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Abstract: This study explains the effect of ultrasound on the extraction of the bioactive compounds
from garlic (Allium sativum L.) leaf powder. The experiment was carried out by varying the ultrasound
amplitude (30–60%), treatment time (5–15 min), and ethanol concentration (40–60%) required to
obtain the maximum extraction yield of total phenol content (TPC), total flavonoid content (TFC), and
antioxidant activity. Rotatable central composite design (RCCD) provided experimental parameter
combinations in the ultrasound-assisted extraction (UAE) of garlic leaf powder. The values of
extraction yield, TPC, TFC, and antioxidant activity for the optimized condition of RSM were
obtained at 53% amplitude, 13 min of treatment time, and 50% ethanol concentration. The values
of the target compounds predicted at this optimized condition from RSM were 32.2% extraction
yield, 9.9 mg GAE/g TPC, 6.8 mg QE/g TFC, and 58% antioxidant activity. The ANN-GA optimized
condition for the leaf extracts was obtained at 60% amplitude, 13 min treatment time, and 53% ethanol
concentration. The predicted values of optimized condition obtained by ANN-GA were recorded as
32.1738% extraction yield and 9.8661 mg GAE/g, 6.8398 mg QE/g, and 58.5527% for TPC, TFC, and
antioxidant activity, respectively. The matured leaves of garlic, if not harvested during its cultivation,
often go waste despite being rich in antioxidants and phenolic compounds. With the increased
demand for the production of value-added products, the extraction of the bioactive compounds from
garlic leaves can resolve waste management and potential health issues without affecting the crop
yield through the process for high-end use in value addition.

Keywords: Allium sativum; optimization; ANN-GA; response surface methodology; ultrasound-
assisted extraction; polyphenols; flavanoids; antioxidant

1. Introduction

The agro-food sector plays a strategic role in the commercial and economic operations
of producing and cultivating Allium species. Allium is one of the most produced and
consumed vegetative products worldwide, with a world production of 32.4 MMT in the
year 2020, with China being the highest producer, followed by India [1].

Recently, the demand for natural compounds in the prevention and cure of various
diseases such as asthma, cholera, fever, diabetes, hypertension, and cancer is constantly
increasing [2,3]. Besides that, consumers are becoming more health conscious and more
aware of the ingredients in food products and are becoming inclined towards natural
food additives rather than synthetic ones. This shift is causing an increase in the demand
for natural compounds in the industrial processing of food. Allium species is not only a
popular vegetable but also has therapeutic values [4]. It has been used in traditional medic-
inal practices since ancient times, attributed mainly to sulfur-containing compounds [5,6].
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Allium sativum L. belongs to the onion family Alliaceae, having volatile compounds, sulfur,
antioxidants, and many bioactive compounds [7]. With the plant growth, the older ma-
tured leaves, if not harvested, are dried on the plant and go to waste. Harvesting those
leaves helps in the protection of plants from lodging and provides economic importance if
harvesting occurs at proper intervals during their cultivation. Leaves of A. sativum contain
higher levels of bioactive compounds, i.e., polyphenols, ascorbic acid, and dietary fiber, and
exhibit more antioxidant activity [8]. Similar results were observed for the aged leaf extracts
from garlic for antioxidant activity, followed by the flower and then for the bulb [9]. The
presence of antioxidants in food can prevent cell damage by scavenging free radicals, thus
preventing various ailments [3,4,10]. Furthermore, more than 20 phenolic compounds are
present in garlic, which is a higher number than that in most vegetables [11]. β-resorcylic
acid is the major phenolic compound in garlic, accompanied by pyrogallol, gallic acid,
rutin, protocatechuic acid, and quercetin [12,13].

The bioactive compounds mainly find application in the development of newer food
products, medicine, agriculture, and industry but also are used in the green synthesis of
metal nanoparticles [14–19]. In the green synthesis of metal nanoparticles, a bioactive
compound can serve as a reducing agent by donating electrons and converting metal ions
into metal nanoparticles (MNPs) and as a stabilizing agent by preventing the agglomeration
of the MNPs [14,15,19]. The bioactive compounds in the extract form are mainly used to
synthesize the MNPs [20]. The bioactive compounds present in garlic can be derived in
the form of an extract by using different conventional or novel extraction methods. The
conventional extraction techniques used have lower efficiency than novel techniques of
extraction such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction
(UAE) [21–24]. Unlike high-power ultrasound applied in component extraction, low-
power ultrasound is often used as a non-destructive tool in food component analysis and
medical imaging [25–27]. The extraction using UAE is relatively more suitable than other
methods due to its cost-effectiveness and lower instrumental requirements [28]. High-
power ultrasound is used to achieve increased extraction efficiency due to the phenomena
of cavitation bubbles. These cavitation bubbles compress and decompress with ultrasonic
waves and finally collapse, producing a shock wave. These shock waves can enhance the
mixing and mechanical effect, causing increased solvent diffusion in the product matrix and
subsequently increasing the release of intracellular compounds to the bulk medium [29,30].
To obtain the maximum yield of the intracellular compound and superior extraction, the
optimum values of the factors influencing the extract must be determined [31]. Prediction
tools such as RSM and ANN-GN are primarily utilized to determine the optimal conditions
because of their ability to model complex relationships between variables and predict
outcomes based on those relationships [32].

Response surface methodology (RSM) is a mathematical and statistical method used
to elucidate the relationship between multiple input variables (also known as factors) and
a single output variable (also known as the response). It is often used in engineering
and scientific research to optimize the design of a product or process to identify the
optimal combination of input variables that will result in the desired output [33–35]. The
mathematical model that explains the input variables and the response variable is used to
make predictions and to identify the optimal combinations of input variables [36,37]. In
contrast, an artificial neural network (ANN) is a machine learning method inspired by the
structure and function of the human brain. The structure comprises neurons that receive,
process, and transmit information [37]. Based on the input data, an ANN is designed to
recognize patterns and make predictions. It can be used as a prediction tool even when the
data are complex and have a non-linear relationship which requires high levels of prediction
accuracy [38,39]. To evaluate the optimized condition from the predicted parameters, a
genetic algorithm (GA) is applied.

A GA is an optimization technique that is built on the natural selection and genetics
principle. It comprises the application of genetic operators such as selection, crossover,
and mutation to create a new generation of candidate solutions [40]. The main aim of a
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genetic algorithm is to find the optimum solution to the problem by mimicking the natural
selection process [41]. An ANN combined with a GA is a hybrid approach to machine
learning that combines the capabilities of both the ANN and GA. Combining both allows
the incorporation of a combined approach and strengthens prediction and optimization. For
the analysis and processing of data, a neural network can be used, whereas for optimizing
the parameters, a genetic algorithm can be used [42].

