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Abstract: Mandarin production has increased in recent years, especially for fresh consumption, due
to its ease of peeling, its aroma, and its content of bioactive compounds. In this sense, aromas play
a fundamental role in the sensory quality of this fruit. The selection of the appropriate rootstock is
crucial for the success of the crop and its quality. Therefore, the objective of this study was to identify
the influence of 9 rootstocks (“Carrizo citrange”, “Swingle citrumelo CPB 4475”, “Macrophylla”,
“Volkameriana”, “Forner-Alcaide 5”, “Forner-Alcaide V17”, “C-35”, “Forner-Alcaide 418”, and
“Forner-Alcaide 517”) on the volatile composition of “Clemenules” mandarin. For this, the volatile
compounds of mandarin juice were measured using headspace solid-phase micro-extraction in a gas
chromatograph coupled to a mass spectrometer (GC-MS). Seventy-one volatile compounds were
identified in the analyzed samples, with limonene being the main compound. The results obtained
showed that the rootstock used in the cultivation of mandarins affects the volatile content of the juice,
with “Carrizo citrange”, “Forner-Alcaide 5”, “Forner-Alcaide 418”, and “Forner-Alcaide 517” being
those that presented the highest concentration.

Keywords: citrus fruits; clemenules; Gas Chromatography/Mass Spectrometry (GC-MS); hybrid;
juice; volatile compounds

1. Introduction

Citrus is one of the main cultivated fruits worldwide [1]. Among the different citrus
fruits (oranges, lemons, limes, grapefruit, and mandarins), the mandarin (Citrus reticulata) is
gaining popularity due to its economic and nutritional value [2]. Mandarin production has
reached 38 million tons in 2020 [3]. Currently, China is the largest producer of mandarins
(23.12 mln. tons), followed by Spain (2.17 mln. tons), Turkey (1.58 mln. tons), and Brazil
(1.02 mln. tons) [3]. Throughout the world, citrus fruits are one of the most important
fruits, especially in juice production [4,5]. However, mandarins are mainly consumed
fresh, although they have a shorter shelf life than other citrus fruits [6]. In this sense, Spain
has had notable success with its seedless clementine varieties in Europe and the United
States [7]. The main reasons for the fresh consumption of mandarins are that they are easy to
peel; have a desirable flavor; and their content of vitamin C (≈25.8 mg/100 mL), flavonoids
(≈38.97 mg rutin equivalent g−1 DW), and total phenolics (≈59.3 mg GAE/100 mL) [6,8].
The presence of citrus phenolic compounds contributes to the sensory quality of the fruit,
in addition to being associated with the reduction of cardiovascular diseases and some
types of cancer [9,10]. Moreover, aromas and volatile compounds play a fundamental role
since they are responsible for the flavor of the fruit, so aromas are an important contributor
to the sensory quality of these fruits and their derivatives [11–13].
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On the other hand, farmers depend not only on the yield but also on the quality
of the fruit [14]. In this sense, rootstocks play an important role since they help crops
adapt to climate and soil conditions, as well as being a method of defense against climate
change [9]. The selection of the appropriate rootstock is crucial for the success of the
crop [15]. The identification of markers linked to citrus flavor and aroma can facilitate
genetic improvement and the release of new superior varieties [8]. Some authors have
shown that rootstocks affect the quality of citrus fruits, for example soluble solids content,
acidity, ripening index, composition sugars and organic acids, antioxidant activity, and
total phenolics, among others [14,16,17]. Currently, consumers demand higher-quality fruit
that is produced sustainably [18]. Therefore, obtaining higher-quality citrus (internal and
external) is essential. Then, the new studies carried out no longer focus exclusively on the
yield and optimization of crops but instead choose to evaluate the effect of rootstocks on
the quality of fruits [9]. Furthermore, there is little information on the effect of rootstock on
volatile compounds in citrus.

For all the above-mentioned reasons, the objective of this study was to identify
the influence of 9 generative rootstocks (“Carrizo citrange”, “Swingle citrumelo CPB
4475”, “Macrophylla”, “Volkameriana”, “Forner-Alcaide 5”, “Forner-Alcaide V17”, “C-
35”, “Forner-Alcaide 418”, and “Forner-Alcaide 517”) on the volatile composition of
“Clemenules” mandarin (Citrus clementina Hort. ex Tan.). This information can be used
to improve the citrus market, which can provide sustainable economic opportunities for
growers and be useful in promoting the use of rootstocks that induce greater citrus aroma.

