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Abstract: Apples damaged by black root mold (BRM) lose moisture, vitamins, and minerals as well
as carry dangerous toxins. Determination of the infection degree can allow for customized use of
apples, reduce financial losses, and ensure food safety. In this study, red-green-blue (RGB) imaging
and hyperspectral imaging (HSI) are combined to detect the infection degree of BRM in apple fruits.
First, RGB and HSI images of healthy, mildly, moderately, and severely infected fruits are measured,
and those with effective wavelengths (EWs) are screened from HSI by random frog. Second, the
statistic and network features of images are extracted by using color moment and convolutional
neural network. Meanwhile, random forest (RF), K-nearest neighbor, and support vector machine
are used to construct classification models with the above two features of RGB and HSI images of
EWs. Optimal results with the 100% accuracy of training set and 96% accuracy of prediction set are
obtained by RF with the statistic and network features of the two images, outperforming the other
cases. The proposed method furnishes an accurate and effective solution for determining the BRM
infection degree in apples.

Keywords: apple; fungal infection; hyperspectral imaging; RGB imaging; deep learning

1. Introduction

Rich in nutrition with many vitamins and minerals, apples are one of the most widely
grown fruits in the world [1]. However, in the process of its growth, harvest, transportation,
and sale, apple fruits are vulnerable to infection of fungal diseases [2]. Among these
diseases, the black root mold (BRM) is common and severe. BRM can cause fruit rot
and produce harmful metabolites to affect quality and increase food safety risks, thereby
inducing economic and trade losses. Different treatments are available for apple fruits
with different infection degrees. Apples without infections are considered high-quality
fruits, and those with fungal infections are used as processed products, livestock feed, or
plant fertilizer. Traditional diagnosis methods of fungal infection degree in fruits—such
as manual inspection and liquid chromatography—are subjective, time-consuming, or
complex. Therefore, developing a rapid and accurate detection method of fungal infection
degree in apple fruit is an urgent matter.

With the rise of smart agriculture, spectroscopy and imaging techniques—including
near infrared spectroscopy (NIRS), red-green-blue (RGB) imaging, and hyperspectral imag-
ing (HSI)—have become important detection means for the infection of fungal diseases
in plants [3]. For example, the NIRS method was proposed for classifying heathy and
fusarium head blight-infected wheat kernels [4]. However, NIRS can obtain only the point
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features and cannot realize massive and rapid classification. RGB imaging can obtain
the shape, color, and texture with low cost and rapid speed, and has been used for early
detection of diseases in apples [5] and orchids [6]. However, the highly correlated channels
in RGB images cannot provide the comprehensive information of targets, thereby limiting
the detection accuracy. HSI integrates digital image and spectroscopy to visualize the
spatial distribution of appearance features, internal composition, and structure [7]. A
real-time pixel-based early apple bruise detection system based on HSI was developed [8].
Nonetheless, the spatial resolution of HSI images is generally low to perceive refined exter-
nal characteristics. By contrast, RGB images show high spatial resolutions. RGB and HSI
fusions have been used for plant disease detection. HSI and high-resolution RGB images
are also fused for detecting potential diseases in banana leaves [9]. Therefore, HSI and RGB
are combined to explore the detection of fungal infection in apple fruits.

