mercaptoethanol can break
the disulfide bond and result in subunit bands with low molecular weights. Figure 3B
shows that 3-mercaptoethanol reduced the quinoa protein from 49 to 57 kDa to several
acidic subunits (AS) between 31.0 kDa and 43.0 kDa and to several basic subunits (BS)
between 14.4 kDa and 31.0 kDa [33]. No significant band changes were observed before
and after PEF treatment, indicating that the different pulses of PEF treatments did not alter
the linkage sites of the quinoa protein disulfide bond. Ling et al. [27] also reported that
radiofrequency treatment of rice bran protein isolate did not reduce the number of subunit
bands or the intensity of the protein profile.

o e N S . S L T
Pulses of 7.5 kV/cm treatment

 Native. 10 30 50 .

Pulses of 7.5 kV/cm treatment

ol Natve 10 30 50 -
974 kDa a . 2 w1 n: ERE Y Tty
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SO DR S G = | 30k0a
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14.4 kDa 148 R

M T

E i

Figure 3. Electrophoresis patterns of unadded (3-mercaptoethanol (A) and added (3-mercaptoethanol (B)
of N-QPI and 10, 30, and 50 pulses under 7.5 kV/cm-treated PEF-QPIs.

3.4. Effect of PEF Treatment on the Secondary Structure of QPIs

Figure 4A shows the FTIR of PEF-QPIs and N-QPI recorded at 500-4000 cm ™!, which
had large numbers of characteristic absorption peaks between 3250 and 3750 cm~!. The
above characteristic absorption peaks were generally considered to be stretching vibrations
of hydrogen bonds in the protein skeleton (N-H, O-H) [26]. The FTIR spectra of the
four samples showed no significant red or blueshifts and the characteristic broad absorption
peaks were similar, indicating that the PEF treatment caused no alteration to the secondary
structure skeleton of quinoa proteins.
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Figure 4. Fourier-transform infrared line spectrum (A) and secondary structure percentage stacking
plot (B) of N-QPI and 10, 30, and 50 pulses under 7.5 kV/cm-treated PEF-QPISs, all experiments
were repeated three times, and different letters indicate significant differences with same structure
(p <0.05).

Analysis of protein FTIR spectra using Gaussian curve matching combined with the
second derivative of Fourier self-convolution and deconvolution images can reveal informa-
tion about protein group and microenvironment changes and determine the intermolecular
forces that may exist. The characteristic absorption peaks are generally considered to
be 1600-1640 cm ™! for B-sheets, 1640-1650 cm ™! for random coils, 1650-1660 cm ™! for
«-helices, and 1660-1700 cm ™! for -turns [27]. Figure 4B shows that the relative content of
quinoa protein secondary structure changed significantly after PEF treatment. Compared
with N-QPI, the content of x-helix and p-turn in PEF-QPIs was significantly increased.
After treatment with 30 pulses and 50 pulses at 7.5 kV/cm, the random coil of quinoa
protein disappeared, and the content of (3-sheets increased significantly. The results above
indicated that PEF treatment (7.5 kV/cm 30 pulses) could transform the random coil struc-
ture of quinoa protein into a (3-sheet structure and make the folding of quinoa protein
more orderly, which might be related to the change in intermolecular and intramolecular
forces [24]. Alavi et al.’s study showed that the percentage of 3-sheets was related to the
degree of protein aggregation [34]. However, high pulses (7.5 kV/cm 50 pulses) could
reduce the ratio of a-helix and 3-turn, resulting in less structural stability than that of the
PEF-QPI 7.5 kV/cm 30 pulses. The results above indicated that the PEF treatment could
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change the secondary structure of quinoa proteins. The input energy of PEF treatment
may increase the probability of protein molecules colliding, vibrating, and assembling, and
improve the ordering and aggregation tendency of proteins. The conclusion above was
consistent with the SEM scanning image analysis in this study.

