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Abstract: Erythromycin (ERY) is one of the most common macrolides applied in veterinary medicine
to treat diseases or as a feed additive for animal growth promotion. Long-term irrational use of
ERY could lead to residues in animal-derived food and the emergence of drug-resistant strains,
posing potential threats to human health. In this study, a highly sensitive, specific, robust, and
rapid fluorescence polarization immunoassay (FPIA) for the determination of ERY in milk has been
described. Herein, to achieve high sensitivity, five tracers of ERY with different fluorescein structures
were synthesized and paired with three monoclonal antibodies (mAbs). Under the optimized
conditions, the combination of mAb 5B2 and tracer ERM-FITC achieved the lowest IC50 value in the
FPIA with 7.39 µg/L for ERM. The established FPIA was used to detect ERY in milk, revealing a limit
of detection (LOD) of 14.08 µg/L with recoveries of 96.08–107.77% and coefficients of variations (CVs)
of 3.41–10.97%. The total detection time of the developed FPIA was less than 5 min from the addition
of samples to the result readout. All the above results showed that the proposed FPIA in this study
was a rapid, accurate, and simple method for the screening of ERY in milk samples.

Keywords: erythromycin; fluorescence polarization immunoassay; homogeneous detection; milk

1. Introduction

Erythromycin (ERY) was the first macrolide class antibacterial introduced in 1952,
which is produced by Streptomyces erythrues and possesses antimicrobial activity [1]. ERY
is one of the most common macrolides applied in veterinary medicine to treat respiratory
diseases and enteric infections in swine, cattle, and poultry, and is employed to treat clinical
or subclinical mastitis in lactating cows [2]. It has been used as a feed additive or in drinking
water in large-scale production for animal growth promotion [3]. The long-term irrational
use or non-compliance with the withdrawal period of ERY could lead to the presence of its
residues in the animal-derived food and pose a potential threat to human health through
provoking allergic reactions or causing antibiotic-resistant bacteria. Bacterial antibiotic
resistance is a serious public health issue and infections caused by antibiotic-resistant
bacteria can be difficult and sometimes impossible to treat. ERY-resistant bacteria also have
been extensively disclosed and growing rates of ERY resistance have been observed in
many different countries [4–7]. In addition, the risk of human intoxication still existed,
although ERY is considered largely free of serious toxicity. The metabolism of ERY is
related to the cytochrome P-450 3A isozymes, and inhibition of P-450 3A by medications
may elevate the concentrations of ERY in plasma, thereby increasing the risk of ventricular
arrhythmias and sudden death [8]. Based on these risks of drug resistance and intoxication,
it is necessary to monitor the residues of erythromycin in animal-derived foods.
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The maximum residue limit (MRL) for ERY in milk has been set at 40 µg/kg by China
and the European Union [9,10] while the Food and Drug Administration (FDA) has set
the MRL for ERY in milk at 0 µg/kg [11]. Thus, there is a high pressure on laboratories
responsible for food safety to monitor the use of these drugs. Various instrumental methods
have been established for the determination of ERY in food samples [1,12–16]. These
instrumental methods for monitoring ERY are generally time-consuming, requiring skilled
technicians and complex sample pretreatment, which may not always be available for
high-throughput screening. Thus, sensitive, specific, robust, and rapid screening methods
are urgently needed for effective monitoring of ERY in food.

Immunoassay techniques are increasingly applied for screening harmful contaminants
in food samples due to its sensitivity, selectivity, and time efficiency, and have become
an effective alternative to instrumental methods. However, compared with heteroge-
neous immunoassay, i.e., Enzyme-Linked Immunosorbent Assay (ELISA), homogeneous
immunoassays for operation simplification has shown great potential for routine applica-
tions [17]. Fluorescence polarization immunoassays (FPIAs) are one of the most extensively
used homogeneous techniques with the advantage of sensitivity, reliability, rapidity, and
suitability for the analysis of a large numbers of samples [18,19]. The principle of FPIA
for small molecules is that the tracer (fluorescein-labeled competing antigen), competitor
(analyte), and antibody react with each other, resulting in a change of the fluorescence
polarization (FP) value as shown in Figure 1 [20]. If there are no analytes in the reaction
solution, the binding of the tracer and specific antibody forms a bulky antigen–antibody
complex with slower movement, resulting in a higher FP value. With an increase in the
concentration of analytes in the reaction solution, the antibody will be occupied by analytes,
and the tracer will be bound to little or no antibody and some tracers will be free, which can
lead to the decrease of the FP value. FPIAs have attracted more attention and been reported
for the detection of many small molecular compounds, such as veterinary drugs [18,21–23],
pesticides [24], and toxins [25–27] in food and environmental samples. However, to the
best of our knowledge, no report of FPIA for ERY is available.
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In this work, five tracers were acquired by conjugation of ERY and ERM haptens with
five fluoresceins. We investigated the effects of mAb–tracer pair, mAb–tracer concentration,
physicochemical factors, and reaction time on the performance of the FPIA. After careful
optimization, a highly robust and rapid FPIA for the detection of ERY was established. The
accuracy and precision of the FPIA was then investigated by detecting ERY in milk.

