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Abstract: Proper grain storage plays a critical role in maintaining food quality. Among a variety
of grains, wheat has emerged as one of the most important grain reserves globally due to its short
growing period, high yield, and storage resistance. To improve the quality assessment of wheat
during storage, this study collected and analyzed monitoring data from more than 20 regions in
China, including information on storage environmental parameters and changes in wheat pesticide
residue concentrations. Based on these factors, an Autoformer-based model was developed to predict
the changes in wheat pesticide residue concentrations during storage. A comprehensive wheat quality
assessment index Q was set for the predicted and true values of pesticide residue concentrations,
then combined with the K-means++ algorithm to assess the quality of wheat during storage. The
results of the study demonstrate that the Autoformer model achieved the optimal prediction results
and the smallest error values. The mean absolute error (MAE) and the other four error values are
0.11017, 0.01358, 0.04681, 0.11654, and 0.13005. The findings offer technical assistance and a scientific
foundation for enhancing the quality of stored wheat.
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1. Introduction

With an annual global yield of over 700 million tonnes, wheat is the primary grain crop
grown in temperate regions [1], and one of the main reserve grains in China. Pesticides
play an important role in preventing and reducing pest damage to grains, increasing their
yield, and ensuring the quality of food crops [2]. Based on the most recent information
available on the National Bureau of Statistics website, the annual production of wheat in
China has reached 136.94 million tons. Along with the increasing production of wheat,
quality problems during wheat storage have become increasingly prominent. As the
primary source of energy for the majority of the world’s population, good-quality wheat
is an important guarantee of food security and must be stored through an appropriate
storage management system [3]. Pesticide residues are a significant factor that impacts the
quality of wheat food. The increased use of pesticides leads to excessive accumulation of
pesticide residues in wheat, and unlike other grains, pesticide residues cannot be eliminated
through washing from the wheat kernel to the process of making wheat flour for direct
consumption [4]. Therefore, controlling pesticide residue hazards during wheat storage is
of paramount importance for improving the quality of wheat.

Pesticides such as dimethoate [5] and chlorpyrifos [6] are commonly used in agri-
culture to protect fruits, vegetables, and grains from pests and diseases during planting.
Chlorpyrifos-methyl [7] is applied during storage to prevent losses from pest invasion.
However, the widespread use of these pesticides leads to varying levels of pesticide residues
in wheat crops after harvest [8], and cereal products can have lasting and comprehensive
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effects on public healthcare due to the presence of pesticide residues [9], potentially leading
to chronic health problems such as damage to the neurological and immune systems with
long-term exposure. Even after harvest, wheat grains may still contain pesticide residues,
especially during storage. As storage time increases, wheat undergoes metabolic aging that
can negatively affect its taste and color. Moreover, environmental factors during storage
such as temperature [10] and humidity [11], as reasonably set environmental parameters,
can accelerate the degradation of remaining pesticide residues in its seeds, ultimately
affecting the quality of stored wheat grains. Therefore, it is essential to recognize the risks
associated with pesticide residues in food and to take measures to minimize their impact
on human health.

Faced with such a status quo, there is an increasing demand from the public for higher
quality and quantity of cereal grains [12], resulting in a growing interest among scholars
in the quality of wheat and other grains during storage. In past studies, Rakić et al. [13]
investigated and analyzed the chemical properties of different varieties of wheat over time
under predetermined storage conditions. Fazel-Niari et al. [14] classified different combi-
nations of wheat seeds and other grains based on quality features such as shape, texture,
and color using multiple classification methods based on a machine vision system of their
own design, all with an accuracy of more than 90%. Kibar et al. [15] studied the changes
in quality characteristics of two types of wheat under different storage environments for
6 months and found that unsuitable storage environments can be detrimental to the quality
of wheat, eventually concluding that temperature is the environmental factor that most
affects the quality of wheat. Yewle et al. [16] experimentally evaluated how germination
rates and other qualities of grains with different moisture contents change under temporary
sealed storage conditions to obtain the best storage period with the least impact on cereal
quality. Liang et al. [17], based on low-field nuclear magnetic resonance imaging (LF-NMR)
and differential scanning calorimetry (DSC) techniques, revealed complex multiple corre-
lations among physical and chemical indicators of wheat. Nyarko et al. [18] used a new
polypropylene bag to improve storage of grains, resulting in lower aflatoxin and pesticide
residue concentrations, which in turn improved the quality of the grain seeds during
storage. Escalante-Aburto et al. [19] used principal component analysis to distinguish the
negative impact of different concentrations of moisture content on grain quality by assess-
ing the biophysical and viscoelasticity of several types of grains, and finally analyzed the
associations between quality characteristic variables using Pearson’s correlation analysis.
In short, these studies have revealed various factors affecting grain quality and storage.
Further research in this area is necessary to ensure sustainable agricultural practices and
secure food supplies for our growing population.