Representations of color, shape, texture, and spatial relationships in images can be
obtained by statistic methods on features such as histogram, color moments, and grey-level
co-occurrence matrix. Statistic methods treat the image in terms of a matrix with pixel
values as elements and are supported by a rigorous theory and express related image
information in a simple and intuitive manner. In the work of Zhang et al., statistic features
are obtained by extracting the color, texture, and shape of the images through the grey-level
co-occurrence matrix to identify the extent of Fusarium damage in wheat kernels [10]. How-
ever, statistic features are ineffective in capturing hidden complex non-linear information
and responding to sudden changes in data behavior. Network features are the abstract
information representation obtained from automatic feature extraction of images by deep
learning networks, such as VGGNet, AlexNet, Inception, and convolutional neural net-
works (CNN). Network features reflect the deep mining of image information and effective
extraction of discriminative information. These methods are widely used in the field of
pattern recognition, including the recognition of plant disease [11] and fruit quality [2], with
their strong generalization of features as well as robustness to background, illumination,
occlusion, and noise. Network features extracted by CNN are also to detect damages
to apple surfaces and automatically classify different fungi diseases [2]. Nevertheless,
network features lack theoretical explanation and their quality is susceptible to training
and structure of learning networks, and thus they are extremely unreliable for small sam-
ples [12]. Statistic and network features describe the image information with respective
advantages, and thus multi-feature fusion has become an effective method to enhance
detection. For example, a model that fuses statistic features extracted by a histogram of
oriented gradient and network features extracted by CNN effectively captures the local
spatial texture information in plant leaf images [13].

Furthermore, given that the HSI images are hundreds dimension and contain a large
amount of redundant information, direct treatment causes high computational complexity
and time costs. Screening the images of effective wavelengths (EWs) from HSI has been de-
termined as a feasible measure [14], because the monochrome images of the several specific
wavelengths intrinsically provide abundant spectroscopic and image information [10].

In this study, the multi-features of RGB and HSI are combined to identify the infection
degree of BRM in apple fruits (Figure 1). First, RGB and HSI images of apples with different
fungal infection degrees are measured, and the images of EWs are extracted based on RFrog
from HSI images. Then, the statistic and network features of RGB and HSI images of EWs
are extracted by using color moment and CNN. Finally, random forest (RF), K-nearest
neighbor (KNN), and support vector machine (SVM) are used to construct classification
models based on the various features.
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moment for the three components (Y,U,V) of image, where Y denotes luminance, U and V denote 
chrominance. 
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Apple fruits were purchased from the alpine orchards in Aishan, Yantai City, on four 
occasions to increase the sample diversity. Apples with consistent ripeness, uniform fruit 
shape, smooth appearance, red color, and no damage condition were selected for analysis. 
A total of 230 apple samples were prepared, of which 178 were inoculated with Rhizopus 
Stolonifer (RS). The inoculated samples were stored in a storage cabinet at 25 °C and 99% 
relative humidity for four days. RS-infected apple samples showed different degrees with 
the change in external information and internal components of decay over time, and the 
infection degree was labelled according to the time of infection (Figure 2). The infection 
degree was mainly proportional to the elapsed time since the infection. The rotted area 
became larger and colorful, and the rotted depth deepened as the time was elapsed. Sam-
ples at 2, 3, and 5 days after infection were acquired and regarded as mildly infected, 
moderately infected, and severely infected. Among the 178 infected apples, 62 were mildly 
infected, 61 were moderately infected, and 55 were severely infected. The remaining 52 
apples were used as the healthy sample (Table S1). 

 
Figure 2. Images of apples with different degrees of infection. 0: healthy, 1: mildly infected, 2: mod-
erately infected, 3: severely infected. 

Figure 1. Flow chart of detection of BRM infection degree in apples. In the color moment, ui, σi and
si represent the first-order moments, second-order moments and third-order moments of the image
color, pij represents the i-th color component of the j-th pixel of image, N represents the number of
pixels in the image, and Fcolor represents the histogram vectors including the first three orders of
color moment for the three components (Y, U, V) of image, where Y denotes luminance, U and V
denote chrominance.

