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Abstract: Human milk is the healthiest option for newborns, although, under specific circumstances,
infant formula is a precious alternative for feeding the baby. Except for the nutritional content,
infant formulas and baby food must be pollutant-free. Thus, their composition is controlled by
continuous monitoring and regulated by establishing upper limits and guideline values for safe
exposure. Legislation differs worldwide, although there are standard policies and strategies for
protecting vulnerable infants. This work presents current regulations and directives for restricting
endocrine-disrupting chemicals and persistent organic pollutants in infant formulas. Risk assessment
studies, which are limited, are necessary to depict exposure variations and assess the health risks for
infants from dietary exposure to pollutants.
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1. Introduction

Human milk is the healthiest option for newborns because it provides babies with
antibodies not found in formulas, is more easily digested, and infants can absorb fat and
nutrients better. However, when infant formula cannot be avoided, it becomes a precious
alternative for feeding the baby. The global infant formula market is expected to grow
annually at 9.35% from 2017 to 2025, driven by the increasing working women population
across various geographic regions worldwide. The manufacturers are focusing on enhanc-
ing the nutritional content of infant formula to substitute breastfeeding [1]. Except for the
nutritional content, infant formulas and baby food must be free from chemical pollutants
and contaminants. Thus, their composition is controlled by continuously monitoring the
chemical concentrations and regulated by establishing upper limits and guideline values
for safe exposure. Legislation differs worldwide, although there are standard policies and
strategies for protecting vulnerable infants.

Environmental pollution could not be natural as the chemicals are part of modern life.
Organic pollutants have been found to contaminate human milk, infant formula, and infant
food [2–4]. Infants and babies are dietary exposed or exposed by crawling or mouthing
plastic things. The absorption, distribution in systems, and metabolism of xenobiotics in
infants differ from adults due to differences in the circulatory system and the enzymes
involved in these processes. The excretion of substances occurs to a lesser extent due to an
immature metabolism and reduced renal function, which is increased during the first year
of life. The role of hormones in cell differentiation and organ formation during prenatal
development is most important [5]. The immune system and lungs develop from birth
until the child is ten years old. The central nervous and reproductive systems fully develop
during adulthood, indicating that, except for prenatal exposure, exposure during childhood
and adulthood is also important [5]. The alterations in sex hormones during the fetal period
and infancy affect the normal development of the reproductive system, resulting in chronic
health problems. Thyroid function is also susceptible to hormone mimics as they compete
with normal thyroid hormones for binding to transport proteins and TH-receptors [6–10].
Groups of endocrine or potential endocrine disruptors, their applications, and associated
health effects are presented in Table 1.

Table 1. Chemical names, usage, and reported effects of specific compounds with potential endocrine
action *.

Chemical Names Usage Effects

Organophosphate pesticides (OPs) Agriculture

• Neurological effects
• Respiratory problems
• Hypospadias
• Birth effects

Dioxins (PCDDs) Mainly by-products of
industrial practices

• Delayed breast development during adolescence
• Increased possibility of female birth

Polychlorinated biphenyls (PCBs) Industry

• Male infertility
• Disorders of neuro-behavioral, respiratory, and

immune systems in children,
• Diabetes

Phytoestrogens Agriculture • Hypospadias

Flame retardants, such as
tetrabromobisphenol A (TBBPA), PBDEs,
and PBBs

Industry

• Cryptorchidism
• Diabetes
• Neuro-developmental disorders
• Potentially carcinogenic
• Thyroid disruption

Polybrominated biphenyls (PBBs) Industry • Early onset of menstruation
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Table 1. Cont.

Chemical Names Usage Effects

Diethylstilbestrol (DES)

• Male: hypospadias, cryptorchidism, epididymal
cysts, and disorders of testicular and sperm
function

• Female: increased risk of breast cancer, vaginal
adenosis, oligomenorrhea, genital cancers, and
pregnancy disorders

Organochlorine pesticides (DDT and
its metabolites) Industry, agriculture

• Possibly carcinogenic
• Delayed adolescence
• 4,4′-DDE: anti-androgenic

Perfluorinated chemicals (PFC), such as
perfluorooctanoic acid (PFOA) and
perfluorooctane sulfonate (PFOS)

Coatings against stains and oils,
floor varnishes, and pesticides • Endocrine disruption

Phthalates Plastic packaging
• Disruption of androgenic biosynthesis
• Variation in the androgenic index
• Increased LH/testosterone ratio

Bisphenol A (BPA) and analogs Plastic or coatings in food packaging • Endocrine disruption

UV filters, such as
4-methylbenzylidene-camphor (4-MBC),
octyl-methoxycinnamate (OMC), and
benzophenone 2 (BP2)

Sunscreens • Endocrine disruption

* Refs. [9,11–15].

The list of chemicals that have been detected in infant milk and baby foods includes
flame retardants, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs),
dioxins, and furans that are either produced industrially or by-products from industrial
processes and combustion [4]. They are categorized as Persistent Organic Pollutants
(POPs) that are dangerous and lipophilic with resistance to decomposition processes in the
environment and organisms. They are transported by wind and water to other areas, and
their accumulation in the food chain has resulted in their exposure to living organisms,
even though some compounds have been banned. The Stockholm Convention (2001) listed
12 POPs, nine OCPs (aldrin, chlordane, dichlorodiphenyltrichloroethane-DDT, dieldrin,
endrin, heptachlor, mirex, toxaphene, and hexachlorobenzene-HCB), PCBs, dioxins, and
furans to be subjected to restrictions to protect human health and the environment [14].

Except for POPs, there are organic compounds that raise concerns due to their human
toxicity, and they are not accumulating in the food chain and living organisms. Such chemicals
are bisphenol A and its analogs, F and S, phthalate esters, and parabens that are used as
additives and plasticizers in consumer products (cosmetics, clothes, food packaging, canned
food, personal care products, and baby products), resulting in the everyday exposure of the
general population and vulnerable groups to these chemicals [9,16–18]. Additionally, they
have been characterized as endocrine disruptors or chemicals with potential endocrine action.
In addition to their direct effects on hormonal function, they negatively impact the nervous,
respiratory, and reproductive systems. Moreover, they seem to play a role in metabolic
syndromes (obesity, type 2 diabetes) and cancer [9,19–22].