3.5. Effects of PEF Treatment on the UV Spectrum, Intrinsic Fluorescence Spectrum, and Surface
Hydrophobicity of QPIs

The UV and intrinsic fluorescence spectra represented the tertiary structures of N-QPI
and PEF-QPIs. The maximum absorption peaks of the UV spectra of tryptophan and
tyrosine are usually at approximately 270 nm [28]. Figure 5A shows that N-QPI had an
absorption peak at 257 nm, while PEF-QPIs had no significant redshift or blueshift, but
had different UV spectral absorption intensities. By fitting the second derivative of the
UV spectra, the peak-to-trough ratio (r = a/b) could be computed to speculate the effect of
PEF treatment on the microenvironment of tyrosine and tryptophan residues and further
deduce the change in the average polarity of the QPI [35]. According to Figure 5B, in the
range of 280-300 nm, the index r of N-QPI was 1.109 and was significantly reduced to
0.596, 0.766, and 0.445 (7.5 kV/cm 10, 30, 50 pulses treatment), which certified that the
average hydrophobicity significantly increased. Considering the average hydrophobicity
of PEF-QPIs, that of the 7.5 kV/cm 30 pulses PEF-QPI was the lowest, but that of the
7.5 kV/cm 50 pulses PEF-QPI was the highest.
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Figure 5. First-order UV spectrum (A), second-derivative UV spectrum (B), intrinsic fluorescence
spectrum (C) (the peak value of 287-289 nm was “a”, and the valley value of 291-294 nm was “b”),
and surface hydrophobicity (D) of N-QPI and 10, 30, and 50 pulses under 7.5 kV/cm treated PEF-
QPIs, all experiments were repeated three times, and different letters indicate significant differences
(p <0.05).
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The intrinsic fluorescence spectrum is one of the main features of the microenviron-
ment information of fluorescent chromogenic groups in protein molecules (tyrosine and
tryptophan). A wavelength of 290 nm was chosen as the excitation wavelength to deter-
mine the effect of PEF treatment on the tertiary structure of quinoa proteins [28]. Figure 5C
shows that the maximum emission wavelength (Amax) of N-QPI was 340 nm, while the
maximum emission wavelength of PEF-QPIs was slightly blueshifted at 340 nm, indicating
that PEF treatment changed the tertiary structure of quinoa protein, and the tryptophan
residues transferred to the hydrophobic region increased the average hydrophobicity of
quinoa protein [27]. The intrinsic fluorescence spectrum intensity of PEF-QPIs increased
significantly from that of N-QPI (173.83 a.u), and the 7.5 kV/cm 50 pulses PEF treatment
increased the highest to 634.17 a.u. The results indicated that the energy input of PEF
treatment could expand the QPI molecule, thus exposing the buried hydrophobic groups
in the protein core and increasing the peak fluorescence intensity. The decrease in fluo-
rescence intensity after treatment with 7.5 kV/cm 30 pulses was relevant to the exposure
and quenching of fluorophores inside the protein due to the alternating force generated
by the polarity reversal of PEF treatment. As the pulses of PEF treatment increased, the
energy input increased, and the peak increases indicated folding and rearrangement of the
protein tertiary structure. The above pattern was similar to the intrinsic fluorescence spectra
of quinoa proteins treated with sonication, studied by Zuo et al. [36]. The results above
indicated that PEF treatment altered the tertiary structure of quinoa proteins, resulting in a
change in the microenvironment of quinoa protein tryptophan and tyrosine, which was the
same as the surface hydrophobicity change in this study.

According to Figure 5D, the PEF treatment could significantly increase the surface
hydrophobicity (Hp) of quinoa protein up to 3.62 times compared with N-QPI. Cao’s study
reported that the nonthermal treatment could shift a large amount of the hydrophobic
groups inside the protein molecules to the surface and increase Hy [37]. The alternating
force generated by polarity reversal in 7.5 kV/cm 10 pulses broke the complex structure of
the protein, resulting in more hydrophobic regions exposed to the solvent environment.
The QPI treated with 7.5 kV/cm 30 pulses partially aggregated under hydrophobic inter-
actions. However, the 7.5 kV/cm 50 pulses treatment exposed more hydrophobic groups
to quinoa proteins, causing a significant increase in Hy. Zhang et al. also reported that
the hydrophobicity of rice residue protein was increased significantly by nonthermal treat-
ment such as high-pressure microfluidization [24]. The changes in the UV spectrum, the
intrinsic fluorescence spectrum, and the surface hydrophobicity in this study indicated that
PEF treatment could modify the tertiary structure of quinoa protein, which unfolded the
structure of quinoa protein, exposed hydrophobic grouping and significantly increased Hy.