2. Materials and Methods
2.1. Plant Material

“Carrizo citrange”, “Swingle citrumelo CPB 4475”, “Macrophylla”, “Volkameriana”,
“C-35”, and four new hybrid selections, obtained in the rootstock breeding program carried
out at IVIA (Instituto Valenciano de Investigaciones Agrarias) since 1974 (Table 1), were
tested as rootstocks for “Clemenules” (selection virus-free INIASEL 22). Seeds of “Carrizo”
citrange and “Cleopatra” mandarin were obtained from the germplasm collection of root-
stocks at IVIA, and the seeds of the hybrids were obtained from the plants obtained in the
citrus rootstock breeding program.

Table 1. Pedigree of the nine rootstocks tested for “Clemenules” mandarin.

Rootstocks Botanical Name

1 Carrizo citrange Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.
2 Swingle citrumelo CPB 4475 C. paradisi × P. trifoliata
3 Macrophylla C. macrophylla Wester
4 Volkameriana C. volkameriana Ten. and Pasq.
5 Forner-Alcaide 5 C. reshni × P. trifoliata
6 Forner-Alcaide V17 C. volkameriana × P. trifoliata
7 C-35 C. sinensis × P. trifoliata
8 Forner-Alcaide 418 (C. sinensis x P. trifoliata) × C. deliciosa Ten.
9 Forner-Alcaide 517 C. nobilis Lour. × P. trifoliata

The trial was located in Museros, at ANECOOP’s “Masía del Doctor” (Valencia, Spain).
The soil type of the trial plot as well as the fertilization applied were those described by
Legua et al. [17].

2.2. Preparation of Juice

The mandarin “Clemenules” (Citrus clementina Hort. ex Tan.) fruits were harvested
at optimum maturity (>12 ◦Brix). The juice preparation was carried out according to the
methodology proposed by Legua et al. [17].
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2.3. Volatile Composition

The determination of volatile compounds in the mandarin juice was carried out
following the method described by Cano-Lamadrid et al. [19], using the headspace solid-
phase micro-extraction (HS-SPME) method with slight modifications. A SPME 50/30 mm
DVB/CAR/PDMS (Divinylbenzene/Carboxen/Polydimethylsiloxane) fiber (Supelco) was
used for the extraction. The exposure time was 50 min at a temperature of 40 ◦C and
with constant agitation (600 rpm). Then, desorption of the volatile compounds from the
fiber was carried out in the injection port of the gas chromatograph for 3 min at 230 ◦C.
Volatile compounds were analyzed and identified using a Shimadzu GC-17A gas chro-
matograph coupled to a Shimadzu QP-5050A mass spectrometer (Shimadzu Corporation,
Kyoto, Japan). The analysis was carried out from 45 to 400 m/z with an electronic impact
(EI) of 70 eV in 1 scan/s mode. The GC-MS system consisted of a TRACSIL Meta X5
column containing 95% dimethylpolysiloxane and 5% diphenylpolysiloxane (Teknokroma
S. Co., Ltd., Barcelona, Spain; 30 m × 0.25 mm i.d., 0.25 µm film thickness). The oven
program started at 80 ◦C with an increase of 3 ◦C/min from 80 ◦C to 210 ◦C and hold for
1 min. After this, an increase of 25 ◦C/min from 210 ◦C to 300 ◦C was maintained for 3 min.
The injector and detector temperatures were 230 and 300 ◦C, respectively. Helium was used
as the carrier gas (column flow rate of 0.6 mL/min).

Three methods were used to identify volatile compounds: (i) retention rates and their
comparison with the literature; (ii) retention times of pure chemical compounds; (iii) mass
spectra of authentic chemical compounds and the spectral library of the National Institute
of Standards and Technology (NIST) database. Only fully identified compounds have been
described. The analysis of the volatile composition was run in triplicate.

2.4. Statistical Analysis

To carry out the statistical analysis, the software XLSTAT (Addinsoft 2016.02.270444
version, Paris, France) was used. Two-way analysis of variance (ANOVA) and Tukey’s
multiple range test were used to compare experimental data and determine significant
differences between rootstocks (p < 0.05). Principal component analysis (PCA) using
Pearson correlation was also run.