2. Materials and Methods
2.1. Samples

Apple fruits were purchased from the alpine orchards in Aishan, Yantai City, on
four occasions to increase the sample diversity. Apples with consistent ripeness, uniform
fruit shape, smooth appearance, red color, and no damage condition were selected for
analysis. A total of 230 apple samples were prepared, of which 178 were inoculated with
Rhizopus Stolonifer (RS). The inoculated samples were stored in a storage cabinet at 25 ◦C
and 99% relative humidity for four days. RS-infected apple samples showed different
degrees with the change in external information and internal components of decay over
time, and the infection degree was labelled according to the time of infection (Figure 2). The
infection degree was mainly proportional to the elapsed time since the infection. The rotted
area became larger and colorful, and the rotted depth deepened as the time was elapsed.
Samples at 2, 3, and 5 days after infection were acquired and regarded as mildly infected,
moderately infected, and severely infected. Among the 178 infected apples, 62 were mildly
infected, 61 were moderately infected, and 55 were severely infected. The remaining
52 apples were used as the healthy sample (Table S1).
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Figure 2. Images of apples with different degrees of infection. 0: healthy, 1: mildly infected,
2: moderately infected, 3: severely infected.
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2.2. Image Acquisition

A digital imaging instrument (MV-CE060-10UC, Hikvision, Hangzhou, China) was
used to obtain the RGB images of apples. The sample must be completely within the
required field of view. Based on the apple samples of 80–90 mm and field of view of
450 mm × 300 mm, the distance of the sample from the lens was set to 500 mm. The focal
length of the lens was calculated as shown in Equation (1).

f =
WD × V

H
=

500 × 7.38
450

= 8.2 (1)

where f is the focal length of the lens to be obtained, WD is the distance from the lens to the
object, V is the width of the camera target surface, and H is the width of the captured field
of view. According to Equation (1), the camera was equipped with a Hikvision optical lens
(MVL-HF0828M-6MPE) with six megapixels and a focal length of 8 mm.

The HSI images of apples were measured by using the visible/NIR HSI system
containing a hyperspectral imager (SOC710VP, Surface Optics Corporation, San Diego, CA,
USA), a dark box, and a computer. The spectral response range of the hyperspectral imager
covered 260 wavelengths from 400 nm to 1000 nm, and the range was also the commonly
used interval for sensing infection. The dark box included a carrier table, which could
be moved up and down to place samples, and two tungsten halogen lamps (150 W). The
computer was assembled with Hyper Scanner software for setting parameters in the image
acquisition, such as resolution and exposure time.

Apples were placed on a black plate, and the plate was placed on the carrier table.
To ensure that only apple samples were in the captured HSI image, we set the distance
between the carrier table and the lens to 50 cm.

To reduce dark frame noise in any electronic imaging system, researchers use the black
and white correction, as shown in Equation (2):

R =
R0 − B
W − B

× 100% (2)

where R0 is the raw image, W is the standard whiteboard image, B denotes the dark
reference image, and R refers to the corrected spectral image.

2.3. Reflectance Spectra and Images of EWs from HSI

For the acquired HSI images, the apples were separated from the background by
threshold segmentation to obtain the grayscale images, which were then transformed into
binary images and masked to obtain the ROI images. The spectra of the sample from
the ROI region were averaged as the reflectance spectra of the apple. The EWs of spectra
were filtered by using RFrog. Derived from reversible jump Markov chain Monte Carlo,
RFrog generates a random subset of initial variables and then iteratively generates a subset
of candidate variables based on the regression coefficient. After reaching the iteration
number, the probability of each selected variable is calculated [15]. In RFrog, the selection
probability of each wavelength is calculated to evaluate the importance, and three EWs of
790, 865, and 891 nm with the first three importance of 0.986, 0.983, and 0.977 were screened.
The monochrome images of the three wavelengths were extracted from HSI images and
superposed as EW images.

2.4. Feature Extraction of Images

The commonly used method for color feature extraction is color moments. This study
also used color moments to obtain colors as statistic features of samples with different
infection degrees. The color distribution information was mainly concentrated in the
lower order moments, where the first (mean), second (variance), and third (skewness)
represent three color features of overall lightness and darkness, color distribution range,
and symmetry, respectively [16]. Finally, nine color features were obtained for each sample.
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CNN can construct information by fusing spatial and channel-wise features within
the local field of perception of each layer and capture images by combing local information
at the high level [17]. These traits provide the massive potential of CNN in image feature
extraction. The obtained RGB and EW images were cropped to a fixed size and separately
imported into the CNN to extract the network features. The CNN consisted of two convo-
lutional layers with 32 and 64 3 × 3 kernels. The size of the pooling layer was also set to
3 × 3. The features of the two convolutional layers were concentrated as network features.