Thus, the aim of this study was to assess and compare the effectiveness of two pop-
ular optimization techniques, RSM and ANN-GA, in the modeling and optimization of
complex systems for the production of quality garlic (A. sativum) leaf powder extract.
Moreover, the effect of different extraction parameters on the properties of the extract was
also investigated.

2. Materials and Methods
2.1. Reagents and Standards

To estimate the bioactive compounds in the sample, chemicals such as quercetin
dihydrate, Folin–Ciocalteu reagent, gallic acid, DPPH, and other chemicals were procured
from Hi-Media Laboratories Pvt. Ltd., Mumbai, India. All the glassware used was from
Borosil Glass Works Limited, Mumbai, India.

2.2. Raw Material

The two most matured green leaves from each A. sativum plant leaving four well-
developed leaves on the plant of variety Haryana Garlic-17 (HG-17) were harvested in
the early morning from a locally grown progressive farmer’s field near the vicinity of
SLIET. Longowal Campus, Sangrur (Punjab, India). Before use, the hay-like dried portion
at the distal ends of harvested green leaves was removed and then washed in running
tap water twice. After apparent surface water drying, the leaves were cut lengthwise
into approximately 1.5 cm and dried using a PID-controlled cabinet drier maintained at
50 ± 1 ◦C. The dried garlic leaves were ground and sieved using a sieve of 100 mesh to
obtain garlic leaf powder (Figure 1).

Figure 1. Process flow diagram for garlic leaf powder preparation.

2.3. Ultrasound-Assisted Extraction (UAE)

UAE was carried out using a 20 kHz probe ultrasonicator (Qsonica 700, Qsonica,
Newtown, CT, USA) with a probe diameter of 16 mm. A frequency of 20 kHz with
a constant power of 700 W was used for the extraction of the target compounds. The
temperature of the samples was maintained by keeping them in an ice bath, causing the
temperature not to exceed 40 ◦C. For the experimental runs, the garlic leaf powder was
mixed with an ethanol–water mixture and placed in a beaker, maintaining the same distance
from the probe for each run. The applied energy for each treatment was recorded as the
instrument’s energy reading (J). Calorimetric energy was calculated as per Kikuchi and
Uchida [43] for each experiment. The digital panel on the instrument was used to control
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the ultrasound amplitude and treatment time. After applying the ultrasound, the extract
obtained was immediately filtered using the Whatman filter paper 42. The obtained extracts
were kept at 4 ◦C for further analysis.

2.4. One Factor at a Time

The one factor at a time (OFAT) approach was used to identify and select critical
factors among the various independent variables affecting the extraction yield. The various
experimental variables and their levels selected via OFAT experiments were ultrasonic
amplitude (20%, 30%, 40%, 50%, and 60%), ethanol concentration (20%, 40%, 50%, 60%,
80%, and 100%), treatment time (5, 10, 15, and 20 min) and solvent-to-solid ratio (10:1, 20:1,
30:1, 40:1, and 50:1). During this approach only a single factor was varied, keeping other
variables constant. The total phenol content of different experiments was evaluated for the
selection of independent variables that significantly influenced the extraction efficacy.

2.5. Determination of Proximate Composition

Moisture, protein, fat, ash content, and pH of the garlic leaves were estimated using
the standard method [44]. The carbohydrate content of garlic leaves was determined using
the difference method.

2.6. Determination of Total Phenol Content

For determining the total phenol content, the Folin–Ciocalteu method was followed [45]
with slight modification. Initially, 0.1 mL aliquot of the extract was combined with 2.5 mL
Folin–Ciocalteu reagent. The mixture was then incubated for 30 min after adding 2 mL of
sodium carbonate (10% w/v). The absorbance of the standard and the reaction mixture was
observed using a spectrophotometer (UV-1800 Shimadzu spectrophotometer, Shimadzu,
Kyoto, Japan) at 725 nm.

2.7. Determination of Total Flavonoid Content

Total flavonoid content was determined using the aluminum chloride colorimetry
assay method [46]. As the standard in this procedure, quercetin was utilized. Initially,
0.5 mL of supernatant was mixed with 4 mL of distilled water. Then, 0.3 mL of 5% sodium
nitrite was added to the above mixture. After 5 min, a mixture of 0.3 mL of 10% aluminum
chloride was added. At the 6th minute, 2 mL of 1 M sodium hydroxide was added, and
2.4 mL of distilled water was mixed properly. The mixture was kept at room temperature
for 15 min, and then absorbance was measured at 510 nm using a spectrophotometer. The
calibration curve of quercetin was drawn from 0–1 mg/mL, and the results were expressed
as quercetin equivalent.

2.8. DPPH Assay

The antioxidant activity was evaluated using a modified version of the DPPH scaveng-
ing assay as proposed in [47]. For this, 0.1 mL of garlic leaf extract was mixed with 3.9 mL
of 1 mM DPPH solution. The mixture was maintained in the dark at room temperature for
thirty minutes. The absorbance of the solution was then evaluated with a spectrophotome-
ter at 515 nm. For the preparation of the control, instead of the sample, 0.1 mL of distilled
water was combined with DPPH solution (3.9 mL) and observed at the same wavelength.
Equation (1) was used to calculate the DPPH scavenging activity.

DPPH scavenging (%) =
(AS − AC)

AC
× 100 (1)

where, AC and AS are the absorbances of the control and extract, respectively.

2.9. Estimation of Organosulfur and Phenolic Compounds Using HPLC

Organosulfur and phenolic compounds were estimated by using a chromatographic
estimation technique. It was performed using Water’s HPLC 2489 equipped with Water’s
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UV detector (Waters Corporation, Milford, MA, USA). The Luna LC column (150 × 4.6 mm,
5 µ particle size) and C18 column (Phenomix 100 × 4.6 mm, 5 µ particle size) were used for
the estimation of organosulfur compounds (OSCs) and phenolic compounds, respectively.

OSCs were detected with a gradient condition of 50% mobile phase A (acetonitrile)
and 50% mobile phase B (water) with a constant flow rate of 1.0 mL/min at a detection
wavelength of 254 nm. Phenolic compounds were detected at 280 nm wavelength with
varying concentrations of solvent A (water/acetonitrile/formic acid = 96/3.9/1; v/v) and
solvent B (acetonitrile/formic acid = 99.9/0.1; v/v) with time, at the flow rate of 1.0 mL/min.
The gradient program was performed with varying percentage proportions of solvent A
and solvent B (at the initial stage, the concentration of solvent A:solvent B was 100:0, at
5 min 95:5, 25 min 85:15, 30 min 80:20, 39 min 75:25, 43 min 55:45, 48 min 5:95, 50 min 5:95,
55 min 80:20, and 60 min 100:0).