3. Results and Discussion

A total of 71 volatile compounds (Table 2) were identified in the analyzed sam-
ples. Limonene stands out among the 10 main compounds (Table 3), with an average of
7998.4 µg L−1, which was expected since it is the main volatile compound in citrus [20,21],
followed by: myrcene (293.7 µg L−1), linalool (247.4 µg L−1), valencene (122.1 µg L−1),
decanal (119.9 µg L−1), ethanol (106.4 µg L−1), ethyl butyrate (84.8 µg L−1), terpinen-4-ol
(80.5 µg L−1), octanal (65.5 µg L−1), and 1-octanol (40.7 µg L−1). It is interesting to note
that limonene and valencene may affect the perception of other volatiles [22,23].

Table 2. Retention indexes (RT), kovats indexes (KI EXP: kovats index experimental, and LIT: kovats
index literature), and principal descriptors of the volatile compounds identified in “Clemenules”
mandarin juice [16,24,25].

Compound RT KI (Exp) KI (Lit) Descriptors

V1 Ethanol 5.14 498 482 Ethanol
V2 Ethyl acetate 5.63 613 608 Pleasant, fruity
V3 Methyl butyrate 6.35 694 719 Fruity, sweet
V4 Ethyl butyrate 7.28 797 799 Fruity, sweet
V5 Hexanal 7.36 803 801 Green, grassy
V6 Butyl acetate 7.48 809 813 Fruity
V7 Ethyl-2-butenoate 8.11 841 834 –
V8 Heptanal 9.42 906 902 Oily, fatty
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Table 2. Cont.

Compound RT KI (Exp) KI (Lit) Descriptors

V9 Methyl hexanoate 9.89 922 924 Fruity
V10 α-Thujene 10.18 933 933 Wood, green, herb
V11 α-Pinene 10.51 944 940 Pine, turpentine
V12 Benzaldehyde 11.54 981 970 Almond, cherry
V13 Sabinene 11.68 986 978 Pepper, turpentine, wood
V14 Myrcene 11.97 996 995 Musty, wet soil
V15 Ethyl hexanoate 12.17 1002 1000 Fruity, sweet, green
V16 Octanal 12.50 1011 1006 Citrus, green, herbal
V17 Hexyl acetate 12.63 1014 1011 Fruity, green, sweet
V18 α-Phellandrene 12.83 1019 1025 Citrus, herbal, green, woody
V19 d-3-Carene 12.95 1022 1013 Citrus, herbal, woody
V20 α-Terpinene 13.23 1029 1023 Lemony, citrus
V21 p-Cymene 13.55 1037 1027 Woody, spicy
V22 Limonene 13.92 1047 1039 Citrus, fresh
V23 Benzyl alcohol 14.01 1049 1040 Floral, fruity, sweet
V24 (Z)-β-Ocimene 14.10 1051 1050 Herbal, sweet
V25 (E)-β-Ocimene 14.53 1062 1053 Herbal, sweet
V26 γ-Terpinene 14.76 1068 1066 Lemony, citrus
V27 1-Octanol 15.08 1076 1072 Waxy, green, citrus, floral
V28 Sabinene hydrate 15.70 1092 1096 Herbal, minty, green
V29 α-Terpinolene 15.89 1097 1092 Citrus, pine
V30 Linalool 16.28 1106 1101 Floral, green, citrus, woody
V31 Nonanal 16.48 1111 1102 Pine, floral, citrus
V32 Methyl octanoate 17.12 1125 1127 Waxy, green, orange, herbal, sweet
V33 Ethyl-3-hydroxy-hexanoate 17.53 1134 1130 Fruity, woody, spicy, green
V34 cis-Limonene oxide 17.69 1138 1132 Fresh citrus
V35 trans-Limonene oxide 17.97 1144 1138 Fresh citrus
V36 Menthol 18.72 1161 1160 Minty
V37 Terpinen-4-ol 20.25 1195 1192 Peppery, woody, sweet, musty
V38 Ethyl octanoate 20.35 1197 1200 –
V39 α-Terpineol 20.86 1208 1192 Oil, anise, mint
V40 Decanal 20.98 1211 1216 Beefy, musty
V41 Carveol 21.73 1227 1220 Minty
V42 Chavicol 22.04 1234 1251 Herbal
V43 Neral 22.65 1247 1235 Lemon
V44 Linalyl acetate 22.88 1251 1250 Herbal, green, citrus, woody, floral
V45 Carvone 23.18 1258 1254 Spearmint, caraway
V46 Geranial 23.97 1275 1277 Lemon, mint, floral
V47 1-Decanol 24.23 1280 1274 Fatty, waxy, floral, citrus
V48 Perilla aldehyde 24.74 1291 1271 –
V49 Ethyl nonanoate 24.95 1296 1296 Fruity, rose, waxy, rum, wine
V50 Bornyl acetate 25.13 1300 1285 Woody, balsamic, pine, herbal
V51 Undecanal 25.70 1312 1307 Floral, citrus, green
V52 cis-Carvyl acetate 26.60 1332 1334 Minty, green, herbal
V53 trans-Carvyl acetate 26.91 1338 1341 Minty, green, herbal
V54 Citronellyl acetate 27.48 1351 1354 Floral, green, fuity, citrus, woody
V55 Terpenyl acetate 27.68 1355 1351 Herbal, citrus
V56 Neryl acetate 28.83 1380 1368 Fruity, floral, citrus
V57 α-Copaene 29.27 1390 1377 Woody, spicy, honey
V58 Ethyl decanoate 29.53 1395 1397 Waxy, fruity
V59 cis-β-Elemene 29.77 1400 1381 Herbal
V60 Decyl acetate 30.16 1409 1408 Waxy, soapy, citrus
V61 Dodecanal 30.36 1414 1409 Citrus, green, floral
V62 Limonen-10-yl-acetate 30.51 1417 na Fruity
V63 β-Farnesene 30.99 1428 1431 Woody, citrus, herbal
V64 Caryophyllene 31.43 1437 1430 Spicy, Woody, clove
V65 Germacrene-D 31.80 1446 1449 Woody, spicy
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Table 2. Cont.