This review presents infant formula strategies and regulations for controlling specific
pollutants (pesticides, phthalates, bisphenols, parabens, dioxins, furans, and PCBs). Recent
studies on risk assessments that associate infants’ dietary exposure with potential health risks
are also discussed to examine whether the scientific results agree with the legal requirements.

2. Pesticides

The group of pesticides includes insecticides, herbicides, and fungicides that are
widely used in agriculture and the production of fruits, vegetables, and cereals for their
protection against microorganisms or insects. Humans are exposed to pesticides either
environmentally by domestic use or consumption of contaminated food or occupationally
by farmers and workers in the industry [14,23]. An important source of an infant’s dietary
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pesticide exposure is drinking water that is used for the preparation of meals. The water
used for industrial baby food production undergoes a unique cleaning process. Two large
organic groups of great concern and toxicity are organophosphates and organochlorines.
This group of pesticides includes a variety of chemical compounds, also inorganic, but it is
impossible to study all of them.

Organophosphates (OPs) include malathion, parathion, phorate, diazinon, chlorpyri-
fos, tribufos, omethoate, disulfoton, and others. OPs in the human body are metabolized to
less toxic compounds and excreted as specific or non-specific metabolites (dialkyl phos-
phate metabolites—DAPs). Infants can be exposed to OPs via infant formulas [3,24,25].
Although data in the literature are contradictory [26], there are indications for associations
between prenatal or early life exposure and effects on neurodevelopment [27], poor intel-
lectual development in 7-year-old children [28], respiratory problems [29], hypospadias in
offspring [30], reduced birth weight [31,32], and even childhood leukemia [33].

Organochlorine pesticides (OCPs) include compounds that have been banned or sub-
jected to strict regulation due to their high bioaccumulation and toxicity to humans, animals,
and aquatic life. OCPs include hexachlorobenzene (HCB), dichloro diphenyl trichloroethane or
1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT), lindane or gamma-hexachlorocyclohexane
(γ-HCH), dieldrin, heptachlor, and chlordane. Since the 1970s (DDTs), compounds that have
been banned are still detected in human matrices and the whole food chain [34–37]. In
the human body, DDT is metabolized to dichlorodiphenyldichloroethane (DDD), which is
more water soluble and less toxic, and dichloro diphenyl trichloro ethylene (DDE), which
accumulates in adipose tissue and poses a threat to health due to its long half-life [14]. The
exception to the high lipophilic nature of OCPs is α-Hexachlorocyclohexane (α-HCH), which
is water soluble and has a low bioaccumulation rate. OCPs are mostly undetectable in baby
products, such as infant formula, due to the careful selection and extensive processing of raw
materials [38].

Chlorate, an inorganic compound, will be specially mentioned in the present study,
given its recent reevaluation by the European Commission regarding infant exposure. It
is used as an herbicide but is currently banned in the European Union. The toxicity of
perchlorate and chlorate anions lies in their ability to inhibit iodine uptake by the thyroid
gland and disturb the production of thyroid hormones [39,40]. Although this exposure can
be considered low because the concentration is in the ppb levels depending on the region,
early life exposure to OCPs, given their high bioaccumulation rate, is worrying for the
subsequent course of the body’s health [41].

2.1. Current Legislation and Policies for Pesticides

In Europe, Directive 2006/125/EC [42] set the guidelines for pesticide residues in
cereal-based and baby foods that should not exceed the amount of 0.01 mg/kg food.
However, for some pesticides, this amount exceeds the maximum permissible daily intake
for infants and young children, which is lower than 0.0005 mg/kg body weight. These
pesticides, such as aldrin and dieldrin, may already be prohibited, but due to their slow
removal from the environment, they may still be detected in cereal-based and baby foods.
Except for aldrin and dieldrin, disulfoton (also its sulfoxide and sulfone), fensulfothion
(summed analogs), fentin (triphenyltin cation), haloxyfop (salts and esters), heptachlor
(including the trans-heptachlor epoxide), hexachlorobenzene, nitrofen, omethoate, terbufos
(also its sulfoxide and sulfone), and endrin are substances that are prohibited for use in
agriculture that is intended for cereal-based and baby foods.

According to Regulation (EU), No 609/2013 [43], the maximum residue levels of
pesticides in food for infants and young children (1 to 3 years old) should be set at the lowest
achievable level. According to this regulation, banning or limiting the use of pesticides
would not guarantee that food for infants and children is free from these compounds
because the environment is extensively contaminated. However, applying good agricultural
practices and limiting environmental contamination could reduce food pollution.
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The Regulation (EU) 2016/127 [44] on food for specific groups set new labeling rules
on infant formulas and was applied on 22 February 2020.

The Commission Implementing Regulation (EU) 2020/585 of 27 April 2020 [45] concerns
a coordinated multiannual control program of the Union (2021–2023) to ensure compliance
with maximum residue levels of pesticides and to assess the consumer exposure to pesticide
residues in and on the food of plant and animal origin. According to the relevant recom-
mendation from the European Food Safety Authority (EFSA), foods intended for infants and
young children will also be evaluated.

Specifically for chlorate and perchlorate, after years of evaluation, the European Com-
mission set new maximum residue levels for the compounds in foodstuffs in 2020 due to the
increased use of disinfectants during the COVID-19 pandemic. Additionally, based on the
data on the risk to public health in 2014, the mean dietary exposures to chlorate in European
countries exceeded the Tolerable Daily Intake (TDI) in infants and young children (EFSA
TDI for chlorate 3 µg/kg body weight/day and perchlorate 0.7 µg/kg body weight/day).
Therefore, the Commission Regulations 2020/685 [46] and 2020/749 [47] clearly defined
the maximum permitted levels of perchlorate, especially for infant and young children
formulas and foods, baby food and processed cereal-based food at 0.01 mg/kg, 0.02 mg/kg
and 0.01 mg/kg, respectively.