All the prepared solvents were ultrasonicated for 7–10 min to remove the entrapped
air before the analysis. The extracted samples were filtered through a 0.45 µ nylon fil-
ter to eliminate the undesirable contaminants if present. An individual OSC and phe-
nolic standard was first run to estimate the faithful retention time at respective wave-
lengths. These compounds were identified by comparison with standard compound reten-
tion times. The individual OSCs and phenolic compounds were calculated by applying
Equations (2) and (3), respectively.

Concentration of individual OSC (ppm) =
Areasample

AreaStd
× Concstd (2)

Concentration of individual phenolic compound (ppm) =
Areasample

AreaStd
× Concstd (3)

2.10. Experimental Design

The input parameters and their ranges were designated based on the method of
one factor at a time. The solute-to-solvent ratio of 1:40 was kept constant through-
out the experiment. Amplitude (20–60%), time (5–15 min), and ethanol concentration
(40–60%) were chosen as independent variables to optimize the extraction yield, total phe-
nol content, total flavonoid content, and antioxidant activity as the dependent parameters.
Rotatable central composite design (RCCD) was used to obtain the different compositions
of input variables and analyzed using design expert software (version 11.0.5.0, Stat-ease
Inc., Minneapolis, MN, USA). According to RCCD, a total of 20 runs consisted of experi-
mental combinations of eight factorial, six axial, and six central points [48] as presented in
Tables 1 and 2.

Table 1. The experimental domain of rotatable central composite design.

Coded Level

Independent Variable Units −α* −1 0 1 α*

Ultrasound Amplitude (X1) % 19.77 (~20) 30 45 60 70.23 (~70)
Treatment Time (X2) min 1.60 (~2) 5 10 15 18.40 (~18)
Ethanol Conc. (X3) % 33.18 (~33) 40 50 60 66.82 (~67)

* The (±) α values of the independent parameters are represented as round figures.

2.11. Fourier Transform Infrared Spectroscopy Analysis

Fourier transform infrared spectroscopy (FTIR) is an analytical technique that provides
information on the functional groups present in the extract, which helps to identify and
quantify the chemical components present in the sample. A Bruker Alpha FTIR system
(Germany) was used to determine the chemical conformation of the garlic leaf powder
extract obtained using UAE. The samples were scanned over a range of 4000–500 cm−1 at a
resolution of 4 cm−1 with 64 scans per sample.
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Table 2. Rotatable central composite design of three factors with their experimental and predicted responses using RSM and ANN.

Run
Space
Type

Ultrasound
Amplitude

(X1)

Treatment
Time
(X2)

Ethanol
Conc.
(X3)

Applied
Energy

(J) *

Calorimetric
Energy (J) **

Yield (%) TPC (mg GAE/g) TFC (mg QE/g) Antioxidant (%)

Experimental RSM
Pred.

ANN
Pred. Experimental RSM

Pred.
ANN
Pred. Experimental RSM

Pred.
ANN
Pred. Experimental RSM

Pred.
ANN
Pred.

1 Center 45 10 50 16,744 294.34 31.65 31.91 31.90 9.81 9.85 9.85 6.80 6.71 6.69 57.04 57.84 57.85
2 Center 45 10 50 16,744 277.73 32.14 31.91 31.90 9.89 9.85 9.85 6.78 6.71 6.69 57.74 57.84 57.85
3 Factorial 60 5 40 11,187 302.98 30.65 30.51 30.65 9.49 9.48 9.49 6.32 6.09 6.32 55.23 54.70 55.23
4 Center 45 10 50 16,744 837.19 31.74 31.91 31.90 9.82 9.85 9.85 6.85 6.71 6.69 57.87 57.84 57.85
5 Factorial 30 15 60 18,366 97.68 31.16 31.29 31.16 9.63 9.60 9.63 5.97 6.14 5.97 56.55 56.71 56.55
6 Factorial 30 5 60 6261 188.38 31.26 31.11 31.26 9.57 9.56 9.57 5.72 5.70 5.72 56.93 56.35 56.93
7 Factorial 30 5 40 7390 173.16 28.71 28.84 28.71 9.38 9.31 9.38 5.39 5.21 5.39 53.21 52.34 53.21
8 Axial 45 2 50 2846 166.50 30.45 30.42 30.45 9.47 9.53 9.47 5.49 5.78 5.49 53.86 54.89 53.86
9 Axial 70 10 50 23,389 336.38 31.73 31.68 31.73 9.82 9.82 9.82 6.88 7.01 6.88 57.80 57.55 57.80
10 Axial 20 10 50 10,390 134.66 30.11 30.17 30.11 9.38 9.42 9.38 5.53 5.49 5.53 53.39 54.16 53.39
11 Factorial 30 15 40 22,332 219.78 31.31 31.10 31.31 9.62 9.63 9.62 5.68 5.72 5.68 54.39 54.07 54.39
12 Axial 45 10 67 13,877 158.85 31.62 31.59 31.62 9.75 9.76 9.75 6.69 6.57 6.69 58.58 58.38 58.58
13 Axial 45 18 50 33,414 116.80 32.12 32.16 32.12 9.89 9.88 9.89 6.71 6.51 6.71 57.62 57.12 57.62
14 Center 45 10 50 16,744 170.09 32.21 31.91 31.90 9.90 9.85 9.85 6.67 6.71 6.69 58.59 57.84 57.85
15 Center 45 10 50 16,744 173.16 32.05 31.91 31.90 9.88 9.85 9.85 6.54 6.71 6.69 57.73 57.84 57.85
16 Factorial 60 15 40 30,957 109.41 32.24 32.39 32.24 9.88 9.86 9.88 6.57 6.52 6.57 56.79 56.99 56.79
17 Axial 45 10 33 17,820 166.50 30.46 30.50 30.46 9.48 9.52 9.48 5.48 5.70 5.48 53.12 53.84 53.12
18 Factorial 60 5 60 10,050 173.16 31.42 31.62 31.42 9.84 9.80 9.84 6.82 6.71 6.82 57.52 57.47 57.52
19 Factorial 60 15 60 28,857 146.52 31.57 31.43 31.57 9.88 9.91 9.88 6.96 7.07 6.96 57.89 58.39 57.89
20 Center 45 10 50 16,744 173.16 31.67 31.91 31.90 9.80 9.85 9.85 6.63 6.71 6.69 58.13 57.84 57.85

Abbreviations: EY, extraction yield; TPC, total phenol content; TFC, total flavonoid content; Antioxidant, antioxidant activity; RSM pred., response surface methodology predicted value;
ANN, artificial neural network predicted value; * applied energy obtained from instrument; ** calorimetric energy calculated as per Kikuchi and Uchida [43].
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2.12. Field Emission Scanning Electron Microscopy (FE-SEM)

Field emission scanning electron microscopy (FE-SEM) is a powerful imaging tech-
nique used to visualize the pores or microcracks present on the surface structure of the
sample at higher resolution. The structural analysis of the garlic leaf powder with and with-
out ultrasonic treatment was observed using a field emission scanning electron microscope
(FEI Novanano SEM 450, Nebraska Center for Materials and Nanoscience, Lincoln, NE,
USA). A magnification of 2500× was used to acquire the garlic leaf powder image before
and after the application of ultrasound treatment.