2.5. Classification Methods

By using RF, KNN, and SVM, classification models based on multiple image features
were developed to identify the infection degree of BRM in apples. RF is a combination of
tree predictors. With slight modifications to bagging, the method requires only a small
amount of tuning parameters and can naturally rank the importance of features to run
efficiently on large datasets and obtain accurate classification performance. A selection
of regression random variables was used for sampling, generating a decision tree, and
forming a forest [18]. KNN is a relatively simple and effective method. For classifying the
test sample, KNN finds the known k samples that are most similar. Then, the classification
of test samples is determined based on the categories of the k samples [19]. SVM is a statistic
learning method based on risk minimization theory. By using the kernel function, the data
of different classes are separated by a hyperplane, which is maximized by optimizing the
support vectors [20].

2.6. Performance Evaluation

To better evaluate the discriminative ability of models, we divided the 230 collected
samples into training and prediction sets in a ratio of 2:1. The classification model was
built by using the 154 samples from the training set, and its performance was tested by
using the 76 samples from the prediction set. Precision (P), recall (R), F1-score (F1), and
accuracy (ACC) were used for the quantitative evaluation of the models. Their calculations
are shown below. The receiver operator characteristic curve (ROC) and the confusion
matrix reflected the model performance. The color moments and CNN used for extracting
image features and the RF, KNN, and SVM classification models were based on Python
programming.

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2P × R
P + R

, ACC =
TP + TN

TP + FN + FP ++TN
(3)

where TP (true positive) represents the number of positive samples identified as positive
samples, FP (false positive) represents the number of negative samples identified as positive
samples, FN (false negative) represents the number of positive samples identified as
negative samples, and TN is true negatives, which represents the number of negative
samples identified as negative samples.

3. Results and Discussion
3.1. Detection of BRM Infection Degrees of Apples Using RGB

Statistic and network features extracted from RGB using color moments and CNN
were combined with RF, KNN, and SVM to develop the classification models of BRM
infection in apples (Table 1). KNN achieved the highest fitting results but the lowest
prediction results. ACCT of 100% and ACCP of 86.8% and 87.5% were obtained for statistic
and network features. This is mainly because KNN complicates the distance calculation
for each dimension leading to the occurrence of model overfitting when data have high
dimensionality. In addition, for statistic features, RF and SVM showed better classification
with ACCP of 90.7% given its excellent ability of complex nonlinear modeling. In addition,
RF achieved the high fitting results with the ACCT of 100%. However, recall showed that
RF had a misclassification of moderate infection to mild infection. In terms of network
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features, the best classification results were still obtained by RF with ACCP of 95.1%, with
an improvement of approximately 4% compared with statistic features.

Table 1. Classification results of BRM infection degree in apples using RF, KNN, and SVM with RGB.

Features Methods Classes ACC (%) P (%) R (%) F1 (%)