Compound RT KI (Exp) KI (Lit) Descriptors

V66 Alloaromadendrene 32.57 1463 1462 Woody
V67 Humulene 33.03 1473 1461 Woody, spicy-clove
V68 Valencene 34.61 1509 1496 Citrus, fruity, woody
V69 d-Selinene 34.81 1514 1496 –
V70 Cadinene 35.53 1531 1516 Fresh woody
V71 γ-Muurolene 35.88 1539 1530 Woody, herbal, spicy

Table 3. Concentrations (µg L−1) of volatile compounds in “Clemenules” mandarin (Citrus clementina
Hort. ex Tan.) juice.

Carrizo
Citrange

Swingle
Citrum.

Macrophylla Volkameriana
Forner-
Alcaide

5

Forner-
Alcaide

V17
C-35

Forner-
Alcaide

418

Forner-
Alcaide

517

Compound ANOVA † µg L−1

Ethanol *** 116 bc‡ 94.3 cd 67.5 de 76.8 de 88.9 cd 121 bc 46.9 e 146 b 200 a
Ethyl acetate *** 1.7 c 2.7 b 1.3 c 2.5 b 2.9 b 3.7 a 1.4 c 2.5 b 4.0 a

Methyl butyrate *** 3.1 e 4.8 cd 2.9 e 0.0 f 5.1 c 8.0 b 10.2 a 3.5 de 4.3 cde
Ethyl butyrate *** 72.1 b 105 a 64.2 b 59.1 b 105 a 114 a 30.3 c 108 a 106 a

Hexanal *** 10.6 b 7.2 c 7.3 c 14.3 a 7.2 c 5.7 cd 2.7 e 4.9 de 5.7 cd
Butyl acetate *** 21.1 cd 26.1 bc 13.2 e 16.9 de 25.6 bc 13.9 e 35.1 a 31.2 ab 31.6 ab

Ethyl-2-butenoate *** 3.3 cde 3.3 bcd 2.4 de 2.2 e 4.4 b 3.7 bc 1.0 f 4.3 bc 7.1 a
Heptanal *** 1.2 bc 0.9 cd 1.3 b 2.3 a 0.4 e 0.9 cd 0.6 de 1.4 b 1.4 b

Methyl hexanoate *** 1.2 cd 2.8 b 1.7 cd 1.9 c 2.6 b 3.9 a 1.2 d 1.5 cd 1.9 c
α-Thujene *** 2.2 a 0.3 d 0.3 d 0.4 d 0.7 c 0.4 d 0.3 d 0.8 c 1.2 b
α-Pinene *** 66.1 a 22.7 c 13.6 d 14.4 d 38.4 b 22.5 c 15.0 d 36.9 b 58.4 a