2.13. Response Surface Methodology (RSM)

RSM was utilized to model and optimize the process parameters to optimize the
dependent parameter values. The response variables were fitted to the second-order
polynomial model as given in Equation (4). The experimental data were analyzed using a
second-order full polynomial regression model to predict optimal conditions.

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i +

k−1

∑
i

k

∑
j

βijXiXj (4)

where Y represents the response variable; Xi and Xj are actual values in coded form of
the independent variable; k represents the number of considered factors (k = 3); and β0,
βi, β jj, and βij are the constant and coefficients of linear, quadratic, and interaction terms,
respectively.

Analysis of variance (ANOVA) was used to determine the significance of the regression
coefficient, and the developed regression models were validated using the conducted
statistical analysis. The adequacy of the model was evaluated by the coefficient of multiple
determination (R2). The terms in the polynomial were considered statistically different
when p < 0.05.

2.14. Artificial Neural Network (ANN) Modeling Coupled with Genetic Algorithm (GA)

The artificial neural network and the genetic algorithm were used for modeling and
optimization of parameters by neural net fitting application in machine learning and the
optimization tool in maths, statistics, and optimization tool, respectively, of MATLAB
software (Version R2018a, The MathWorks, Inc., Natick, MA, USA). The neural network
used for the experiment comprised one input, one hidden, and one output layer. Three
neurons were present in the input layer, i.e., ultrasound amplitude (X1), treatment time
(X2), and ethanol concentration (X3). A single hidden layer was selected for the experiment
to prevent the issue of overfitting. The number of neurons in the hidden layer was decided
based on the trial and error method, i.e., the heuristic method [49] to obtain the larger R2

and lower MSE values; based on that, 10 neurons were selected for the hidden layer. The
training for each response (TPC (Y1), TFC (Y2), Antioxidant (Y3), and Extraction yield (Y4))
was performed separately, and hence the output layer comprised only a single neuron.
RCCD was used to build the experimental design for UAE of garlic leaf powder with
the above three input parameters. The Levenberg–Marquardt backpropagation algorithm
was used for training the algorithm as it is fast and most recommended in the toolbox.
The input–output datasets were divided into three subsets, namely training, validation,
and testing, consisting of 70%, 15%, and 15%, respectively. The transfer function for the
hidden layer was the hyperbolic sigmoid function (tansig), whereas the transfer function
for the output layer was linear (purelin). The network was trained continuously until the
maximum R2 value and minimum MSE value were attained. After training, bias and the
weight values of the generated model were obtained, and Equation (5) was utilized for the
prediction of the response values (Yi).

tansig(n) =
2

1 + e−2×n − 1 (5)
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purelin(n) = n (6)

Yi = purelin(WOH × tansig(UIH × Xi + TH) + TO) (7)

where n is the net input, Yi is the predicted output parameter, and Xi is the input parameter.
UIH is the weight between the input layer and hidden layers, and WOH is the weight
between the hidden layer and output layer. TH is the bias value of hidden layer neurons,
and TO is the bias value of output.

The GA was used to optimize the input variables of the developed ANN model.
During the optimization phase, the fitness function (f ) was employed to maximize all of
the dependent parameters. The migration, crossover function, mutation function, selection
function, scaling function, creation function, and population type for the genetic algorithm
were chosen as forward migration, scattered, adaptive feasibility, roulette function, rank,
feasible population, and double vector. For the best optimization result, a 0.8 value was
used for the crossover fraction, and the remaining functions were set to default. The
ANN-GA optimization fitness function (f ) is as follows:

f = −(Y1 + Y2 + Y3 + Y4) (8)

where Y1, Y2, Y3, and Y4 are the ANN predicted extraction yield, TPC, TFC, and antioxidant
response, respectively, and the negative sign indicates maximizing of the function f in the GA.

2.15. Statistical Analysis

All experiments were performed at least in triplicates; one-way analysis of variance
(ANOVA) was used to examine the data, and SPSS (version 25) statistic software was used
for the analysis. Duncan’s multiple range test was used to separate mean values, and
significant differences were considered at p < 0.05. Data are presented as mean ± standard
deviation (SD). The results were analyzed using Design Expert (version 11.0.5.0, Stat-ease
Inc.), and ANOVA was used to determine the model’s significant terms and regression
coefficients of linear, interaction, and quadratic terms.

Statistical parameters such as coefficient of multiple determination (R2), normal root
mean square (NRMSE), root mean square error (RSME), mean percentage error (MPE),
normal mean square error (NMSE), mean square error (MSE), and average absolute devia-
tion (AAD) were used for the comparison of the performance of models built with ANN
and RSM. The optimum model for expressing the responses has the highest R2 and lowest
NRMSE, RSME, MPE, AAD, and MSE. The formulae of R2, NRMSE, RSME, MPE, AAD,
and MSE are presented as follows:

MSE =
∑
(
xp − xa

)2

n
(9)

NMSE =
MSE
xm

(10)

AAD =
∑
∣∣xp − xa

∣∣
n

(11)

MPE =
100
n ∑ |

(
xp − xa

)
xp

| (12)

RMSE =

√
∑
(
xp − xa

)2

n
(13)

NRMSE =
RMSE

xm
(14)
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R2 = 1− ∑
(
xp − xa

)2

∑
(
xp − xm

)2 (15)

where xp, xa, xm, and n represent predicted data, experimental data, experimental mean
data, and number of experiments, respectively.

3. Results and Discussion
3.1. Proximate Analysis

The chemical parameters of fresh garlic leaves (variety: HG-17) were analyzed for the
proximate composition and pH. The moisture content of garlic was found to be 90.04%,
which is in the range of other green leafy vegetables [50]. Protein, fat, carbohydrate, ash
content, and pH were found to be 2.23%, 0.18%, 5.99%, 1.56%, and 6.08%, respectively
(Table 3). Protein content in the garlic leaves was found to be considerably higher and fat
content was lower than that in other leafy vegetables, namely Cardiospermum halicacabum,
Premna latifolia, Argyreia pomacea, Mollugo pentaphylla, and Pisonia grandis [51].