Recently, time-series analysis [20] has been widely used in the fields of medicine [21,22],
risk prediction [23,24], and agriculture [25,26], which is attributed to its ability to model
and analyze historical information to predict upcoming tendencies The quality variation
of the wheat storage process is closely related to the influencing factors with time-series
characteristics, so there are more and more scholars of time-series analysis to predict and
evaluate the quality of wheat storage and its related aspects. Jeong et al. [27] employed
the random forest (RF) algorithm, which integrated four climatic variables and seven
additional biophysical variables, to accurately forecast wheat yields across various regions
worldwide. Agarwal et al. [28] made the assumption that the quality of stored wheat grains
varies with time and extracted quality characteristics from wheat grain samples. Based on
a support vector machine (SVM) classifier, they developed an automatic quality grading
system for wheat during storage. With the application of deep learning methods, simple
machine learning methods have the restriction of gradient explosion in high-dimensional
data [29], so numerous researchers have directed their efforts to more complex neural
network models. For example, Sindwani et al. [30] used recurrent neural networks (RNN)
combined with factors such as CO2 concentration and the number of harmful insects in
grain storage to predict the grain quality conditions in Indian grain silos. Duan et al. [31]
and Yang et al. [32] used the long short-term memory neural network (LSTM) model to



Foods 2023, 12, 1833 3 of 16

predict temperature and moisture, respectively, as elements which impact the quality of
stored grain, providing a basis for setting better environmental parameters to safeguard the
quality of stored grain. Jubair et al. [33] used an improved Transformer genomic prediction
model to predict the fungal toxin content of barley. These studies demonstrate the potential
of time-series analysis and machine learning methods for predicting and evaluating the
quality of stored grain.

After a comprehensive review of the existing literature, this study presents a novel
proposal that the concentration of pesticide residues in wheat storage is influenced by
temperature and humidity during storage, which further affects the quality of wheat, so we
assess the quality of wheat at different time points by evaluating the concentration of pesti-
cide residues in wheat during storage. In order to complete this work, we first constructed
an Autoformer-based model to predict pesticide residue changes in wheat during storage.
Then a K-means++-based model was constructed for the quality assessment grading of
wheat during storage. Between the two models mentioned above, the Autoformer model
has advantages over other prediction models because the degradation of pesticide residues
in wheat is a long process and the Autoformer model is also more suitable for dealing
with long time-series data. In comparison, K-means++ has better classification results and
algorithmic stability. By conducting comparative experiments, we found that the model
in this study outperforms other similar models. The results have an important reference
value for helping the technical managers of grain storage to adjust the settings of optimal
storage conditions for wheat grain storage according to time points, promote the reduction
rate of pesticide residues in wheat, and reduce the quality loss of stored wheat.