Statistic

RF

Healthy
ACCT = 100
ACCP = 90.7

100 100 100
Mildly infected 79.1 100 88.3

Moderately infected 100 68.7 81.4
Severely infected 100 100 100

KNN

Healthy
ACCT = 100
ACCP = 86.8

100 70.0 82.3
Mildly infected 90.4 100 95.0

Moderately infected 68.1 93.7 78.9
Severely infected 94.7 85.7 90.0

SVM

Healthy
ACCT = 92.8
ACCP = 90.7

86.9 86.9 86.9
Mildly infected 100 94.7 97.2

Moderately infected 90.4 86.3 88.3
Severely infected 85.7 100 92.3

Network

RF

Healthy
ACCT = 100
ACCP = 95.1

92.0 100 95.8
Mildly infected 100 100 100

Moderately infected 100 81.8 90.0
Severely infected 85.7 100 92.3

KNN

Healthy
ACCT = 100
ACCP = 87.5

82.6 95.0 88.3
Mildly infected 88.8 84.2 86.4

Moderately infected 90.9 62.5 74.0
Severely infected 83.3 95.2 88.8

SVM

Healthy
ACCT = 98.7
ACCP = 87.7

88.4 100 93.8
Mildly infected 100 68.4 81.2

Moderately infected 86.9 90.9 88.8
Severely infected 85.7 100 82.3

Notably, statistic and network features exhibited respective advantages in categorizing
various infection degrees. In terms of severe degree, the F1-score of statistic features was
higher than network features on both RF, KNN, and SVM models, indicating that the
statistic features of RGB have the advantage of distinguishing severity. Network features
with the optimal classification model, RF, obtained a recall of 81.8% for the moderate degree,
which was better than the statistic features with recall = 68.7%. In general, the statistic
and network features of RGB can effectively classify the BRM infection of apples, but the
accuracy is insufficient for practical applications.

3.2. Detection of BRM Infection Degree of Apples Using HSI Images of EWs

The average spectra extracted from HSI images of various infection degrees of BRM
in apple samples (Figure 3) showed a similar reflectance trend with an increase to approx-
imately 850 nm and then decrease. An apparent reflectance rise appeared in the range
of 500–650 nm, and a chlorophyll-induced valley occurred at 650–680 nm. The band at
700–740 nm can be assigned to the oxyhydrogen (O-H) extension and the third and fourth
overtones of hydrocarbon (C-H) extension in sugar. The band of 960 nm was attributed
to O-H and the second-order overtone of water [21]. As the infection degree increased,
the spectral reflectance and intensity of characteristic peak gradually decreased because of
physical characteristics and chemical composition changes, such as tissue color changes,
water loss, sugar content reduction, and organic acid oxidation. These phenomena prelimi-
narily demonstrated the detection feasibility of BRM infection degree using HSI images of
EWs carrying the above critical information.
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Figure 3. Spectra of apples with different infection degrees; 0: healthy, 1: mildly infected, 2: moder-
ately infected, 3: severely infected.

The EW images with 790, 865, and 891 nm were screened based on the importance of
RFrog, and the color moments and CNN were used to extract their statistic and network
features. These two features were combined to build the classification models of BRM
infection degree in apples by using RF, KNN, and SVM (Table 2). The use of HSI images
of EWs improved the overfitting phenomenon of KNN in experiment 3.1 for both statistic
or network features with the result of ACCT = 100% and above 90% ACCP. For statistic
features, RF, KNN, and SVM obtained the classification with ACCP of 92.1%, 90.7%, and
93.4%, respectively, which were both higher than the ACCP from RGB of 90.7%, 86.8%,
and 90.7%, respectively. For network features, the overall better results were obtained
with ACCP of 93.4%, 92.1%, and 94.7% for RF, KNN, and SVM, respectively. The optimal
classification was obtained by using SVM.

Table 2. Classification results of BRM infection degree in apples using RF, KNN, and SVM with HSI
images of EWs.

Features Methods Classes ACC (%) P (%) R (%) F1 (%)