Table 3. Proximate composition of raw garlic leaves.

Chemical Components Amount (%)

Moisture 90.04
Protein 2.23

Fat 0.18
Ash 1.56

Carbohydrate 5.99

3.2. One Factor at a Time (OFAT)

The range for the independent variable was determined using the OFAT approach. The
range of the independent variable was selected in such a way that it covers the expected
operating range and is not wide enough to make the experimental design impractical
and complex. Preliminary screening of the independent variable was performed firstly
by keeping all the variables constant and varying only the solute-to-solvent ratio. The
solid-to-solvent ratio was kept constant at 1:40 as there was no significant effect on the
extraction efficiency. After keeping the solid-to-solvent ratio constant, other independent
variables were adjusted in such a way as to include the optimal values for each factor, i.e.,
ultrasound amplitude, treatment time, and ethanol concentration. These identified optimal
values of selected critical variables were considered as the respective levels of the central
point in the CCD of RSM (Table 1). The optimal values identified in the OFAT approach for
ultrasonic amplitude, treatment time, and ethanol concentration were 45%, 10 min, and
50%, respectively.

3.3. RSM Analysis
3.3.1. Model Fitting

The experimental and predicted values of all the dependent variables (extraction
yield, TPC, TFC, and antioxidant content) and the independent parameters (ultrasound
amplitude, time, and ethanol concentration) along with the applied energy and calorimetric
energy are presented in Table 2. Similarly, the equations below represent the second-order
full polynomial models with regression coefficients used to predict the dependent variables.

EY = 31.91 + 0.4514X1 + 0.5161X2 + 0.3259X3 − 0.0950X1X2 − 0.2875X1X3 − 0.5175X2X3 − 0.3482X1
2 −

0.3482X2
2 − 0.3058X3

2 (16)
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TPC = 9.85 + 0.1194X1 + 0.1052X2 + 0.0735X3 + 0.0163X1X2 + 0.0187X1X3 − 0.0662X2X3 − 0.0794X1
2 −

0.0511X2
2 − 0.0740X3

2 (17)

TFC = 6.71 + 0.4526X1 + 0.2183X2 + 0.2596X3 − 0.0188X1X2 + 0.0337X1X3 − 0.0188X2X3 − 0.1614X1
2 −

0.1985X2
2 − 0.2038X3

2 (18)

Antioxidant activity = 57.84 + 1.01X1 + 0.6629X2 + 1.35X3 + 0.1412X1X2 − 0.3113X1X3 − 0.3438X2X3 −
0.6993X1

2 − 0.6481X2
2 − 0.6092X3

2 (19)

where X1, X2, and X3 are independent variables in coded form for ultrasound amplitude,
treatment time, and ethanol concentration, respectively.

The regression coefficients, R2, adj. R2, and lack of fit of the obtained second-order
polynomial equation for the various responses of garlic leaf extract treated with ultrasound
are shown in Table 4. Table 5 shows different parameters such as R2, NRMSE, RSME, MPE,
AAD, and MSE using formulae given in Equations (7)–(13).

Table 4. Estimated coefficients of the fitted model and analysis of variance table representing the
regression coefficients, R2, adj. R2, and lack of fit of the responses.

Coefficient Yield (%) TPC (mg GAE/g) TFC (mg QE/g) Antioxidant (%)

b0 +31.91 +9.85 +6.71 +57.84
b1 +0.4514 * +0.1194 * +0.4526 * +1.01 *
b2 +0.5161 * +0.1052 * +0.2183 * +0.6629 *
b3 +0.3259 * +0.0735 * +0.2596 * +1.35 *
b12 −0.0950 +0.0163 −0.0188 +0.1412
b13 −0.2875 * +0.0187 +0.0337 −0.3113
b23 −0.5175 * −0.0662 * −0.0188 −0.3438
b11 −0.3482 * −0.0794 * −0.1614 * −0.6993 *
b22 −0.2192 * −0.0511 * −0.1985 * −0.6481 *
b33 −0.3058 * −0.0740 * −0.2038 * −0.6092 *

R2 0.963 0.962 0.932 0.917

Adj. R2 0.930 0.928 0.870 0.842

Lack of fit 0.660 0.336 0.051 0.109
* Significant at p ≤ 0.05. Abbreviations: Yield, extraction yield; TPC, total phenol content; TFC, total flavonoid
content. b denotes the regression model; b0 denotes the constant term; b1, b2, and b3 denote the linear terms; b12,
b13, and b23 denote the interaction terms; and b11, b22, and b33 denote the quadratic terms. 1, 2, and 3 signify
independent parameters, such as ultrasound amplitude, treatment time, and ethanol concentration.

Table 5. List of all statistical parameters (R2, NRMSE, RSME, MPE, AAD, and MSE) of responses.

EY TPC TFC Antioxidant

RSM ANN RSM ANN RSM ANN RSM ANN

RMSE 0.1630 0.1259 0.0353 0.0224 0.1442 0.0604 0.5298 0.2558
NMSE 0.0052 0.0040 0.0036 0.0023 0.0228 0.0095 0.0094 0.0045
MSE 0.0266 0.0158 0.0012 0.0005 0.0208 0.0036 0.2807 0.0655

NRMSE 0.0008 0.0005 0.0001 0.0001 0.0033 0.0006 0.0050 0.0012
MPE 0.4500 0.2099 0.3160 0.1218 2.0121 0.4388 0.7860 0.1799
AAD 0.1416 0.0670 0.0306 0.0120 0.1248 0.0295 0.4376 0.1040

R2 0.9633 0.9781 0.9622 0.9848 0.9317 0.9883 0.9171 0.9807

Abbreviations: EY, extraction yield; TPC, total phenol content; TFC, total flavonoid content, Antioxidant, antioxi-
dant activity; RSM, response surface methodology; ANN, artificial neural network; R2, coefficient of multiple
determination; NRMSE, normal root mean square; RSME, root mean square error; MPE, mean percentage error;
NMSE, normal mean square error; MSE, mean square error; AAD, average absolute deviation.
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According to Table 4, the R2 and adj. R2 values of EY, TPC, TFC, and antioxidant
activity were 0.96 and 0.93, 0.96 and 0.92, 0.93 and 0.87, and 0.91 and 0.84, respectively,
indicating that the generated model is desirable. In addition, the lower values of statistical
parameters for the responses (Table 4) verify the model’s desirability. All four responses
exhibited a non-significant lack of fit, with values of 0.660 (EY), 0.336 (TPC), 0.051 (TFC),
and 0.109 (antioxidant), indicating that the models fit the data well.