2. Materials and Methods
2.1. Materials
2.1.1. Data

This study sourced its wheat storage monitoring data from five primary wheat-
producing regions in China (East China wheat region, Central China wheat region, North
China wheat region, Northwest China wheat region, and Southwest China wheat region),
covering several provinces and more than twenty regions. Wheat was stored in 10 shal-
low round silos. We collected samples every day during the storage period, which were
obtained by dividing the cuttings into three layers and subdividing each layer into a total
of 13 sampling points. After mixing the samples from the entire bin, we obtained the final
samples for analysis, which included a total of 2655 data points for the quality of wheat
samples. In addition, the specific environmental parameters affecting the concentration
of pesticide residues in wheat during storage in this study were storage temperature and
humidity, and the experimental data involved storage humidities of 54%, 65%, and 75%
and storage temperatures of 10 ◦C, 25 ◦C, and 35 ◦C. The Maximum Residue Limits of
Pesticides in Food of the National Food Safety Standard [34] specifies the pesticide residue
limits in wheat: 0.05 mg/kg for chlorpyrifos, 0.5 mg/kg for chlorpyrifos, and 5 mg/kg
for chlorpyrifos-methyl. In the wheat storage monitoring dataset, most of the samples
were below this limit. During the experimental process, as shown in Table 1, according to
the ratio of 7:2:1, the experimental dataset was proportionally partitioned into three sets:
training set, test set, and validation set.

Table 1. Partitioning of datasets in experiments.

Dataset Training Set Test Set Validation Set

2655 1858 531 266

2.1.2. Experimental Environment

The experimental platform in this research utilized the PyTorch [35] deep learning
framework, which is open-source software. The detailed parameters of the experimental
environment are listed in Table 2.
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Table 2. Experimental platform and environmental parameters.

Computer
information

Operating system Windows 10 64-bit

CPU Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz
(8 CPUs) ~1.8 GHz

GPU Radeon 540X Series

RAM 16 GB

Toolkit Python 3.7

Numpy 1.21.5

Scikit_Learn 1.0.2

Pandas 0.25.1

Torch 1.12.0

Matplotlib 3.5.2

2.2. Autoformer-Based Model for Predicting the Pesticide Residue Changes in Wheat

In this paper, we construct a prediction model based on Autoformer [36] to predict
changes in pesticide residues in wheat, which can realize the monitoring of pesticide
residue concentration changes in wheat subjected to environmental factors during storage.
Autoformer is an improved novel network model based on Transformer [37], with two
main innovations: the introduction of decomposition architecture into the depth prediction
model, and the design of a series-wise connected auto-correlation mechanism. These two
innovative designs address two core problems inside the temporal prediction: complex
temporal patterns and modeling the continuity of the temporal sequence itself [38]. The
specific structure of Autoformer is shown in Figure 1.
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Figure 1. Autoformer model architecture.

The series decomposition block uses the traditional decomposition operation to flatten
the period term and emphasize the trend term based on the sliding average idea for
the pesticide residue data in wheat. The model alternately performs prediction result
optimization and series decomposition, i.e., gradually separating trend and period terms
from hidden variables to achieve progressive decomposition.

χt = Avgpool(Padding(χ)) (1)

χs = χ− χt (2)

In the above equations, χt ∈ RL×d stores the mean of each sliding window, i.e.,
the periodic fluctuations of the series, and χs ∈ RL×d is the seasonal smoothed series
retained after subtracting the short-term fluctuations, so the series decomp block can also
be expressed as

χs, χt = SeriesDecomp(χ) (3)
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Encoder: the input of Encoder will be the known raw time-series data. After this, the
output result consists of two components, trend term and seasonal term, followed by grad-
ual elimination of the trend term to obtain the period term S l,1

en , S l,2
en . Furthermore, based

on this periodicity, an auto-correlation mechanism is used in Encoder to aggregate similar
subprocesses of different periods to achieve the aggregation of information. The output
of Encoder contains past seasonal information that will be used as crossover information
to help the decoder optimize the prediction results. The whole process can be expressed
as follows.