Benzaldehyde *** 1.3 cd 4.8 a 1.0 cde 0.7 de 0.5 e 1.1 cd 1.5 c 1.1 cd 2.9 b
Sabinene *** 24.4 a 3.9 cd 2.8 cd 2.5 cd 4.2 c 2.5 cd 1.3 d 4.0 c 11.8 b
Myrcene *** 521 a 228 cd 131 e 137 de 361 b 241 c 170 cde 369 b 485 a

Ethyl hexanoate *** 15.1 c 22.8 ab 8.9 d 14.4 c 19.0 bc 25.7 a 5.7 d 18.1 bc 17.6 c
Octanal *** 149 a 30.2 cd 54.9 b 5.6 e 52.6 bc 21.7 de 53.3 bc 48.8 bc 171 a

Hexyl acetate *** 12.7 ab 4.9 cd 3.2 d 6.4 c 14.8 a 6.3 c 3.3 d 3.4 d 11.2 b
α-Phellandrene *** 10.3 a 4.1 c 2.4 de 2.2 e 8.1 b 4.0 cd 3.9 cd 4.2 c 7.7 b

d-3-Carene *** 32.3 a 10.7 de 6.2 e 6.2 e 35.9 a 8.2 de 12.7 cd 18.0 c 25.0 b
α-Terpinene *** 14.7 a 7.0 c 3.6 e 3.3 e 9.9 b 4.6 cd 4.7 cd 10.0 b 10.6 b

p-Cymene *** 2.1 b 1.7 b 1.9 b 5.0 a 1.1 c 1.6 b 2.1 b 2.0 b 1.1 c
Limonene *** 12,278 ab 7004 c 4021 e 3879 e 10,124 b 6353 cd 5348 cd 10,194 b 12,785 a

Benzyl alcohol *** 69.0 a 35.7 b 17.4 cd 20.1 cd 11.0 d 37.2 b 26.0 bc 67.5 a 69.0 a
(Z)-β-Ocimene *** 34.1 a 14.6 d 7.2 ef 5.6 f 24.7 bc 12.7 de 10.5 def 22.4 c 28.4 ab
(E)-β-Ocimene *** 1.2 bc 0.5 c 0.2 d 0.2 d 1.6 b 1.2 bc 1.0 c 1.5 b 2.0 a
γ-Terpinene *** 43.7 a 19.0 c 11.6 d 10.3 f 33.6 b 14.5 cd 13.7 cd 29.6 b 30.0 b

1-Octanol *** 59.0 a 40.7 bc 29.8 cd 33.7 c 29.0 cd 39.6 bc 44.1 b 27.2 d 63.3 a
Sabinene hydrate *** 2.2 a 0.9 bc 0.6 c 0.5 c 2.3 a 1.0 bc 1.5 b 1.3 b 2.2 a
α-Terpinolene *** 22.3 a 8.6 c 5.2 d 3.8 e 20.8 a 7.8 cd 8.5 c 13.9 b 15.8 b

Linalool *** 416 a 196 c 177 c 235 bc 197 c 209 bc 274 ab 199 c 323 a
Nonanal *** 47.3 a 11.9 14.1 cd 10.0 d 17.9 c 10.6 d 11.5 cd 12.3 cd 38.1 b

Methyl octanoate *** 2.3 b 1.7 bc 1.2 c 2.4 b 4.0 a 2.8 b 1.1 c 2.3 b 2.4 b
Ethyl-3-hydroxy-

hexanoate
*** 8.7 bc 10.1 ab 6.6 c 12.7 a 12.7 a 11.6 a 2.8 d 8.4 bc 12.1 a

cis-Limonene oxide *** 3.4 a 1.6 de 2.0 cd 1.4 de 3.6 a 3.2 ab 1.0 e 2.6 bc 2.9 ab
trans-Limonene oxide *** 1.5 a 0.8 b 0.4 c 0.7 b 0.8 b 0.5 bc 0.5 bc 0.8 b 1.7 a

Menthol *** 0.8 c 1.1 c 1.2 c 0.9 c 1.6 b 1.0 c 1.4 bc 1.2 c 2.2 a
Terpinen-4-ol *** 132 a 64.5 c 105 b 64.2 c 76.4 c 53.9 c 56.c8 71.1 c 101 b