3.3.2. Effect of Ultrasound Treatment on Total Phenol Content

Table 2 shows the mean response value of total phenol content (TPC) of garlic leaf
extract for 20 different experimental runs. The highest TPC value, 9.9 mg GAE/g, was
obtained at an amplitude of 45%, treatment time of 10 min, and ethanol concentration of
50%, whereas the lowest value, 9.38 mg GAE/g, was obtained at an amplitude of 30%,
treatment time of 5 min and ethanol concentration of 40%. Ultrasound amplitude (X1)
(p < 0.001), treatment time (X2) (p < 0.001), and ethanol concentration (X3) (p < 0.001) exhib-
ited a linear significant positive effect towards extraction of TPC. Similarly, the interaction
term X2X3 (p < 0.05) and each quadratic term substantially impacted the TPC yield.

The three-dimensional surface plots shown in Figure 2a–c describe the interaction
between amplitude (X1) and treatment time (X2). TPC yield increases as amplitude and
treatment time increase; this may be due to increased cavitation and thermal effect at
higher ultrasonic amplitude, which induces disruption and softening of the cell walls [52].
However, in the case of interaction between ethanol concentration (X3) and treatment time
(X2), total phenol content yield initially increased with an increase in ethanol concentration
but subsequently decreased; this could be due to the disintegration of the cell wall as
water acts as a swelling agent breaking up the plant cell wall. The ethanol dissolves the
polyphenol by disrupting the solvent solid contact area, but a further increase in the ethanol
concentration leads to an increase in the dielectric constant of the solvent, which causes
a further decrease in the yield of TPC [53]. Shirzad et al. [54] reported a similar trend for
extracting TPC from olive leaves using ultrasound.

3.3.3. Effect of Ultrasound Treatment on Total Flavonoid Content (TFC)

The highest TFC value of 6.96 QE/g was obtained at an amplitude of 60%, treatment
time of 15 min, and ethanol concentration of 60%, whereas the lowest value, 5.39 QE/g,
was obtained at an amplitude of 30%, treatment time of 5 min, and ethanol concentration of
40%. Antioxidant activity was linearly, significantly, and positively affected by ultrasound
amplitude (X1) (p < 0.005), treatment time (X2) (p < 0.001), and ethanol concentration (X3)
(p < 0.001) and negatively affected by the quadratic terms.

The three-dimensional surface plot represented in Figure 2 shows the interaction
between amplitude (X1) and time (X2), which shows an increase in the value of TFC with
the increase in the applied amplitude and time (up to about 12 min). The increase in the
phenolic compounds can be due to the cavitation effect caused by US disruption of the
structure of leaves, which aided in the diffusion of phenolic compounds in the solvent [55].
Further increase in the time caused a reduction in the TFC value. A similar trend was
reported by Zimare et al. [56], where ultrasound treatment beyond 10 min decreased the
TFC content of Lobelia nicotianifolia leaf extracts. The reduction in the bioactive compounds
with treatment time can be attributed to the formation of free radicals during cavitation [57].

3.3.4. Effect of Ultrasound Treatment on Antioxidant Activity

The DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay is a commonly used
method for measuring the antioxidant activity of a substance. The mean values of the
obtained experimental data and ANOVA analysis are shown in Tables 2 and 4, respectively.
The highest antioxidant value obtained was 58.59% at amplitude, treatment time, and
ethanol concentration of 45%, 10 min, and 50%, respectively, whereas the lowest value
obtained was 53.12% at amplitude, treatment time, and ethanol concentration of 45%,
10 min, and 33%, respectively. Antioxidant activity was positively affected by ultrasound
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amplitude (X1) (p < 0.001), treatment time (X2) (p < 0.01), and ethanol concentration (X3)
(p < 0.001) and negatively affected by the quadratic terms.

Figure 2. The effect of ultrasound amplitude, extraction time, and ethanol concentration on (a–c)
extraction yield, (d–f) total phenol content, (g–i) total flavonoid content, and (j–l) antioxidant activity
of garlic leaf powder.

The three-dimensional plot in Figure 2 represents the interaction between amplitude
(X1) and time (X2), demonstrating an increase in antioxidant activity with an increase in
amplitude and time. The antioxidant values increased up to a certain ultrasonic amplitude
of 55%. The surge in the antioxidant activity might be due to cavitation that increases the
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thermal effect leading to disruption of the structure of plant cells that leads to the release
of previously bound antioxidants within the cell [52]. Moreover, increased antioxidant
activity can also be attributed to increased polyphenol content in garlic leaf extract due
to cavitation generated during ultrasonication [58]. The further decrease in antioxidant
activity is due to the detrimental effect of oxidation during prolonged ultrasonication [59].
A similar trend for antioxidant activity in cashew apple bagasse was reported [31].

3.3.5. Effect of Ultrasound Treatment on Extraction Yield

The mean value of extraction yield is presented in Table 2. The highest value of
32.24% was obtained at amplitude, treatment time, and ethanol concentration of 60%,
15 min, and 40%, respectively, whereas the lowest extraction yield of 28.71% was ob-
tained at an amplitude of 30%, treatment time of 5 min, and ethanol concentration of
40%. The ANOVA analysis of the data represents a positive effect of linear terms, i.e.,
ultrasound amplitude (X1) (p < 0.0001), treatment time (X2) (p < 0.0001), and ethanol con-
centration (X3) (p < 0.0005), and negative effect on interaction terms such as the amplitude–
ethanol concentration (X1X3) (p < 0.01) and treatment time–ethanol concentration (X2X3)
(p < 0.0001) and quadratic terms.

Visual analysis of the three-dimensional surface and contour plots show how different
parameters affect the extraction yield. The plot showing the interaction between amplitude
(X1) and treatment time (X2) with ethanol concentration (X3) shows that there is an increase
in the extraction yield with an increase in ethanol concentration to 53%, but further decrease
can be observed due to the negative effect of the quadratic term on the ethanol concentration.
The decrease in the yield can be due to the fact that at higher ethanol concentrations,
dehydration of plant tissue occurs, which results in a decrease in the yield at higher
concentrations [60]. A similar trend was reported by Tomšik, Pavlić, Vladić, Ramić, Brindza,
and Vidović [29] for bioactive compound extraction using Allium ursinum L.

3.4. Artificial Neural Network Analysis
Model Fitting

The Levenberg–Marquardt (LM) algorithm was used for the prediction of TPC, TFC,
antioxidant, and extraction yield. Maximum R2 and minimum MSE values give reliability
and applicability to the developed model in prediction adequacy. Accordingly, the best
model was selected based on the maximum R2 and minimum MSE values. The final model
that was selected for TPC, TFC, and antioxidant activity was obtained at epoch 5, and for
the extraction yield, epoch 6. The model had one layer of input (3 neurons), one hidden
layer (10 neurons), and one layer of output for each response. The neural network diagram
for the experiment is depicted in Figure 3.