In the United States, the EPA (Environmental Protection Agency) is responsible for
the establishment of pesticide residue limits (tolerances) for foods, and the FDA (Food
and Drug Administration) for the enforcement of those limits in imported and domestic
food commodities and monitoring in the market. The limits have been set after many
studies based on the toxicity of the substance and its decomposition products, the necessary
amount and frequency, the possible routes of exposure, and the amount of residue on the
food after application. These limits are stated through the Code of Federal Regulations and
are renewed annually. Under the Food Quality Protection Act (FQPA), the EPA evaluates
new and existing pesticides to ensure that they are used at safe levels for infants, children,
and adults and reevaluates each pesticide every 15 years. Additional safety factors are
established for the safety of pesticide use on food to consider the uncertainty in data
relative to children. The information on food consumption by infants and children and
pesticide residues in food are combined to perform dietary risk assessments to ensure
that all guideline values are safe. Since the FQPA was passed in 1996, domestic uses and
uses on the food of many pesticides were banned or restricted (such as many carbamates
and most organophosphates) because they were considered dangerous for younger ages,
the permissible residue limits for many foods intended for children were lowered, and
children’s exposure to pesticides was even decreased by 70% [48,49]. The agency concluded
that it was necessary to revoke all tolerances (maximum residue limits) for chlorpyrifos
because registered uses of the compound result in high exposures that exceed safe levels,
posing an increased health risk for the population and vulnerable groups. This final rule
has been effective since 29 October 2021, and the tolerances expired on 28 February 2022.

The Pest Management Regulatory Agency (PMRA), an organization responsible for
pesticide control, was established in Canada in 1995. When setting restrictions and pro-
hibitions on pesticides, particular emphasis is placed on the young population, from
the embryonic stage to childhood, as they are at greater risk. This is due to biological
reasons and additional exposure that may result from powdered milk, breast milk, and
increased consumption of fruits and vegetables. In 2005, the PMRA compiled a list of
Pest Control Product Formulants and Contaminants of Health or Environmental Concern,
updated annually. According to the 2020 directive, several substances, including coal-tar
creosote, dimethyl formamide, dioctyl phthalate, isophorone, rhodamine B, adipic acid, bis
(2-ethylhexyl) ester, and hydroquinone were removed from products suspected of health or
environmental problems [50,51].
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2.2. Infant Dietary Risk Assessments for Pesticides

A French study combined pesticide contamination of baby foods and common foods
and consumption data since 2005 to estimate the probability of exposure exceeding the
toxicological reference value (TRV) for infants and young children below three years
old [52]. Pesticides were detected in 67% of the samples, although no exceedance of
MRLs was identified. Out of the 281 pesticides that were assessed, 278 were found to be
within acceptable levels of exposure for all age groups, and only dieldrin, lindane, and
a metabolite of the fungicide propineb, propylene thiourea (PTU), were found to have a
significant probability of exceedance of the TRV for several age groups in the upper bound
scenario that overestimates exposure. These results indicated the need for more sensitive
analyses rather than the high health risk of infants because the high limits of determination
(LODs) concerning low TRVs gave overestimated results.

Recently, a study on chlorate in various types of baby foods was published [40], al-
though it was conducted before the reevaluation of the maximum permitted levels of chlo-
rate in baby foods from the European Commission, Commission Regulation 2020/749 [47].
It was found that 10.5% of the samples contained measurable amounts of perchlorate at the
concentration range of 3.4–6.5 µg/kg. Five samples (prepared with carrots and potatoes)
were detected with chlorate at 40 and 120 µg/kg levels, and one pear sample contained
372.2 µg/kg chlorate. According to Regulation 2020/749, pears’ maximum permitted
chlorate level is 50 µg/kg, carrots 150 µg/kg, and potatoes 50 µg/kg. Given these high
concentrations, for infants between 4 and 14 months, the average daily dose for pears was
equal to or greater than the TDI for chlorate (3 µg/kg body weight/day) (Table 2).

Table 2. Results of risk assessments from studies in literature for several categories of EDCs.

Reference Compounds Study Information Results

Pesticides

[52] 281 pesticides for risk assessment (OCPs,
neonicotinoids, carbamates, OPs)

French study, 2011–2012, 219 baby foods,
705 infants and young children

(<3 years old)

278 pesticides with acceptable risk, the
high LODs gave overestimated results

for three pesticides

[40] Pesticides (chlorates and perchlorates) 105 baby food samples, infants
(4–24 months)

Daily dose of chlorate for high
concentrations in vegetables:

1.2–2.1 µg/kg BW/day, and pears:
2.5–4.3 µg/kg BW/day (EFSA TDI:

3µg/kg BW/day)

[53]
69 pesticides (OCPs, OPs,

neonicotinoids, carbamates,
triazoles, etc.)

54 Serbian infant food samples (infant
juice and purée)

Cumulative risk via hazard index was
estimated to be negligible

[54] Pesticides (7 neonicotinoids) 128 food samples from Taiwan Residues in the diets of preschool
children did not exceed ADI

Phthalates

[55] DEP, DIBP, DBP, BBP, DEHP Young children (12–35 months) in Spain,
cereal-based food samples

Mean dietary exposure 1.01 µg/kg
BW/day below TDI

[56] BBP, DBP, DEHP, DIDP, DINP
Evaluated the health risks of infants

(<3 years old) related to phthalates in
food coming from food contact materials

The exposure levels of infants to
phthalates were within acceptable levels

Parabens

[57] 6 parabens (E214–E219) Children (<3 years old) in France
(breastfed infants were excluded)

The highest exposure levels in the age
group 13–36 months (mean

0.35 mg/kg BW/day, median
0.18 mg/kg BW/day). Dietary exposure
to parabens was within acceptable levels

[58] 5 parabens (benzyl, butyl, methyl, ethyl,
propyl parabens)

Foods that are included in infants’,
toddlers’, and children’s diets

Estimated daily intakes of total parabens
for infants, toddlers, and children,
respectively: 940 ng/kg BW/day,

879 ng/kg BW/day, and
470 ng/kg BW/day
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Table 2. Cont.