Ethyl octanoate *** 14.1 b 13.3 b 8.4 cd 11.3 bc 13.2 b 11.5 bc 6.4 d 18.5 a 13.0 b
α-Terpineol *** 33.1 a 21.4 d 30.1 b 24.9 bc 23.3 bc 21.8 cd 29.0 b 22.4 c 31.9 ab

Decanal *** 308 a 59.6 de 104 c 30.1 e 123 c 56.3 de 55.1 de 80.1 cd 263 b
Carveol *** 6.1 a 2.0 d 2.1 d 1.7 d 3.1 bc 2.0 d 2.2 cd 2.4 cd 3.7 b
Chavicol *** 40.2 a 28.6 b 26.2 b 32.7 ab 32.5 ab 25.7 b 32.1 ab 25.9 b 32.8 ab
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Table 3. Cont.

Carrizo
Citrange

Swingle
Citrum.

Macrophylla Volkameriana
Forner-
Alcaide

5

Forner-
Alcaide

V17
C-35

Forner-
Alcaide

418

Forner-
Alcaide

517

Compound ANOVA † µg L−1

Neral *** 15.3 a 3.0 de 3.9 de 3.6 de 6.1 bc 3.7 de 2.9 e 4.8 cd 7.5 b
Linalyl acetate *** 8.6 a 4.9 b 5.1 b 2.5 de 2.4 de 4.8 bc 1.9 e 2.3 e 3.6 cd

Carvone *** 14.3 b 9.8 cd 12.9 bc 33.8 a 12.2 bc 10.1 bcd
10.2
bcd

7.6 d 11.1 bcd

Geranial *** 25.4 a 4.9 c 5.7 c 4.7 c 10.9 b 4.4 c 4.5 c 6.0 c 12.2 b
1-Decanol *** 16.0 a 9.3 c 8.9 c 7.9 c 12.8 ab 8.0 c 12.2 bc 8.9 c 14.1 ab

Perilla aldehyde *** 22.3 a 11.4 bc 14.1 b 10.1 cd 12.9 bc 12.4 bc 10.1 cd 7.6 d 15.0 b
Ethyl nonanoate *** 4.2 c 3.4 c 3.0 c 3.3 c 2.8 c 1.8 c 11.1 b 3.8 c 33.2 a
Bornyl acetate *** 2.4 bc 2.1 bc 1.5 c 1.4 c 2.2 bc 2.1 bc 2.0 bc 2.8 b 4.2 a

Undecanal *** 8.6 a 2.2 c 2.6 c 2.1 c 5.1 b 2.0 c 1.9 c 2.0 c 6.0 b
cis-Carvyl acetate *** 10.2 a 2.4 cd 5.0 b 3.5 c 2.7 c 6.4 b 1.3 d 1.2 d 5.0 b

trans-Carvyl acetate *** 6.3 a 5.5 a 5.2 a 1.9 cd 3.1 bc 5.9 a 1.5 d 1.8 cd 3.8 b
Citronellyl acetate *** 7.6 a 2.7 cd 2.3 cd 2.2 d 4.2 b 3.0 cd 2.4 cd 3.4 bc 2.9 cd
Terpenyl acetate *** 40.1 a 10.8 c 10.7 c 11.9 c 21.6 b 10.9 c 12.4 c 8.1 c 21.6 b

Neryl acetate *** 39.5 a 13.6 c 9.8 d 14.2 c 25.0 b 13.0 c 12.8 c 16.4 c 16.0 c
α-Copaene *** 2.1 a 0.6 c 0.7 bc 0.5 c 2.0 a 1.1 b 0.5 c 0.8 bc 2.4 a

Ethyl decanoate *** 3.1 c 3.5 bc 1.6 e 1.8 de 4.5 b 2.6 cd 2.0 de 7.0 a 2.6 cd
cis-β-Elemene *** 9.1 a 2.7 c 2.6 c 3.0 c 5.5 b 4.5 b 2.6 c 4.6 b 5.7 b
Decyl acetate *** 7.9 a 4.5 bc 4.4 bc 1.6 ef 3.4 cd 4.8 b 1.5 de 2.7 f 3.3 cd

Dodecanal *** 13.2 a 2.6 de 3.4 de 1.8 e 6.2 c 2.6 de 2.3 de 3.8 d 10.0 b
Limonen-10-yl-acetate *** 33.5 a 7.3 e 10.0 de 8.9 de 19.7 b 8.2 cd 12.3 de 6.8 e 16.1 bc