S l,1
en , _ = SeriesDecomp(AutoCorrelation(χl−1

en ) + χl−1
en ) (4)

S l,2
en , _ = SeriesDecomp(FeedForward(S l,1

en ) + S l,1
en ) (5)

χl
en = S l,2

en (6)

χl,1
en = EncoderBlk

(
χl−1

en

)
(7)

In the above equation, “_” denotes the trend part, which will not be used as the input
to the decoder part, l ∈ {1, 2, . . . , N} represents the lth encoder block, and S l,i

en denotes the
i time-series decomposition lth encoder block.

Decoder: the Decoder input contains two parts, the trend part after sequence decom-
position and other remaining parts. The Decoder part uses a two-way processing mode, a
multi-stacked auto-correlation mechanism block for the seasonal part and a cumulative
mechanism structure for the trend part accumulation, respectively. The upper branch
processes the seasonal part, and the lower branch processes the trend-cyclical part. The
upper branch first uses auto-correlation to extract the temporal dependencies inherent in
the future predicted states, then uses encoder–decoder auto-correlation to extract informa-
tion from the historical series with higher-order temporal dependencies from the encoder
output, and finally passes through the Feed Forward layer. The lower branch gradually
extracts the trend information from the predicted hidden variables, and the outputs of each
sub-layer of the upper branch are summed together using the weighted addition method.
The specific equation is shown as follows.

S l,1
de , T l,1

de = SeriesDecomp
(

AutoCorrelation
(

χl−1
de

)
+ χl−1

de

)
(8)

S l,2
de , T l,2

de = SeriesDecomp
(

AutoCorrelation
(
S l,1

de , χN
en

)
+ S l,1

de

)
(9)

S l,3
de , T l,3

de = SeriesDecomp
(

FeedForward
(
S l,2

de

)
+ S l,2

de

)
(10)

T l
de = T

l−1
de +Wl,1 ∗ T l,1

de +Wl,2 ∗ T l,2
de +Wl,3 ∗ T l,3

de (11)

χl
de = S

l,3
de (12)

Autoformer’s core auto-correlation mechanism, which is key to discovering period-
based dependencies by calculating sequence auto-correlation coefficients, consists of period-
based dependencies and time-delay aggregation. Figure 2 shows a schematic diagram of
the internal structure of the auto-correlation module.

The dependence of the period in the auto-correlation mechanism is found from the
efficient computation of the auto-correlation coefficients, as shown in Figure 2, by mapping
the inputs to obtain Q, K, and V. Based on the Winer–Khinchin theory [39], a Fast Fourier
Transforms (FFT) operation is performed on Q and K, respectively, and a conjugate opera-
tion is also added to K. Finally, the original correlation coefficientRXX (τ) of the sequence
and the lag sequence must be computed to find the periodically similar subsequence. The
specific formula is as follows.
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SXX ( f ) = F (WQXt)F ∗(WKXt) (13)

RXX (τ) = F−1(SXX ( f )) (14)

In the above equation,F represents the FFT andF−1 is the reciprocal ofF , ∗ represents
the conjugate operation, and SXX ( f ) is in the frequency domain.
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Next, time-delay aggregation of auto-correlation first aligns the subsequences with
the same phase based on the estimated cycle length using the Roll() operation, converts
them into probabilities by the softmax normalization operation, and finally aggregates
the information by fusion. The Roll() operation moves V into the same phase, as shown
in Figure 3.
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2.3. K-Means++-Based Model for Wheat Quality Assessment

In order to better assess the quality of stored wheat during storage, a comprehensive
evaluation index Q was constructed in this study, which integrates the present and predicted
pesticide residue concentrations of wheat; the equation of the evaluation index Q is shown
in (15).

Q =

[
di,
−
d i

]
(15)

In the formula, di ∈ {1, 2, . . . , n} denotes the true value and di ∈ {1, 2, . . . , n} denotes
the mean of the predicted values in the next n days.

During the study, since the wheat quality data were small-sample data with little noise,
the clustering method K-means++ [40] was used to assess the quality of wheat during
storage. K-means++ is an optimization of the K-means random initialization cluster center
method. Unlike K-means, the core idea of K-means++ is that when selecting a new cluster
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center, the more distant the point from the existing cluster center, the more likely it has the
opportunity to be selected as the cluster hub. The K-means++ algorithm does not require
artificial determination of the initial cluster center, but performs better on high-dimensional
data, which is why it was used for the analysis of wheat quality data during the experiment.