Figure 3. Optimal neural network architecture for present experiment.

The values of MSE for training, testing, and validation of TPC were 0.53554, 0.45408,
and 0.38106, and the values of R2 for the same were 0.984, 0.987, and 0.988, respectively.
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Similarly, for TFC, the values of MSE for training, testing, and validation were 0.33468,
0.66318, and 0.931, and the values of R2 was 0.987, 0.994, and 0.994, respectively. Further,
the values of MSE for training, testing, and validation of antioxidant activity were 0.62286,
0.8568, and 0.13710, and the values of R2 for the same were 0.962, 0.996, and 0.884, respec-
tively. Similarly, the MSE values for training, testing, and validation of extraction yield
were 0.18343, 0.77744, and 0.12273, and the values of R2 for the same were 0.967, 0.993, and
0.987, respectively. High R2 values confirm the prediction capability of the model. The
optimized output data obtained from the model were compared with the target values, and
the difference was used to determine the weights for the minimization of the individual sum
of square errors (SSE). Figure 4 shows the error histogram and performance of the model.

Figure 4. Post-training performance and error histogram of (a,b) extraction yield, (c,d) total phenol
content, (e,f) total flavonoid content, and (g,h) antioxidant activity of generated artificial neural
network model.
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3.5. Optimization Using Genetic Algorithm (GA)

Using GA, the process parameters (ultrasound amplitude, treatment time, and ethanol
concentration) were tuned to maximize the extraction of TPC, TFC, antioxidant activity, and
extraction yield. The procedure was repeated until the minimum RSME and MSE between
the individual fitness values and mean value were achieved. After the mutation, the
optimization cycle was maintained, and if the targeted outcome was not reached, the entire
population was employed for reproduction, crossover, and mutation for the following cycle.
Figure 5 illustrates the relation between the number of generations and the fitness value.

Figure 5. Fitness value variation across generations during optimization with a genetic algorithm.

After the 63rd generation, the figure did not show any variation in the fitness value; a
value of −107.413 was obtained as the mean fitness value. The optimization was accom-
plished under the following conditions: treatment period, 13 min; amplitude, 60%; and
ethanol concentration, 53%, with applied energy of 26,150 J and calorimetric energy of
161.37 J. The expected results of EY, TPC, TFC, and antioxidant activity were obtained at this
optimum condition as 32.17%, 9.87 mg GAE/g, 6.84 mg QE/g, and 58.55%, respectively.

3.6. Comparison between RSM and ANN Models

The predicted values of RSM and ANN models were statistically compared using
statistical measures, such as R2, NRMSE, RSME, MPE, AAD, and MSE.

Statistical parameters of both models are shown in Table 5, from which it can be
inferred that both models were entirely predictive. However, when compared, the ANN
model’s overall R2 values were more significant than those of RSM. In addition, the ANN
model has lower values for NRMSE, RSME, MPE, AAD, and MSE than the RSM model.
These findings indicate that the artificial intelligence approach of the ANN model predicts
responses far more accurately than the RSM model, the statistical approach in optimization.

The values of extraction yield, TPC, TFC, and antioxidant activity for the optimized
condition of RSM were obtained at 53% amplitude, 13 min of treatment time, and 50%
ethanol concentration with 22,430 J as applied energy and 163.94 J as calorimetric energy.
The values of the target compounds predicted at this optimized condition were 32.2%
extraction yield, 9.9 mg GAE/g TPC, 6.8 mg QE/g TFC, and 58% antioxidant activity.
Whereas for the ANN-GA optimized condition of 60% amplitude, 13 min treatment time,
and ethanol concentration of 53%, having applied energy of 26,150 J and calorimetric energy
of 161.37 J, the expected values of EY, TPC, TFC, and antioxidant activity were 32.1738%,
9.8661 mg GAE/g, 6.8398 mg QE/g, and 58.5527%, respectively. The experimental values
at these conditions showed that the values obtained at the optimum condition determined
by ANN-GA were more significant than those obtained using RSM as ANN predicted more
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accurately as it had a higher R2 value and lower NRMSE, RSME, MPE, AAD, and MSE
values than RSM.

3.7. FE-SEM Analysis

Figure 6 shows the image of the garlic leaf powder at 2500× magnification before and
after the application of ultrasound treatment. It was observed that there was a significant
change in the garlic leaf powder surface after the ultrasonic treatment application because
of the formation of microcracks, pores, and cell wall fragmentation. These changes were
caused due to cavitation on the surface-treated leaf extract samples and are depicted in
Figure 6b. These microcracks, pores, and cell wall fragmentation assist the extraction of
phenolic compounds present in the plant cell’s innermost part by increasing the material’s
surface area and mass transfer of the target compounds to the solvent. Similar results were
reported by AL-Bukhaiti et al. [61], showing that the application of ultrasound treatment
on Cissus rotundifolia increased the phenol diffusion rate from the plant cell into the solvent.
Therefore, the benefits of applying ultrasound may result from tissue and cell damage that
would speed up the mass transfer of bioactive molecules such as polyphenols.

Foods 2023, 12, x FOR PEER REVIEW 17 of 22 
 

 

change in the garlic leaf powder surface after the ultrasonic treatment application because 
of the formation of microcracks, pores, and cell wall fragmentation. These changes were 
caused due to cavitation on the surface-treated leaf extract samples and are depicted in 
Figure 6b. These microcracks, pores, and cell wall fragmentation assist the extraction of 
phenolic compounds present in the plant cell’s innermost part by increasing the material’s 
surface area and mass transfer of the target compounds to the solvent. Similar results were 
reported by AL-Bukhaiti et al. [61], showing that the application of ultrasound treatment 
on Cissus rotundifolia increased the phenol diffusion rate from the plant cell into the sol-
vent. Therefore, the benefits of applying ultrasound may result from tissue and cell dam-
age that would speed up the mass transfer of bioactive molecules such as polyphenols. 

  
(a) (b) 

Figure 6. FE-SEM images of garlic leaf powder (a) before treatment and (b) after treatment by ultra-
sonic processing at optimized ANN-GA condition (60% ultrasound amplitude, 13 min treatment 
time, and 53% ethanol concentration). 