3.6. Effects of PEF Treatment on the Thermal Stability of QPIs

Figure 6A,B show the thermal stability of N-QPI and PEF-QPIs. T4 and AH usu-
ally represent the temperature and the quantity of heat needed for protein denaturation,
respectively [24]. The T4 for N-QPI was 83.63 °C and the AH was 10.89 J/g. Similarly,
Abugoch et al. [33] also observed a single endothermic peak in the DSC of QPI with T4
and AH values of only 83.4 °C and 0.96 ] /g, respectively. The T4 of PEF-QPIin 7.5 kV/cm
30 pulses was 84.96 °C, 1.59% higher than that of N-QPI. T4 generally reflects the main-
tenance of the molecular structure of a protein, so higher T4 values in PEF treatment
indicate increased structural compactness [38]. Compared with N-QP]I, the AH of PEF-QPIs
increased 12.77 times more (7.5 kV/cm 30 pulses), indicating that PEF treatment increased
the heat needed for denaturation and significantly enhanced its thermal stability. However,
the T4 and AH of QPI in the 7.5 kV/cm 50 pulses group decreased by 15.91% and 70.57%,
respectively, compared to the 7.5 kV /cm 30 pulses group, destroying the thermal stability
of QPL. The results above indicated that PEF treatment resulted in a more stable protein
structure with higher thermal stability.
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Figure 6. Differential scanning calorimetry (A), differential scanning calorimetry enthalpy value (B)
of N-QPI and 10, 30, and 50 pulses under 7.5 kV/cm treated PEF-QPISs, all experiments were repeated
three times, and different letters indicate significant differences (p < 0.05).

3.7. Effect of PEF Treatment on the Functional Properties of QPlIs
3.7.1. Effect of PEF Treatment on the Solubility of QPIs

Solubility is one of the functional indicators of protein denaturation and valuable
in potential commercial applications of food and beverage products [27]. According to
Figure 7, the PEF treatment significantly increased the solubility of the QPIs. Compared
with N-QPI, the solubility increased by 79.76%, 118.12%, and 85.24% with PEF treatment at
7.5kV/cm of 10, 30, and 50 pulses, respectively. The results above may be due to PEF treat-
ment destroying the noncovalent bond (such as the hydrogen bonding and the hydrophobic
interaction forces) of quinoa protein particles, resulting in smaller size, increased absolute
potential, inhibiting protein aggregation, and increased solubility [39]. However, the al-
ternating force generated by 50 pulses caused some quinoa proteins to form aggregates,
which reduced their solubility. In general, the more aggregates there are in a protein, the
lower the solubility [40]. The results above showed that the PEF treatment could influence
the solubility of quinoa protein by changing its particle size and intermolecular force.
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Figure 7. Solubility of N-QPI and 10, 30, and 50 pulses under 7.5 kV/cm-treated PEF-QPIs. All
experiments were repeated three times, and different letters indicate significant differences (p < 0.05).

3.7.2. Effect of PEF Treatment on Foaming and Emulsifying Properties of QPIs

The foaming capacity of protein refers to the ability to stabilize bubbles by forming
stiffer interfacial layers at the air-liquid interface. Foaming stability refers to the varia-
tion in foam volume per unit time [41]. According to Figure 8A, the foaming capacity
and stability of the 7.5 kV/cm 30 pulses PEF treatment increased by 12.89% and 10.56%,
respectively, compared with N-QPI. The foaming capacity depends on the solubility and
surface hydrophobicity of the protein, which migrates the protein to the bubble surface
and expands to form an interfacial layer at the air-liquid interface, resulting in a significant
increase in protein foaming performance [25]. However, as the pulses increased (7.5 kV/cm
50 pulses), the alternating force generated by PEF treatment polarity reversal increased the
interaction between protein particles and decreased the solubility of the protein, resulting
in less protein adsorbed on the air-water interface and decreased foaming properties [41].
Similarly, PEF treatment exposed the hydrophobic groups, and the higher hydrophobic
interaction promoted QPIs to form stiffer interfacial layers at the air-water interface than
N-QPI. However, PEF treatment with excessive pulses (7.5 kV/cm 50 pulses) caused ag-
gregation and reduced the foaming stability of QPI [42]. The results above indicated that
the PEF treatment promoted the adsorption of quinoa proteins at the air-water interface
and the formation of stiffer interfacial layers, which significantly improved the foaming
capacity and foaming stability of QPL