Given dataset S with N data points, let k be the desired number of clusters. The
algorithm outputs a set of k centroids { c1, c1, . . . , ck} that minimize the within-cluster sum
of squares. The standard algorithm form of the K-means++ algorithm is shown below.
Furthermore, the detailed algorithm flow is shown in Figure 4.

(1) Randomly select a point from S as the initial clustering center c1.
(2) For each data point x in S, calculate the minimum distance between each point and

the currently existing clustering center, denoted by D(X).

(3) Select the next cluster center ci from S with probability P(x) = D(X)2

∑x∈X D(X)2 and add it

to the set of selected clustering.
(4) Iterate step (2) and step (3) up to k clustering centers.
(5) Execute the standard K-means algorithm to allocate data points to the closest cluster

centers and modify the locations of the cluster centers until convergence.
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2.4. Model Evaluation Metrics

The evaluation of wheat quality relies on analyzing the changes in pesticide residue
levels as wheat is exposed to different environmental conditions during storage. Hence,
the ability to accurately predict changes in pesticide residues will affect the accuracy of
wheat quality assessment.

2.4.1. Evaluation Metrics for Predictive Models

Five assessment criteria, including MAE, mean squared error (MSE), mean absolute
percentage error (MAPE), root-mean-square error (RMSE), and symmetric mean absolute
percentage error (SMAPE), were employed in this study to gauge the fluctuations in



Foods 2023, 12, 1833 8 of 16

pesticide residue levels in wheat over the course of storage. These measures were computed
using the following formulae:

MAE =
1
n

n

∑
i=1
| d̂i − di | (16)

MSE =
1
n

n

∑
i=1

(
d̂i − di

)2
(17)

MAPE =
100%

n

n

∑
i=1
| d̂i − di

di
| (18)

RMSE =

√
1
n

n

∑
i=1

(
d̂i − di

)2
(19)

SMAPE =
100%

n

n

∑
i=1

| d̂i − di |(
| d̂i | − | di |

)
/2

(20)

In the above formulae, d̂i, i ∈ {1, 2, . . . , n} represents the predicted value, di, i ∈ {1,
2, . . . , n} represents the true value, and n represents the quantity of indicator variables.
The range of these evaluation indicators is [0, +∞), and the evaluation metrics reach their
minimum value of 0 while the predicted value is identical to the true value, at which time
the prediction model achieves the optimal effect for the ideal state of the model. When
the error is larger, the value of the evaluation indicators is larger, which can be used as
a reference.

2.4.2. Evaluation Metrics for Clustering Models

For the clustering results acquired through the K-means++ algorithm, we used the
silhouette coefficient (SC) [41] and the Davies–Bouldin index (DBI) [42]. The objective of
using these indicators was to determine the ideal number of clusters for the classification
of wheat quality during storage and achieve accurate classification.

The silhouette coefficient is calculated as follows:

SC =
1
N

N

∑
i=1

b(i)− a(i)
max{a(i), b(i)} (21)

In Equation (21), N represents the quantity of training samples, a(i) represents the
average distance between sample points and other points within the same cluster, and
b(i) denotes the mean distance between a sample point and all points in its nearest clus-
ter. The SC takes values in the range of [−1, 1], with larger values indicating superior
clustering performance.

The Davies–Bouldin Index is calculated as follows:

DBI =
1
K

N

∑
1

max

(
si + sj

dij

)
(22)

In Equation (22), s represents the mean distance between each point of the cluster and
the center of mass of the cluster, also known as the cluster diameter, and dij denotes the
distance between its different clustering cluster centers i and j. The formula calculates the
maximum similarity of a total of K clusters taking the mean value, and the best clustering
is achieved when the DBI reaches a minimum value.