Statistic

RF

Healthy
ACCT = 99.3
ACCP = 92.1

100 95.0 97.4
Mildly infected 86.3 100 92.6

Moderately infected 82.3 87.5 84.8
Severely infected 100 85.7 92.3

KNN

Healthy
ACCT = 100
ACCP = 90.7

90.0 90.0 90.0
Mildly infected 88.2 78.9 83.3

Moderately infected 84.2 100 91.4
Severely infected 100 95.2 97.5

SVM

Healthy
ACCT = 100
ACCP = 93.4

100 90.0 94.7
Mildly infected 82.0 100 90.4

Moderately infected 93.7 93.7 93.7
Severely infected 100 90.4 95.0

Network

RF

Healthy
ACCT = 100
ACCP = 93.4

95.5 100 100
Mildly infected 79.1 100 88.3

Moderately infected 100 88.7 81.4
Severely infected 100 100 100

KNN

Healthy
ACCT = 100
ACCP = 92.1

100 95.0 97.4
Mildly infected 85.7 94.7 90.0

Moderately infected 81.2 81.2 81.2
Severely infected 100 95.2 97.5

SVM

Healthy
ACCT = 100
ACCP = 94.7

100 100 100
Mildly infected 82.6 100 90.4

Moderately infected 100 75.0 85.7
Severely infected 100 100 100
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Overall, the detection of BRM infection degree of apples using HSI images of EWs
improved the predictive ability, although results were better using RGB on certain classifi-
cation tasks. For example, the RF from the network of RGB obtained an ACCP of 95.1%, a
higher result than HSI. Given the advantages of RGB and HSI images of EWs in classifying
the BRM infection degrees in apples, attempts to combine their features are worthwhile.

3.3. Identification of BRM Infection Degree by Multi-Features

The statistic and network features of RGB and HSI images of EWs were fused to
develop the classification models of BRM infection degree by using RF, KNN, and SVM
(Table 3). Given the unavoidable redundancy of statistic features, Pearson’s correlation
coefficient was used for screening (Figure S1). Specifically, one of the statistic features with
correlation coefficients higher than 0.4 was as an alternative to remove. If the feature had a
low correlation with other features, it was still retained. On the contrary, the feature was
removed. Nine features were excluded from the eighteen color features. As for network
features, 1 * 1 convolution at the end of the network set the number of output channels
to half of the original one to ensure that the number of features remained consistent for
multi-features fusing.

Table 3. Classification results of BRM infection degree in apples using RF, KNN, and SVM with
fused features.

Fusion Methods Classes ACC (%) P (%) R (%) F1 (%)

Features
from RGB
and HSI

RF

Healthy
ACCT = 100
ACCP = 98.6

100 100 100
Mildly infected 95.0 100 97.4

Moderately infected 100 95.4 97.6
Severely infected 100 100 100

KNN

Healthy
ACCT = 100
ACCP = 98.6

100 95.0 97.4
Mildly infected 100 100 100

Moderately infected 94.1 100 96.9
Severely infected 100 100 100

SVM

Healthy
ACCT = 100
ACCP = 96.0

100 100 100
Mildly infected 86.3 100 92.6

Moderately infected 100 81.2 89.6
Severely infected 100 100 100

The fusion of multi-features of two images resulted in better detection. In terms of
model fitting ability, the ACCT of 92.8% and 98.7% were obtained by SVM for the statistic
and network features of RGB, and the ACCT of 99.3% was acquired by RF for the statistic
features of HSI images of EWs. However, the RF and SVM all obtained ACCT of 100% due
to the fusion of multi-features of two images. The possible reason was that the various
features enhanced the information distribution to increase the fitting ability of the models.
The high value of ACCT showed good fit for all three classification models. However,
the ACCP remained at above 90%, which indicated no obvious overfitting occurred. The
ACCP of RF, KNN, and SVM also increased to 98.6%, 98.6%, and 96.0%. Among them,
the overfitting of KNN gained considerable improvement by comparison with the use of
single-type features from the RGB or HSI images of EWs. KNN showed misclassifications
of healthy and moderately infected apples, which is a serious fault in practical application.
By comparison, RF achieved better results as its misclassification were between mildly and
moderately infected samples. Specifically, the precision clearly increased for the detection
of mildly infected apples from 79.1% to 95%, recall of moderately infected ones from
68.7% to 95.4%, and F1-score from 81.4% to 97.6% in RF. These results may indicate that
multi-features were cancellable for the misclassification of moderately infected apples to a
great extent.