Reference Compounds Study Information Results

Bisphenols

[59] 7 bisphenols (BPA, BPAF, BPC, BPE,
BPFL, BPS, BPZ)

Infants (<1 year old), Indian infant
formula

EDI of total BPs ranged from
54.3 to 213.4 ng/kg BW/day. Risk

assessment indicated that exposure was
considered acceptable

[60] Bisphenol-A Breastfeeding infants

Median intake of BPA
26.8 ng/kg BW/day for newborns

(0–3 months) and 7.0 ng/kg BW/day
for infants (4–12 months)

[61] 12 bisphenols 181 breastmilk samples collected from
China in 2014

The upper-bound daily intakes of BPs
for infants 0–6 months old were found

between 0.044 and 1.29 µg/kg BW/day

[56] Bisphenol-A Comparison between breastfed and
non-breastfed children in France

The TDI of the EFSA was
never exceeded

POPs

[62] PBDD/Fs Human milk samples and health risks to
breastfed infants in China

The average EDI was 2.0 pg TEQ/kg
BW/day (0.13–13 pg TEQ/kg BW/day),

within the range of TDI by the WHO

[63] PCBs, PCDD/Fs 30 human milk samples from Uganda
in 2018

Potential health risks to nursing infants
associated with consumption

of breastmilk

[64] PBDD/F, PXDD/F, and dlPCBs 24 human milk samples in Ghana

Greater infant intake than the
recommended standard intake of 1 pg
TEQ/kg BW/day as set by the ATSDR

and WHO

[65] PCBs, PCDD/Fs 180 food samples, dietary exposure for
705 children under 3 years of age

For dioxins and NDL-PCBs, the TDI was
exceeded for some age groups, in

particular for older ones

[66] PCBs, PCDD/Fs
Levels in infant formulas, food items in

the Greek market (2002–2010), and
human milk samples

Breastfed infants (0–6 months) had
greater TDI (60.3–80.4 TEQ pg/kg BW)
than infants that consumed human milk
and formula (31.2–41.6 TEQ pg/kg BW)

Serbian infant food (infant juice and purée) was found to have a more significant
pesticide burden than imported products, and the risk assessment indicated that there
was no considerable health risk for infant health [53]. Therefore, the cumulative risk was
calculated using the hazard index and considered all pesticide-active substances as one
group, and it was estimated to be negligible.

Recent dietary risk assessments for young children in studies from China [67,68] are
focused on several food commodities (but not specifically infant foods and formulas), and
they indicate low levels of exposure to several pesticides and low health risks, although
more significant than that for the general population. Ling and co-authors tested food sam-
ples (vegetable, fruit, cereal, and seafood) from Taiwan in 2015 for pesticide contamination
(neonicotinoids), and the estimated daily intake of children 0–6 years old was found to be
within acceptable levels, even for the highly exposed group [54].

3. Phthalates

Phthalates are widely used plasticizers, mainly polyvinylchloride (PVC). They are
found in plastic pipes, medical devices, adhesives, inks and paints, household products
such as bath curtains or indoor deodorants, cosmetics, personal care products, plastic food,
and water containers [9,69,70]. They are classified into low-molecular-weight phthalates,
which are more water-soluble and toxic, and high-molecular-weight phthalates, which are
generally considered safer alternatives. The first group includes dimethyl phthalate (DMP)
diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diiso-butyl phthalate (DiBP), and
benzyl butyl phthalate (BBP). High-molecular-weight phthalates are di 2-ethylhexyl phtha-
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late (DEHP), diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP), and diisoundecyl
phthalate (DiUP). Infant exposure can occur at the beginning of life via medical equipment
for hospitalized babies, infant formulas, and breastfeeding [9,69–71]. However, prenatal
exposure remains unclear, and some animal and human studies indicate the presence
of phthalate compounds in fetal plasma, amniotic fluid, meconium, placenta tissue, and
urine [72–77]. The phthalate compounds detected in biological matrices are phthalate
metabolites (hydrolytic or oxidative monoesters), excreted mainly via urine.

The American Academy of Pediatrics and the American Public Health Association
are warning about the health effects of phthalates on children as the quantities of food
and water that they consume and the inhaled rate are higher relative to their body weight
compared to adults, and their not fully developed body is vulnerable and sensitive to
the toxicity of phthalates. Although not all phthalates pose the same toxicity, their main
effects include endocrine disruption, reproductive toxicity (infertility, diseases, syndromes,
hormonal alterations), thyroid hormone alterations, neurodevelopmental effects in infants
and children, liver and kidney toxicity, respiratory problems (asthma and allergies), and
cancer [9,78–80].

3.1. Current Legislation and Policies for Phthalates

In 2017, the European Union officially designated four phthalates as human endocrine-
disrupting chemicals [81]. Namely, BBP, DEHP, DnBP, and DiBP were classified as sub-
stances having endocrine-disrupting properties. These compounds already existed on the
Candidate List of REACH, although now it is specified that they demonstrate probable se-
vere effects on human health due to their endocrine-disrupting properties. Regarding DiBP,
it was initially considered a safer alternative to the more toxic DnBP, and no exposure limit
values were established. However, human exposure to DiBP presented a slight increase
over the years compared to DnBP exposure, although animal research studies indicated
reproductive and developmental effects comparable to DnBP [69,75,82].