Foods 2023, 12, 1833 9 of 16

3. Results and Discussion
3.1. Dataset of Wheat Quality Assessment

According to the characteristics of pesticide residue degradation in the process of grain
storage, this study used a 90-day period to collect experimental data on six dimensions of
information: time, temperature, humidity, and concentrations of dimethoate, chlorpyrifos,
and chlorpyrifos-methyl. The concentrations of these pesticides were used as predictors,
while moisture content and temperature were treated as control variables. Figures 5–7
partially display the changes in pesticide residue levels during wheat storage.
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Figure 7. Dataset of residual changes of chlorpyrifos-methyl in wheat.

As shown in the figures, we can initially see that all three types of pesticide residue in
wheat gradually degraded with time. The higher the temperature, the faster the concen-
tration of pesticide residues decreased under the same storage humidity; also, the higher
the humidity, the faster the concentration of pesticide residues decreased under the same
storage temperature. However, comprehensively comparing the three types of pesticide
residue, the degradation rates of dimethoate and chlorpyrifos-methyl were the fastest and
the most affected by temperature; humidity had a facilitating effect on the degradation rate
of two pesticides, but the effect was not significant enough. In addition, the degradation
rate of chlorpyrifos was less affected by both temperature and humidity. From the results
of the dataset, it can be seen that the optimum storage humidity for pesticide residue
degradation is 75%, and the optimum temperature is 35 ◦C.

3.2. Comparison of Models for Predicting Changes in Pesticide Residues in Wheat

To demonstrate the effectiveness of the prediction model in the research, the Auto-
former model was compared with several existing widely used neural network prediction
models. For the same wheat pesticide residue quality assessment dataset, RNN, LSTM,
and Transformer were used in this study to conduct comparison experiments with Auto-
former. Five model evaluation metrics, MAE, MSE, MAPE, RMSE, and SMAPE, were also
employed to estimate the prediction capabilities. In Table 3, these results are presented
in detail.

Table 3. Experimental results on the error comparison of Autoformer-based wheat pesticide residue
changes prediction models.

Model MAE MSE RMSE MAPE SMAPE

RNN 0.28169 0.04516 0.88492 0.55132 7.32437
LSTM 0.24352 0.04324 0.83203 0.43147 6.43174

Transformer 0.16428 0.03986 0.28255 0.19966 2.43713
Autoformer 0.11017 0.01358 0.04681 0.11654 0.13005

The Autoformer model achieved MAE, MSE, MAPE, RMSE, and SMAPE values of
0.11017, 0.01358, 0.04681, 0.11654, and 0.13005, respectively, and as can be seen from the
previous section, the larger the value of the evaluation index of the prediction model, the
larger the error of the prediction. It is also evident from the results in Table 3 that among
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the four compared prediction models, the difference between the error values of RNN and
LSTM is not significant, but their error values are significantly higher than those of the latter
two prediction models. In particular, the SMAPE values are as high as 7.32437 and 6.43174,
respectively. On the other hand, the error values of the Transformer and Autoformer
models are closer and smaller than those of the first two prediction models, indicating
that these two models are able to predict more accurately the target variables. However,
comparing the model evaluation metrics, the values of MAPE, RMSE, and SMAPE for
the Transformer model were higher than those of the Autoformer by 0.23574, 0.08282,
and 2.30708, respectively, indicating that the comprehensive performance of Transformer
prediction is inferior to Autoformer. In a word, the Autoformer-based prediction model
achieved the highest prediction accuracy on the stored wheat quality dataset, exhibiting
superior performance and outperforming the remaining three prediction models.

3.3. Comparison of Clustering Models for Wheat Quality Assessment

According to the results of the prediction of pesticide residue changes based on
Autoformer, for further work on wheat quality assessment, the daily evaluation index Q
values of individual samples of wheat were used as the clustering feature input to the
model. While applying the K-means++ and conventional K-means algorithms for wheat
quality assessment of three pesticide residues in wheat storage grains, in order for the
experiments to be more useful, two clustering evaluation indexes SC and DBI were used in
this paper to evaluate their clustering results reasonably, while conducting experiments.
The findings are presented in Figures 8 and 9.
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Figure 8. Comparison of Silhouette Coefficient of different clustering algorithms.
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Figure 9. Comparison of Davies–Bouldin Index of different clustering algorithms.