β-Farnesene *** 17.5 b 15.7 b 17.9 b 5.2 d 10.7 c 22.0 a 6.3 d 7.8 cd 7.6 cd
Caryophyllene *** 8.8 a 1.9 de 2.3 de 2.1 de 5.3 c 2.8 d 1.2 e 4.4 c 7.4 b
Germacrene-D *** 2.0 b 0.7 c 0.6 c 0.7 c 1.6 bc 1.0 c 0.7 c 0.8 c 3.1 a

Alloaromadendrene *** 4.7 a 1.1 ef 0.8 ef 2.1 cd 4.0 ab 2.4 c 0.5 f 1.5 de 3.3 b
Humulene *** 2.0 a 1.0 b 1.0 b 0.8 b 1.9 a 1.1 b 1.1 b 1.1 b 2.0 a
Valencene *** 251 a 47.8 e 60.1 de 93.4 cd 200 b 124 c 21.1 f 101 cd 201 b
d-Selinene *** 25.8 a 5.8 d 6.6 d 10.2 c 20.3 b 12.9 c 2.5 e 10.6 c 19.6 b
Cadinene *** 5.0 a 1.1 cd 1.6 c 1.6 c 2.5 b 1.6 c 0.5 d 1.1 cd 4.3 a

γ-Muurolene *** 14.5 a 2.7 e 3.5 de 5.7 cd 11.6 b 6.8 c 1.2 e 6.0 c 11.5 b
TOTAL *** 15,225 a 8309 bc 5170 d 4999 d 11,968 ab 7777 bc 6473 cd 11,861 ab 15,446 a

† *** significant at p < 0.001. ‡ Values (mean of 3 replications) followed by the same letter within the same
volatile compound, were not significantly different (p < 0.05), according to Tukey’s least significant difference test.
Rootstock: “Carrizo citrange”, “Swingle citrumelo CPB 4475”, “Macrophylla”, “Volkameriana”, “Forner-Alcaide
5”, “Forner-Alcaide V17”, “C-35”, “Forner-Alcaide 418”, and “Forner-Alcaide 517”.

Looking at the main compounds detected, the “Forner-Alcaide 517” rootstock obtained
the highest values in ethanol (200 µg L−1). This volatile compound can accumulate in
very high concentrations in mandarins due to the fermentation process caused by a lack
of oxygen [12]. In addition, the rootstock “Forner-Alcaide 517” stood out together with
“Carrizo citrange” for its high content in limonene (12,785 and 12,278 µg L−1, respectively),
myrcene (485 and 521 µg L−1, respectively), linalool (323 and 416 µg L−1, respectively),
octanal (171 and 149 µg L−1, respectively), and 1-octanol (63.3 and 59.0 µg L−1, respectively).
Several authors include limonene, linalool, terpinene-4-ol (wood), and myrcene as key
aroma volatile compounds in mandarin juice [8,12,19,26,27]. Furthermore, α-pinene is
considered a positive contributor to citrus fruits aroma [22,28]. In this case, “Carrizo
citrange” and “Forner-Alcaide 517” showed the highest values of this volatile compound
(66.1 and 58.4 µg L−1, respectively), and “Macrophylla”, “Volkameriana”, and “C-35”
the lowest (13.6, 14.4, and 15.0 µg L−1, respectively). Furthermore, “Carrizo citrange”
had the highest values of decanal (308 µg L−1), valencene (215 µg L−1), and terpinen-4-
ol (132 µg L−1). This last compound, in certain cases, terpinen-4-ol can be considered
an unpleasant aroma in mandarin fruits [21,29]. On the other hand, Chen et al. [11]
found only 26 volatile compounds present in juice mandarins, with limonene being the
main compound (11,617.3 µg L−1), followed by γ-terpinene (961.6 µg L−1), β-myrcene
(721.9 µg L−1), α-pinene (257.7 µg L−1), and β-pinene (122.0 µg L−1). The values of these
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volatile compounds were higher than those found in this study. In contrast, 114 volatile
compounds were found by Bai et al. [22], who identified D-limonene, β-myrcene, and α-
pinene as the main compounds in citrus peel oil, and 167 aroma volatiles were identified by
Yu et al. [8] in mandarin juice, including ethanol, acetone, 2-methyl-2-propanol, α-pinene,
myrcene, α-terpinene, p-cymene, limonene, terpinolene, and linalool, which are present in
all citrus genotypes.