The exposure limits for adults (specific exposure limits for infants and children still do
not exist) that have been set from the EFSA, expressed as Tolerable Daily Intake (TDI), are
0.01 mg/kg body weight/day for DBP (reproductive effects), 0.5 mg/kg body weight/day
for BBP (reproductive effects), 0.05 mg/kg body weight/day for DEHP (reproductive
effects), and 0.15 mg/kg body weight/day for both DINP and DIDP due to effects on the
liver. In 2019, the EFSA Panel adopted a new approach to the risk assessment of phthalates
for use in food contact materials. As DnBP, DEHP, BBP, and DINP have reproductive effects,
the EFSA Panel considered it appropriate to establish a group-TDI for these phthalates,
which was set at 50 µg/kg body weight/day. For DIDP, the single compound’s TDI
remained at 150 µg/kg body weight/day [12,83]. This assessment is for consumers of any
age, including adults and vulnerable groups. According to the US EPA, the reference dose
for daily exposure to DEHP is 0.02 mg/kg body weight daily.

Especially in the case of phthalates, food packaging may be a potential source of
contamination through the migration of chemicals from the packaging into the food. Re-
garding the detected concentrations of phthalates in infant food and formulas, the Specific
Migration Limit (SML) has been set by European Commission to determine the maximum
permitted amount of a substance released into food or food simulant from a material.
According to Directive 99/39/EC for baby and cereal-based foods, the SML for BBP is
30 mg/kg food simulant, DEHP 1.5 mg/kg food simulant, for DBP 0.3 mg/kg food simu-
lant, and the sum of DINP and DIDP 9 mg/kg food simulant. BBP, DINP, and DIDP are not
allowed in single-use material for infants or follow-on formulae and baby food packaging.
However, they are permitted in repeated use material and as Technical Support Agents
(TSA) in polyolefins with a concentration of up to 0.1% in the final product. DBP and DEHP
can be used as a plasticizer in repeatedly used materials contacting non-fatty foods and
as TSA in polyolefins with concentrations of up to 0.05% and 0.1% in the final product,
respectively [12,83,84].
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To reduce the dietary exposure of children and infants to phthalates, the FDA rec-
ommends carefully using plastic containers to heat food in microwave ovens. In some
products, such as materials in contact with food, the FDA limits using 26 phthalates. For
example, BBP should be at a concentration of less than 1% by weight when contained in
food-contact polymers. DBP and DEHP can be used alone or in combination with other
phthalates with a material content of less than 5% [85,86]. According to Proposition 65, the
California Office of Environmental Health Hazard Assessment (OEHHA) listed DINP and
DEHP as carcinogenic and DEHP as having reproductive and developmental toxicity.

Finally, according to Health Canada, only DEHP is on the list of toxic substances
whose use should be restricted [87], mainly in cosmetics, medical equipment, toys, and
childcare products. Other phthalates are considered safe to use, and there is no restriction
on the use of phthalates in baby products and food.

3.2. Infant Dietary Risk Assessments for Phthalates

The exposure of young children (12–35 months) to phthalates transferred from food
packaging to cereal-based food material was investigated by Garcia-Ibarra and co-authors [55]
in Spain. The phthalate concentrations in foods were within acceptable levels (0.118 mg/kg
for DEP, 0.102 mg/kg for DEHP), and the dietary exposures to DEHP (0.395 µg/kg body
weight/day), DEP (0.458µg/kg body weight/day), and DiBP (0.0864µg/kg body weight/day)
were below the TDI. A total diet study (TDS) was conducted in France by Sirot et al. [56] to
evaluate the health risks of infants under three years of age related to the chemicals in food.
Phthalates in food from food contact materials and other substances, such as bisphenol A
(BPA), bisphenol A diglycidyl ether (BADGE), its derivatives, and some ink photoinitiators,
were examined. Generally, phthalates were detected in 0–35% of the samples (DiDP, DBP, BBP,
DEHP, and DiNP). The exposure levels of infants to phthalates were within acceptable levels
(Table 2).

Besides monitoring food commodities to estimate dietary exposure, biomonitoring is
also considered a reliable alternative method through which levels in urine are converted
to daily intake, and a risk assessment can be conducted [75,88]. Following this method,
Frederiksen et al. [88] measured fifteen phthalate metabolites in urine from infants during
two periods: while exclusively breastfeeding and when they were on mixed diets. The
surprising finding was that the infants were exposed to almost all of the examined ph-
thalates. The daily intakes were comparable for many compounds regardless of feeding
status, including compounds regulated for years. Notably, the risk assessment analysis
indicated that the exposure of infants and their parents sometimes exceeded the safety
level for anti-androgenic effects. The results from the specific study show that infants are
exposed to phthalates not only through diet, implying the existence of additional sources
that are added to the total exposure. Even low levels in infant food and formulas can
become dangerous for health if other sources of exposure co-exist and act additively in the
infant’s body [89].

4. Parabens

Parabens are esters of p-hydroxybenzoic acid with an alkyl or benzyl group. They
have been widely used as preservatives in foods, cosmetics, personal care products, and
medicines for over 90 years due to their anti-microbial and anti-fungal properties [90–92].
Parabens are classified as “short-chain” parabens, which are methyl paraben (MeP) and
ethyl paraben (EtP), and “long-chain” parabens, which include propyl paraben (PrP), iso-
propyl paraben (i-PrP), butyl paraben (BuP), isobutyl paraben (iBuP), and benzyl paraben
(BzP). Except for their industrial origin, some plants and bacteria can naturally synthesize
parabens [90,92,93]. Parabens have been identified as endocrine disruptors that affect
androgens, estrogens, progesterone, glucocorticosteroids, aryl hydrocarbon, peroxisome
proliferator-activated receptors and the activity of hormones and enzymes that are involved
in the metabolism of endogenous hormones and the production of steroids. Breast cancer,
obesity, and allergies are some of their potential health effects [91,92,94]. The possible
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impact on the reproductive system, the hormonal response, and the possible carcinogenic
effect have led to the production of paraben-free products labeled as “Paraben Free” [92].

The main routes of exposure are dermal absorption of personal care products and ingest-
ing pharmaceuticals and foodstuffs. In the body, they are metabolized to p-hydroxybenzoic
acid, a non-specific metabolite. Parent compounds or their conjugates have been detected in
human matrices (blood, plasma, adipose tissue, hair), but they are rapidly excreted in urine
after exposure [16,91,95–97]. In addition, parabens have been detected in human milk [98,99]
and amniotic fluid [100], and studies have reported dietary exposure in infants and young
children [57,58], indicating fetal and early-life exposure to the compounds.