As shown in Figure 8, for different clustering algorithms, the SC of the wheat quality
data decreased gradually as the number of clusters increased, and the SC of the two
clustering algorithms reached a maximum evaluation index value when there were three
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clusters. The SC values were 0.633 and 0.603, respectively, when the wheat quality data
were most dispersed among clusters and had the best clustering quality.

Figure 9 presents the results of the DBI applied to the wheat quality data with three to
seven clusters. As shown in the figure, the magnitude of the DBI value shows a gradual
increase in general, and unlike the SC clustering evaluation index, the DBI reaches its
optimal classification result for clustering at the minimum value. Clearly, the best clustering
effect of the two models is achieved when there are three clusters. At this time, the DBI
values of the two clustering algorithms are 0.458 and 0.474, respectively.

Comparing the evaluation indexes of the two clustering models together, we can easily
see that for the wheat quality assessment dataset, despite the use of different clustering
algorithms, both have the best results in terms of classification results when there are three
clusters, i.e., classifying wheat quality into three levels. Figures 10 and 11 present results of
the comparison of the evaluation indexes of the two clustering algorithms when there are
three clusters.
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After comparing the evaluation metrics for both the SC and DBI with three clusters,
according to the line graphs, we concluded that the K-means++ clustering model performed
better than K-means for wheat quality assessment during storage. Therefore, K-means++
was used as the clustering model for wheat quality assessment during storage in this
study, and in this way the wheat quality variation dataset was divided into three categories
according to the K-means++ algorithm model. The wheat quality data of different categories
corresponded to the corresponding quality levels, and the two-dimensional clustering
centers of the three pesticide residue concentrations in wheat and the results of the number
of samples in each class are shown in Table 4.

Table 4. Clustering centers and ranking of the three clusters of wheat.

Categories di di Sample Size Quality Level

Dimethoate 1 0.03950035 0.03341637 810 Level 1
Dimethoate 2 0.04434314 0.03039072 1080 Level 2
Dimethoate 3 0.04900005 0.04175411 765 Level 3
Chlorpyrifos 1 0.22891236 0.17001536 855 Level 1
Chlorpyrifos 2 0.28989454 0.20340521 765 Level 2
Chlorpyrifos 3 0.33112902 0.25336484 1035 Level 3

Chlorpyrifos-methyl 1 1.77091609 1.22453220 890 Level 1
Chlorpyrifos-methyl 2 2.43346228 1.54720279 935 Level 2
Chlorpyrifos-methyl 3 3.20258731 2.02372957 830 Level 3

As shown in Table 4, the clustering results show that the quality of wheat became
worse with an increase in the index value of the cluster center, which is also consistent with
the reality of grain storage, the lower the concentration of pesticide residues in silos, the
better the quality condition of wheat will be. As shown in Table 4, in terms of pesticide
residues of dimethoate, most samples in the wheat quality dataset are at level 2: there are
1080 of these samples, accounting for about 41% of the total samples, and the clustering
centers of the three different levels do not differ much. This is followed by the concentration
of chlorpyrifos residues in the wheat quality data. Most samples belong to level 3: there are
1035 of these samples, accounting for about 39% of the total samples. However, compared
to the other two types of pesticide residue, its sample data for the three types of quality
level of the clustering center differences are small, which may be caused by the degradation
of chlorpyrifos in the grain bin being less affected by the temperature and humidity.
Finally, the residual levels of chlorpyrifos-methyl, on the other hand, were relatively evenly
distributed among the quality data samples of wheat, but the values of their cluster centers
were more varied, which indicated that the degradation of chlorpyrifos-methyl was the
fastest among the quality data of wheat. In conclusion, the above results indicate that
different types of pesticide residue are degraded at different rates during wheat storage
under the influence of different storage environment parameters, thus affecting the quality
of wheat.