These results demonstrate that rootstocks significantly affect the volatile composition
of citrus. Similar results were found by Aguilar-Hernández et al. [16] in lemon fruits. In
the same way, Castle [14] showed that rootstocks have effects on the quality factors of
citrus fruits. The rootstocks under study were also studied by Legua et al. [17], showing
their influence on the composition of bioactive constituents in mandarins. Furthermore,
Saini et al. [30] found that “Kinnow” mandarin juice grafted on “Pectinifera” had the
highest levels of limonene and therefore the highest values of total volatile compounds,
while the same mandarin grafted on “Shekwasha” had the highest levels of β-pinene,
dodecylaldehyde, octanal, α-terpineol, terpinen-4-ol, peraldehyde, nonanal, isoleucine,
linalool, and hexanal. Furthermore, Raddatz-Mota et al. [31] discovered that rootstocks not
only affect the volatile profile but also have an effect on the presence or absence of certain
volatile compounds in the fruit. This was the case for “Persian” lime, in which β-myrcene
was only found in two of the five rootstocks studied, while the compounds β-thujene and
dodecane were only found in the rootstocks “Volkamer” lemon and “C-35”.

Grouping the compounds by their chemical families (Figure 1), in general, the terpenes
stand out over the rest of the chemical families, being the majority in the “Carrizo citrange”
and “Forner-Alcaide 517” rootstocks (Table 4). In these same rootstocks, aldehydes and
alcohols were also the majority. The esters presented a higher concentration in the samples
of the rootstocks “Forner-Alcaide 5” and “Forner-Alcaide 517”, while “Forner-Alcaide 418”,
“Macrophylla”, and “Volkameriana” had the lowest concentrations. During the ripening of
mandarins, there is an increase in the concentration of esters, which are responsible for the
fruity and sweet aroma, which can lead to unpleasant aromas or the perception that the
fruit is over-ripe [24]. These results agree with those obtained by Morales-Alfaro et al. [9],
Benjamin et al. [15], and Cano-Lamadrid et al. [19].

Table 4. Statistical differences found between the different chemical families. † *** significant at
p < 0.001. Values followed by the same letter, within the same chemical family were not significantly
different (p < 0.05), according to Tukey’s least significant difference test. Rootstock: “Carrizo citrange”
(1), “Swingle citrumelo CPB 4475” (2), “Macrophylla” (3), “Volkameriana” (4), “Forner-Alcaide 5” (5),
“Forner-Alcaide V17” (6), “C-35” (7), “Forner-Alcaide 418” (8), and “Forner-Alcaide 517” (9).

1 2 3 4 5 6 7 8 9

ANOVA † *** *** *** *** *** *** *** *** ***
Aldehydes a cd bc d b d cd bcd a
Alcohols a b b b b b b b a
Terpenes ab d e e c de de c a

Esters bc cd e de ab cd e cd a

To gain a better understanding of the relationships established between the volatile
compounds found (72), a principal component analysis (PCA) was performed on the
experimental results (Figure 2). The PCA explained 68.61% of the variables, with the F1 axis
being the one that explained most of the data (55.33%). The PCA showed that the rootstocks
“Carrizo citrange”, “Forner-Alcaide 5”, “Forner-Alcaide 418”, and “Forner-Alcaide 517”
were characterized by the most volatile compounds detected, with “Carrizo citrange” being
the one that presented a different volatile profile from the other 3 rootstocks. These results
agree with those obtained in the analysis of volatile compounds, in which it was these
four rootstocks that presented a higher total concentration of volatile compounds. The
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rootstocks “Forner-Alcaide 517” and “Forner-Alcaide 5” have a common parent, so it was
expected that they would present similar results [16,32].
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4. Conclusions

The results obtained show that the rootstock used in the cultivation of mandarins
affects the volatile content of its juice. In this case, the rootstocks that showed the highest
volatile concentration were “Carrizo citrange”, “Forner-Alcaide 5”, “Forner-Alcaide 418”
and “Forner-Alcaide 517”, while “Macrophylla”, “Volkameriana”, and “C-35” were the
least. However, more research is needed to assess the effects of the environment and other
factors on rootstocks and their effect on citrus juice properties.
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was funded by the grant for the recall of the Spanish university system for the training of young
doctors (Margarita Salas, 04912/2021), funded by the European Union-Next Generation EU, Ministry
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