4.1. Current Legislation and Policies for Parabens

Based on the EFSA’s risk assessment of consuming foods containing parabens, the
Acceptable Daily Intake (ADI) was set at 10 mg/kg body weight for methyl and ethyl
parabens and their salts. At the same time, no other limitations were reported for the
different parabens. The committee did not recommend ADI for propyl paraben due to
the lack of data on adverse effects [101]. Later, the EMA (European Medicines Agency)
determined the ADI of propyl paraben at 1.25 mg/kg body weight. The presence of
parabens due to the use of veterinary products is expected to be very low in industrially
processed foods, so has not been set any maximum residue limit (MRL) [102,103].

Parabens must be mentioned on food labels used as preservatives with the E symbol,
for example, methyl paraben as E218 and propyl paraben as E216. The Joint Food and
Agriculture Organization of the United Nations (FAO) and the Committee of Experts on
Food Additives (JECFA) initially set an ADI of up to 10 mg/kg body weight for methyl,
ethyl, and propyl paraben in total. However, the WHO later withdrew propyl paraben from
the ADI due to higher cytotoxicity than expected [92]. In the United States, the estimated
daily intakes of parabens have been estimated to be 940 ng/kg body weight for infants
and 879 ng/kg body weight for children between 1 and 6 years, which are less than the
ADI [58].

Parabens have no restrictions in Canada because those naturally present are considered
safe, but the limit for daily intake is 10 mg/kg body weight. As additives, their presence is
considered harmless for human organisms [104], and they are allowed only in certain parts
of the food product, such as topping and/or filling.

4.2. Infant Dietary Risk Assessments for Parabens

Many studies focus on maternal exposure to parabens during pregnancy or lacta-
tion, mainly through contaminated personal care products. Evaluating the intake of
children and infants is highly interesting, even if the available studies are fewer. One
study conducted in children aged less than three years old in France showed that di-
etary exposure to parabens (breastfed infants were excluded) was within acceptable lev-
els [57]. The study suggested that for all examined additives, the exposure increased
with age, reaching the highest exposure levels in the age group 13–36 months (mean for
parabens 0.35 mg/kg body weight/day, median 0.18 mg/kg body weight/day). Another
work was carried out by Liao and co-authors [58], who measured the concentrations of
five parabens (benzyl, butyl, methyl, ethyl, and propyl parabens) in foodstuffs including
beverages, dairy products, fats and oils, fish and shellfish, grains, meat, fruits, and veg-
etables. Although it was not focused on infant formulas and baby food, they examined
foods that are included in infants’, toddlers’, and children’s diets, and thus they esti-
mated the daily intakes of total parabens for each group at 940 ng/kg body weight/day,
879 ng/kg body weight/day and 470 ng/kg body weight/day, respectively, while for
adults it was 307 ng/kg body weight/day (Table 2). Since data in the literature are limited,
the results from this study are of great importance.
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5. Bisphenols

BPA (BPA, 4,4′-dihydroxy-2,2-diphenylpropane) and its analogs (such as Bisphenols F,
S, B, and E) are widely used in industry in the production of polycarbonates, epoxy, and
polyester resins, plastic products such as bottles, food packaging, food contact materials,
medical equipment, and thermographic and pressure-sensitive paper [12,105,106]. The
main routes of exposure to BPs are ingestion and dermal absorption. BPA and its structural
analogs have been associated with dysfunctions in the cardiovascular, immune, respiratory,
neurological, and endocrine systems, inducing developmental and reproductive problems.
Concerning the female reproductive system, BPA has been associated with menstrual and
pregnancy disorders, while in males, it has been associated with sexual dysfunction and
abnormal sperm parameters [107–109]. BPS and BPF present similar toxicity profiles to
BPA. Several studies suggested that exposure to BPs, especially during early development,
may lead to embryogenesis, placentation, fetal-placental growth, and immune disorders,
such as allergies and alterations in the gut microbiome. Obesity, cancer, heart disease, and
diabetes are potential health effects of exposure to BPs [6,110–113]. Bisphenol A has been
banned or restricted preemptively in many countries due to increasing concerns about
its health effects. Analogs, such as Bisphenols F, S, B, and E, have been replaced in the
production of consumer products [114].

5.1. Current Legislation and Policies for Bisphenols

In Europe, according to the EFSA, Bisphenol A has been classified as an Endocrine
Disrupting Chemical, and its analogs have been classified as toxic. The European Commis-
sion banned the use of BPA in the baby bottle industry in 2011. The TDI reported by the
EFSA is 4.0 µg/kg body weight/day. BPS, one of the BPA analogs, has also been restricted
by the EFSA for its use in food contact materials with an SML of 0.05 mg/kg food [11,115].
According to the EFSA (2006) [116], the exposure of breastfeeding infants to BPA is lower
(0.2 µg/kg body weight/day) than in 3-month-old infants who are consuming milk from
plastic bottles, and it is estimated to be 4 µg/kg body weight/day for normal levels of
migration and 11 µg/kg body weight/day for high levels of migration.

In the United States, infant exposure to BPA has been restricted since the FDA banned
its use in polycarbonate resins for baby bottles and baby cups, epoxy resins in coatings for
infant formula packaging, and metal packaging, which are labeled as “BPA-free”. NOAEL
for the general population was determined at 5 mg/kg body weight per day, and for
children under two years old, the estimated daily intake (EDI) was 1.1 µg/kg body weight.
Following the above ban, BPA consumption is considered safe regarding the allowed uses
in food packaging and containers [107,117].

In Canada, to protect infants and young children from exposure to BPA, it has been
proposed that BPA be used in minimum concentrations in food packaging for newborns
and infants (as low as reasonably achievable, ALARA), especially in infant formulas. At
the same time, the manufacture, importation, and sale of BPA polycarbonate baby bottles
are prohibited [118,119].