Dimethoate, chlorpyrifos, and chlorpyrifos-methyl were used as the three most com-
mon pesticide residues in cereals to measure the quality assessment of wheat. The results
suggested that all three pesticide residues degraded gradually over time, and the rate of
degradation became faster with increasing storage temperature and humidity. Of these,
temperature is the main element affecting the degradation of pesticide residues in wheat.
Moreover, the concentration of chlorpyrifos in the results degraded slowly and was less
dependent on the environmental conditions of storage. This may be due to a number of rea-
sons, one being the properties of chlorpyrifos itself, such as chemical structure or volatility,
the other is the influence of the type of grain, as the rate of degradation of the same pesticide
residue in various grains may be different. Pesticide residues in the natural environment
degrade faster due to factors such as sunlight, wind, and precipitation. However, in the
process of grain storage, storage conditions are mostly airtight and protected from light.
The chemical properties of pesticide residues during storage are more stable and not easily



Foods 2023, 12, 1833 14 of 16

degraded, posing a threat to the quality of wheat. Furthermore, unlike other grains, wheat
is generally stored for a longer period of time after harvest. In order to ensure quality
during storage, for pesticides with slow degradation rates during storage and low national
limit standards, such as chlorpyrifos, according to the degradation rate of such pesticides,
to strictly limit its detection limit before storage. In addition, for chlorpyrifos-methyl, the
grain protectant with a faster degradation rate and higher national limit standards, it is
necessary to master its application cycle in the storage process.

During storage, there are a variety of elements that affect the quality of wheat, and
it is scientific to assess wheat quality by changes in pesticide residue concentrations in
wheat. Along with the high-speed growth of computer technology, deep-learning-related
technology, which can automatically learn and improve the feature extraction of quality,
has created new ideas for wheat quality detection and assessment. By monitoring and
predicting the quality changes of wheat during storage, and assessing the quality condition
of wheat in grain storage in a timely manner, grain storage monitors can be inspired to
timely adjust the storage environment conditions to control the degradation of pesticide
residues, enhancing the quality condition of wheat.

4. Conclusions

Playing an essential role in cereal crops, wheat is an indispensable food in people’s
daily life, especially for food security in a country with a large population such as China,
so its quality is very important. The use of pesticides in large quantities has increased the
yield of wheat, but the safety of grain quality from pesticide residues has also attracted
attention. These pesticide residues may affect the quality of wheat, and in serious cases
may even be potentially harmful to human health.

The quality of wheat is mainly affected by the harvest time and storage conditions.
In this study, starting from the storage environment, we used the temperature, storage
humidity, and the concentration of pesticide residues in wheat during storage, which are
elements that can easily contribute to the quality of wheat, and then innovatively combined
the degradation changes of pesticide residues occurring during wheat storage. We used an
Autoformer-based deep neural networks model to accurately predict the levels of different
pesticide residues in wheat under different environmental influences in grain storage,
and an evaluation index Q was constructed using existing and predicted pesticide residue
concentrations to make a reasonable grading assessment of the quality of wheat. The results
showed that the degradation speed of pesticide residues during storage is influenced by
environmental parameters such as temperature and humidity, and considering the three
pesticide residues together, the most suitable environmental parameters for their residue
dissipation were a storage humidity of 75% and a temperature of 35 ◦C. Therefore, suitable
storage conditions will promote the degradation of pesticide residues in wheat.

However, it should be noted that our study only investigated the effects of two major
environmental factors on the degradation of pesticide residues during storage. Other factors
such as the pH value of the storage environment and the moisture content of the wheat
itself could also impact the degradation of pesticide residues in wheat storage and warrant
further investigation. Additionally, beyond pesticide residues, other quality indicators such
as cultivar, fungal and bacterial content, sensory features, degree of oxidation, etc., could
also be considered in future quality assessments of stored wheat.
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