3.8. FTIR, Polyphenol, and Sulfur Compound Analysis 
The infrared spectra of garlic leaf extract obtained at the optimum condition of UAE 

revealed the presence of functional groups that indicate a polyphenol-rich extract. The 
spectral region between 3570 and 3200 cm−1 represents stretching vibrations of the hy-
droxyl group (OH) (Figure 7) [62]. The bands between 3300 and 2500 cm−1 confirmed the 
presence of alkane (C-H stretch) and carboxylic acid (O-H stretch) [63]. The region of 
1711–1511 cm−1 shows C=O stretching [64]. The peak in the region between 1600 and 1500 
cm−1 could be due to aromatic nuclei vibration, and that between 1500 and 1400 cm−1 indi-
cates the presence of C–C cm−1 bonds in the phenolic groups [65]. The spectral region be-
tween 1044 cm−1 and 1088 cm−1 shows the presence of an alcohol functional group [66]. 

 

Figure 7. FTIR analysis of the UAE extract at optimized ANN−GA condition (60% ultrasound am-
plitude, 13 min treatment time, and 53% ethanol concentration). 

Figure 6. FE-SEM images of garlic leaf powder (a) before treatment and (b) after treatment by
ultrasonic processing at optimized ANN-GA condition (60% ultrasound amplitude, 13 min treatment
time, and 53% ethanol concentration).

3.8. FTIR, Polyphenol, and Sulfur Compound Analysis

The infrared spectra of garlic leaf extract obtained at the optimum condition of UAE
revealed the presence of functional groups that indicate a polyphenol-rich extract. The
spectral region between 3570 and 3200 cm−1 represents stretching vibrations of the hydroxyl
group (OH) (Figure 7) [62]. The bands between 3300 and 2500 cm−1 confirmed the presence
of alkane (C-H stretch) and carboxylic acid (O-H stretch) [63]. The region of 1711–1511 cm−1

shows C=O stretching [64]. The peak in the region between 1600 and 1500 cm−1 could
be due to aromatic nuclei vibration, and that between 1500 and 1400 cm−1 indicates the
presence of C–C cm−1 bonds in the phenolic groups [65]. The spectral region between
1044 cm−1 and 1088 cm−1 shows the presence of an alcohol functional group [66].

3.9. Identification and Quantification of Organosulfur Compounds (OSCs)

Table 6 shows the concentrations of different identified organosulfur compounds as
observed in the chromatogram of garlic leaf powder extract, which were confirmed as alliin,
S-allyl-L-cysteine (SAC), and allicin. The concentrations of alliin, SAC, and allicin were
estimated to be 90.207, 4.314, and 219.536 ppm, respectively. Allicin is the major bioactive
compound formed on crushing of garlic and is decomposed at the injection port of GC and
converted to vinyldithiins [67]; thus, an HPLC detection approach for the organosulfur
compounds is preferred.
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Figure 7. FTIR analysis of the UAE extract at optimized ANN−GA condition (60% ultrasound
amplitude, 13 min treatment time, and 53% ethanol concentration).

Table 6. Concentration of organosulfur and phenolic compounds in garlic leaf powder using HPLC
at 254 nm and 280 nm.

Peak Number Compounds Concentration (ppm)

Organosulfur
Alliin 90.207

S-Allyl-L-cysteine 4.314
Allicin 219.536

Phenolic

1 Gallic acid 13.591
2 3,4-Dihydroxybenzoic acid 34.403
3 Chlorogenic acid 36.537
4 Catechin hydrate 26.327
5 Syringic acid 4.276
6 p-Coumaric acid 1.228
7 Rutin 21.741
8 Ellagic acid 0.968
9 Benzoic acid 15.234

10 Hesperidin 9.272
11 Quercetin 6.140
12 β-Carotene 117.607

3.10. Identification and Quantification of Phenolic Compounds

Twelve phenolic compounds were identified in the HPLC chromatogram against the
used known phenolic compound standard (Figure 8). The retention times of standard phe-
nolic compounds were 4.225 min, 7.333 min, 13.532 min, 14.201 min, 16.479 min, 23.587 min,
26.421 min, 26.772 min, 30.292 min, 31.905 min, 42.509 min, and 50.179 min against the
known concentrations of standard compounds, namely gallic acid, 3,4-dihydroxybenzoic
acid, chlorogenic acid, catechin hydrate, syringic acid, p-coumaric acid, rutin, ellagic acid,
benzoic acid, hesperidin, quercetin, and β-carotene, respectively. Table 6 shows the con-
centration of identified phenolic compounds present in the extracted sample. Among the
identified phenolic compounds, β-carotene (117.607 ppm) showed the maximum concen-
tration of identified phenolic compounds. Chlorogenic acid, 3,4-dihydroxybenzoic acid,
catechin hydrate, rutin, benzoic acid, and gallic acid were found to have concentrations
of 36.537 ppm, 34.403 ppm, 26.327 ppm, 21.741 ppm, 15.234 ppm, and 13.591 ppm, re-
spectively. The result obtained showed a similar trend for the phenolic compounds for
gallic acid, catechin hydrate, and p-coumaric acid and showed lower concentrations for the
phenolic compounds syringic acid and benzoic acid, which were estimated in the aqueous
extracts of garlic cultivars [68]. Syringic acid, p-coumaric acid, ellagic acid, hesperidin, and
quercetin were found in concentrations of 4.276 ppm, 1.228 ppm, 0.968 ppm, 9.272 ppm,
and 6.140 ppm, respectively.
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Figure 8. HPLC chromatogram of identified polyphenols of garlic leaf powder.

4. Conclusions

Ultrasound-assisted garlic leaf powder bioactive component extraction was optimized
using response surface methodology and an artificial neural network coupled with genetic
algorithm (ANN–GA) approach. Analysis of variance data for assessing the impact of
different independent parameters on the EY, TPC, TFC, and antioxidant content were ana-
lyzed, and the developed models were assessed for predicting the responses in accordance
with the experimental results. The artificial neural network coupled with genetic algorithm
approach was much more efficient in prediction and estimation capabilities even with
fewer datasets as compared to RSM, making it a more reliable tool. The optimum values
of the independent variables obtained using ANN-GA were 60% ultrasound amplitude,
13 min treatment time, and 53% ethanol concentration, having applied energy of 26,150 J
and calorimetric energy of 161.37 J. The expected values for this optimized condition were
obtained as 32.1738%, 9.8661 mg GAE/g, 6.8398 mg QE/g, and 58.5527% for EY, TPC,
TFC, and antioxidant activity, respectively. The results also showed the potential of garlic
leaf powder in the extraction of free radical scavenging characteristics. FTIR and FE-SEM
further revealed the positive effect of applied high-power ultrasound in releasing active
components, specifically polyphenols and sulfur-containing compounds. This paves the
way for the high-end applications of developed garlic leaf powder and extract. Scaling
up the developed process thus may have the potential to unlock a multitude of benefits
in the exploration of bioactive compounds derived from garlic leaves, preferably at the
industrial level.
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