5.2. Infant Dietary Risk Assessments for Bisphenols

The limited studies regarding the infant health risk from exposure to bisphenols via
infant formulas and baby food point out the need for more studies to fill this gap. The
scientific interest regarding the safety of bisphenols for infants is not limited to BPA but
its analogs as well. Seven bisphenols (BPA, BPAF, BPC, BPE, BPFL, BPS, and BPZ) were
examined in Indian infant formula, and the highest mean concentration was for BPA
(5.46 ng/g) [59]. The calculated EDI of total BPs in infants below one-year-old age was
between 54.33 and 213.36 ng/kg body weight/day, and BPA was the compound with the
more significant contribution. The risk assessment indicated that exposure was lower than
the EFSA reference value (4 µg/kg body weight/day) and thus considered acceptable.

Since the predominant source of exposure to bisphenols is diet, it is interesting to com-
pare the exposure of infants fed with formula with breastfeeding infants [60,61]. The median
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intake of BPA via breast milk has been calculated to be 26.8 ng/kg body weight/day for new-
borns (0–3 months) and 7.0 ng/kg body weight/day for infants (4–12 months), according to
a study in China [60]. Another study in China, too, found that BPA was the main bisphenol,
followed by BPF [61], whose contribution to total exposure was not negligible, indicating
that BPA analogs should receive attention. The upper-bound daily intakes of BPs for in-
fants 0–6 months old were found to be between 0.044 and 1.29 µg/kg body weight/day. A
comparison between breast and non-breastfed children was made in one study conducted
in France [56]. The exposure levels, in some cases, exceeded the reference value estab-
lished by the French Agency for Food, Environmental and Occupational Health & Safety
(0.083 µg/kg body weight/day). However, the EFSA TDI was not exceeded (Table 2).

6. Dioxins, Furans, and Polychlorinated Biphenyls

Dioxins and furans are polyhalogenated aromatic hydrocarbons consisting of 210 congeners,
75 dioxin congeners, and 135 furan congeners, 17 of which are potentially toxic. They are indus-
trial by-products of combustion and other chemical processes, and the most important source
of furans are the emissions of cars with halogenated scavengers that use leaded gasoline [120].
According to Javed and co-authors [121], the occurrence of furans in foods is attributed to the
thermal degradation of carbohydrates such as glucose and lactose. Thus, furans can be formed
from the heat treatment of baby infant formulas, indicating an emerging food safety problem. It
seems that the issue of infant exposure to furans is mainly identified in processed ready-to-eat
foods in which higher concentrations of furans have been reported than in infant formulas [122].

PCBs (polychlorinated biphenyls) consist of 209 synthetic congeners, and their use has
been banned in most developed countries. Natural sources have not been identified; they
come from industrial emissions and weathering or incineration of materials containing
them. They have been widely used in electrical components as paint additives, coolants,
and lubricants. Non-ortho and mono-ortho-chloro-substituted diphenols are referred to as
“dioxin-like” due to a similar toxicity mechanism to dioxins [14,65].

In recent years, there has been a reduction in the environmental residues of these
substances due to the restrictions applied; however, due to their high lipophilicity, they
are still detected in the environment and human matrices [9,14,65,123,124]. They interfere
with nuclear receptors, mainly the aryl hydrocarbon receptor, and due to their structural
similarity with thyroxine (T4), they decrease thyroid hormone levels [7,8,125,126]. Dis-
orders of the reproductive system, abnormalities regarding human puberty [9,127–130],
and the immune system [131–133] are also reported in the literature. Organohalogens
have been identified as hazardous chemicals for human health, and they have been linked
with cancer, developmental disorders, hypertension, asthma, metabolic syndromes, and
obesity [134,135].

6.1. Current Legislation and Policies for Dioxins, Furans, and Polychlorinated Biphenyls

In Europe, the EFSA reports that dioxins and PCBs have been banned since 1980
in most countries. In 2010, a study was published about the levels of dioxins in vari-
ous foods and feedings, including 219 baby foods. Overall, in baby food, the levels of
dioxins were between 0.05 and 0.11 pg TEQWHO98/g, furans between 0.06 and 0.08 pg
TEQWHO98/g, PCBs between 0.16 and 0.17 pg TEQWHO98/g, and dioxin-like PCBs be-
tween 0.04 and 0.05 pg TEQWHO98/g, all fat-based. The average total amount of the above
substances was 0.015 pg TEQWHO98/g in total baby food weight [136]. In 2012, a study
was published about the concentrations of these substances in commercially available baby
and child foods, and the maximum concentration was detected in meat or fish-based foods.
However, in most samples, the values were below the limit for dioxins and dioxin-like
PCBs, at 0.2 pg WHO2005-TEQ/g ready-to-eat food (WHO2005 refers to the update of the
coefficients by WHO in 2005) [115,123]. Finally, the tolerable weekly intake (TWI) set by
the EFSA is 2 pg/kg body weight [116].
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As stated by the FDA, an additional source of PCBs in food could be paper packaging,
mainly by recyclable material. For baby or infant foods, the residues of PCBs should be
below 0.2 ppm [137], but no legislation is aimed at restricting dioxins in baby food.

6.2. Infant Dietary Risk Assessments for Dioxins, Furans, and Polychlorinated Biphenyls

Most recent studies are focused on estimating infant exposure through breastfeed-
ing. Lin and co-authors [62] measured polybrominated dibenzo-p-dioxins and dibenzo-
furans (PBDD/Fs) in human milk samples and investigated the health risk to breastfed
infants. The results indicated that the average estimated dietary intake (EDI) for breast-
fed infants was 2.0 pg TEQ/ kg body weight/day, which is within acceptable levels
according to TDI for TCDD suggested by the WHO (1–4 pg TEQ/kg body weight/day).
However, according to the authors, given the high toxicity of PBDD/Fs, the potential
health risks of these pollutants for breastfed infants should be of concern. Another similar
study [63] conducted in Uganda in 2018 measured POPs in breast milk and found infant
EDIs for dioxins that exceeded the reference values from the WHO in most samples. Bruce-
Vanderpuije et al. [64] measured polybrominated and mixed halogenated dibenzo-p-dioxins
and furans (PBDD/Fs and PXDD/Fs) and dioxin-like polychlorinated biphenyls (DL-
PCBs) in 24 human milk samples of mothers from Ghana and the results showed greater
infant intake than the recommended standard intake of 1 pg TEQ/kg body weight/day
as set by the ATSDR and WHO. The EDI of DL-PCBs in 21 human milk samples was
4.95 pg TEQ/kg body weight/day; contributions from DL-PCBs, PXDD/Fs, and PBDD/Fs
resulted in an average estimated daily intake of 6.56 pg TEQ/kg body weight/day (Table 2).