Meanwhile, the ROC curve and AUC were adopted to evaluate RF (Figure 4A). As the
ROC curve approached the upper left part and the AUC value approached 1, the power
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and performance of classifiers increased. As shown in the figure, the ROC curve of RF was
concentrated on the upper left, and the AUC values were all over 0.9 and even reached
1.0 on the healthy and severely infected apples. In addition, the confusion matrix of RF
showed that only one moderately infected apple was labelled as mildly infected (Figure 4B).
Thus, RF combined with the fused features from RGB and HSI images of EWs obtained the
accurate determination of BRM infection degree in apples.
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In recent years, numerous researchers have explored the quality determination of
fruits by using RGB and HSI. By using RGB, fruit quality is generally evaluated based
on visual appearance, such as color, texture, and shape. For instance, the color features
of mango were extracted from RGB to determine mango disease [22]. However, the R, G,
and B channels in RGB images cannot effectively determine the internal characteristics of
fruits, which limits the detection accuracy. Recently, possessing the spatial distribution
of appearance characteristics, internal composition, and structure, HSI has been adopted
for the detection of external damage and internal components in fruits. Zhu and Li used
HSI to identify the bruised apples in five stages (1 min, 1 day, 2 days, 3 days, and 4 days
after bruising) with the overall classification accuracy of 92.9% [23]. Weng et al. detected
the soluble solid content, pH, and vitamin C of strawberry by using the spectral and color
features extracted from HSI [24]. However, HSI with low spatial resolution cannot perceive
the refined external characteristics of fruits. This problem can be alleviated by integrating
RGB with high-resolution external information and HSI with good internal composition.
In practical application, screening the images of EWs from HSI is a feasible approach to
avoid excessive computation and complexity and ensure abundant information.

Meanwhile, statistic features are generally used to represent the image information
for both RGB and HSI. The statistic features obtained by histogram, color moment, or
gray co-occurrence matrix are adopted to describe the color, shape, texture, and spatial
relationship in images. Considering the apparent change in color of the BRM-infected
apples, the color distributions are extracted by color moments [25] as statistic features
in this study. Instead of manually designed features, the network features extracted by
deep networks can capture the hidden complex nonlinear information and the high-level
semantic information in images. Network features have been proven to be of great value
in the inspection of surface defects in apples [2] and the measurement of sugar content
in strawberries [26]. The multi-features commonly analyze the quality of fruits because
multi-features describe multiple sources of information for the analysis of fruits. Hlaing and
Zaw combined texture and color features for the classification of tomato plant diseases [27].
Given statistic and network features detection of the multi-level characteristics of images,
the fusion of the two features is expected to improve the infection analysis.
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Based on this, the statistic and network features from RGB and HSI images of EWs
were used to determine the BRM infection degree in apples. The use of RGB with exter-
nal information and HSI images of EWs with internal composition allows for rich and
comprehensive descriptions of fungus infection. The utilization of multi-features fur-
ther strengthens the advantage. High-quality detection of BRM infection degree with the
ACCP = 98.6% are obtained, outperforming the single feature detection of a single image
with ACCP = 90.7%, 95.1%, 93.4%, and 94.7%.

4. Conclusions

In this study, the statistic and network features of RGB and HSI images of EWs are
combined to detect the BRM infection degree in apples. First, the individual features of
two images are used and then their multi-features are combined to determine the BRM
infection degree. RF achieved the best results with ACCT of 100% and ACCP of 98.6%,
outperforming cases of individual features. Moreover, the average AUC of 0.98 indicated
that models with multi-features obtain results with excellent robustness. In summary, the
proposed method provides a feasible scheme for determining the BRM infection degree
in apples and presents wide application prospects in fruit quality. In future, infections
of various fungi and more fruit species can be explored to generalize the application of
the proposed method. Novel and powerful feature extraction and modeling methods will
also be attempted to enhance the characteristic description and recognition performance.
Developing simple and low-cost equipment to obtain RGB images and images of sporadic
and specific wavelengths in one stage builds a reliable and customized support for fruit
infection detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
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