EALI is the ability of the protein to adsorb at the oil-water interface during emul-
sion preparation, and ESI is the ability to keep the emulsion stable of the protein [28].
Figure 8B shows that the highest increase of PEF-QPIs emulsification was 19.63%, treated
by 7.5 kV/cm 30 pulses. Zhang et al.’s study suggested that the improvement of emulsi-
fication was related to higher solubility and surface hydrophobicity [24]. PEF treatment
reduced the particle size of QPI and accelerated the solubility and diffusion rate of QPI at
the oil-water interface. PEF treatment also increased the surface hydrophobicity of QPI. The
exposure of hydrophobic residues increases the interaction of QPI with water and decreases
its adsorption force and tension at the oil-water interface. The PEF treatment elevated the
balance of the hydrophilic and hydrophobic ratio and increased the EAI of QPI [43]. Liu
et al. [28] observed a similar improvement in the EAI of Zanthoxylum seed protein modi-
fication by ultrasonication. Similarly, Zhao et al.’s study showed that excessive intensity
of high-pressure homogenization treatment reduced the EAI of quinoa proteins [39]. The
trends of ESI resembled those of EAL; PEF treatment increased the ESI of QPI remarkably,
and after the 7.5 kV/cm 30 pulses treatment it was 68.41% higher than that of N-QPIL. A
possible explanation was that PEF treatment resulted in increased 3-sheet content and
improved the structural compactness of QP]I, contributing to maintaining the structural
integrity of the QPI during emulsion formation and storage, therefore improving the EAI of
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QPI [36]. Research by Zhang et al. on the characteristics of rice dreg protein isolate treated
by high-pressure microfluidization showed it had a similar increase in ESI [24]. As the
pulses increased (7.5 kV/cm 50 pulses), the alternating force increased the aggregation of
QPI and decreased the solubility and the stability of the oil-water interfacial layers, and the
ESI was 36.02% lower than that of N-QPI, which is analogous to the excessively treated
QPT of high-pressure microfluidization [39]. The results above indicated that PEF treatment
promoted the ability of QPI to adsorb at the oil-water interfacial layers and the stability to
maintain emulsion, which significantly improved the EAI and ESI of QPL
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Figure 8. Foaming capacity and foaming stability (A), emulsifying activity index and emulsion
stability index (B) of N-QPI and 10, 30, and 50 pulses 7.5 kV/cm-treated PEF-QPIs. All experiments
were repeated three times, and different letters indicate significant differences (p < 0.05).

4. Conclusions

The PEF treatment changed the structure of quinoa protein, reduced the particle size,
increased the surface hydrophobicity, and improved the solubility of quinoa protein. In
this process, the pulses of treatment were an essential factor. Fewer pulses (7.5 kV/cm
10, 30 pulses) induced the structure of QPI to expand and converted random coil into a
(-sheet structure, which increased the stability and order of QPI. At the same time, the
foaming capacity, foaming stability, emulsifying activity index, and emulsion stability index
of QPI were significantly enhanced (p < 0.05). However, more pulses (7.5 kV/cm 50 pulses)
resulted in restricted reaggregation of quinoa protein particles. Notably, PEF treatment at
7.5 kV/cm for 30 pulses resulted in a more stable structure and better functional properties
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of the QPL In summary, PEF treatment enhanced the structural stability and functional
properties of QPI, which made it a more promising nutritional plant protein and expanded
the research value of PEF treatment in protein processing.
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