A French study [65] measured PCBs and dioxins in 180 food samples to assess
PCB exposure through the whole diet of non-breastfed children from 1 to 36 months
old (705 participants). The levels of PCDD/Fs and PCBs in infant food were lower than
in everyday food. However, for dioxins and PCBs, the TDI was exceeded for older age
groups (it mainly concerned standard milk for the youngest children, ultra-fresh dairy
products, and fish). An older study [66] estimated the dietary intake of PCDD/Fs and
dioxin-like PCBs in Greece from infant formula levels and food items in the Greek market
(2002–2010) and human milk samples. The significant results that were obtained indi-
cated that breastfed infants (0–6 months) had greater TDI (60.3–80.4 TEQ pg/kg body
weight) than infants that consumed human milk and formula (31.2–41.6 TEQ pg/kg body
weight). For breastfed infants between 6 and 12 months, TDIs were 19.76–24.95 TEQ pg/kg
body weight for breastfed, and for infants receiving only formula, the TDIs ranged from
1.60 to 2.24 TEQ pg/kg body weight.

7. Conclusions

Human milk, which is the optimal option for the nutrition of infants, can also be
contaminated with several pollutants, but it is hard to control this burden. Moreover, the
burden of infant formulas and baby food can be partially controlled since some chemicals
may not be fully eliminated but can be kept at the lowest achievable level. Therefore, the re-
sults of monitoring and risk assessment studies can evaluate the effectiveness of the applied
regulations and policies. Currently, these studies indicate that it is not common to detect
high exposure levels of infants to the discussed chemicals via infant formulas, especially
in European countries and the USA. However, the cumulative, multicomponent exposure
and the sensitivity of the still-developing body cannot be underestimated. Therefore, the
adverse effects of low-dose exposure in newborns may become evident over time.

Regarding the three regulatory agencies discussed in the present study, the European
Commission, the US EPA, and Health Canada, different policies and approaches are applied
under the same goal: food safety. There has been a particular emphasis on the exposure
of infants and newborns as a vulnerable population group to some chemicals. However,
exposure limits for infants and children do not exist for others.

In Europe, pesticide residues in cereal-based and baby foods should not exceed the
amount of 0.01 mg/kg food, and new labeling rules have been applied to infant formulas [42].
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The EPA evaluates new and existing pesticides to ensure they are used safely for infants,
children, and adults, and reevaluates each pesticide every 15 years. Additional safety factors
are established for the safety of pesticide use on food to consider the uncertainty in data relative
to children [48,49]. In Canada, when setting restrictions and prohibitions on pesticides, special
emphasis is placed on the young population, from the embryonic stage to childhood [50,51].

The exposure limits for adults (specific exposure limits for infants and children still do
not exist) that have been set from the EFSA, expressed as a group-TDI, for four phthalates
was 50 µg/kg body weight/day [12,83]. According to the US EPA, the reference dose for
daily exposure to DEHP is 0.02 mg/kg body weight daily. To reduce the dietary exposure of
children and infants to phthalates, the FDA recommends carefully using plastic containers
to heat food in microwave ovens. In some products, such as materials in contact with food,
the FDA limits using 26 phthalates [85,86].

Based on the EFSA risk assessment of consuming foods containing parabens, the ADI
was set at 10 mg/kg body weight for methyl and ethyl parabens and their salts; the EMA
determined the ADI of propyl paraben at 1.25 mg/kg body weight [101,102]. There are no
restrictions for parabens in Canada because those naturally present are considered safe, but
the limit for daily intake is 10 mg/kg body weight [104]. Therefore, the Joint Food and Agri-
culture Organization of the United Nations (FAO) and the Committee of Experts on Food
Additives (JECFA) initially set an acceptable daily ADI of up to 10 mg/kg body weight for
methyl, ethyl, and propyl paraben in total.

The European Commission banned using BPA in the baby bottle industry in Europe
in 2011. The TDI reported by the EFSA is 4.0 µg/kg body weight/day. BPS, one of the
BPA analogs, has also been restricted by the EFSA for its use in food contact materials
with an SML of 0.05 mg/kg food [11,115]. In the United States, the FDA banned its use in
polycarbonate resins for baby bottles and cups, epoxy resins in coatings for infant formula
packaging, and metal packaging labeled as “BPA-free” [107,117]. In Canada, to protect
infants and young children from exposure to BPA, it has been proposed that BPA be used in
minimum concentrations in food packaging for newborns and infants (as low as reasonably
achievable, ALARA), especially in infant formulas [118,119].

The tolerable weekly intake (TWI) set by the EFSA for PCBs is 2 pg/kg body weight [116].
As stated by the FDA, for baby or infant foods, the residues of PCBs should be below 0.2 ppm,
but there is no legislation to restrict dioxins in baby food [137].

Recent data on risk assessment indicate that dietary exposure of infants and young
children to several types of pollutants should be continuously under investigation and
monitoring. Special focus should be given to infant formulas and baby foods for compounds
that potentially pose health risks, whether they are subjected to regulation or not. In
addition, more studies should be conducted to fill gaps regarding the insufficient number
of risk assessment studies, especially multiple and combined exposure in vulnerable groups.
Finally, all regulatory agencies should establish threshold limits of exposure specifically for
infants and implement practices to remove toxic compounds from young children’s food
sources adequately.
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