2. Materials and Methods
2.1. Reagents and Apparatus

Erythromycin (ERY), spiramycin (SPI), josamycin (JOS), dirithromycin (DIR), clar-
ithromycin (CLA), and oleandomycin (OLE) were supplied by TCI Chemicals Ltd. (Shang-
hai, China). Roxithromycin (ROX), erythromycin ethyl succinate (ERE), ivermectin (IVM),
and avermectin (AVE) were acquired from Dr. Ehrenstorfer Gmbh (Ausburg, Germany).
Erythromycylamine (ERM), tylosin (TYL), and kitasamycin (KIT) were purchased from
GLPBIO (Montclair, CA, USA). Valnemulin (VAL) and tiamulin (TAM) were obtained from
the Council of Europe’s European Pharmacopoeia (Strasbourg, France). 4′-aminomethyl
fluorescein (4′-AMF) was supplied by Life Technologies., Ltd. (Eugene, OR, USA). Fluores-
cein isothiocyanate (FITC) and dichlorotriazine aminofluorescein (DTAF) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Sulforhodamine 101 sulfonyl chloride (SRSC)
was supplied by Bridgen Biotechnology Ltd. (Beijing, China). Alexa Fluor 647 Succin-
imidyl Ester (AF647) was supplied by Thermo Fisher Scientific Inc. (Waltham, MA, USA).
N′-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropy) carbodiimide (EDC),
O-carboxymethyl oxime (CMO), and N,N-dimethylformamide (DMF) were supplied by
Aladdin Chemistry Co., Ltd. (Shanghai, China). The other reagents supplied by Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China).

Precoated TLC silica gel GF254 glass plates (100× 100 mm) were supplied by Qingdao
Haiyang Chemical Branch (Shandong, China). The opaque microplates (96-well) were
supplied by Corning Life Science (Oneonta, NY, USA). The microplate reader SpectraMax
M5 (Sunnyvale, CA, USA) was used to record the fluorescein intensity (FI) and fluores-
cence polarization (FP). MAbs 5B2, 6C2, and 6D9 against ERY were produced by our
laboratory [28].

Borate buffer (BB, 0.05 M, pH 8.0) was employed as the diluent buffer. A stock standard
solution (2 mg/mL) was dissolved in 1 mL methanol.

2.2. Synthesis and Characterization of Tracers
2.2.1. Synthesis and Purification of Tracers

ERY-CMO was previously prepared [28] and conjugated to amino-fluorescein
(4′-AMF) using the active ester method (Figure 2A). Briefly, NHS (2 mg) and EDC (4 mg)
were prepared with 1 mL DMF. ERY-CMO (200 µL) and 200 µL of DMF were pooled
and react at room temperature (RT) for 8 h with stirring. Thereafter, 4′-AMF (2 mg) and
triethylamine (50 µL) were added into the activated ERY-CMO tube, and stirred at RT in
dark conditions overnight. The crude product (50 µL) and fluorescein control product
(10 µL) were purified by TLC using dichloromethane/methanol (1:3, v/v) as the developing
solvent. The major yellow band that was different from the fluorescein control product was
collected with methanol and then stored at 4 ◦C.

ERM-FITC was synthesized according to our previously published method with minor
modifications (Figure 2B) [29]. Briefly, ERM (1 mg) was solubilized in 1 mL DMF, and
then FITC (1 mg) and triethylamine (50 µL) were added to 200 µL of the above solution
and react at RT for seven days in dark conditions. The upper liquid was collected and
separated by TLC, and then developed with dichloromethane/methanol (1:1, v/v). The
major yellow band obtained for ERM-FITC was scraped from the TLC plate and extracted
using methanol. ERM-DTAF, ERM-SRSC, and ERM-AF647 were separated following the
same methods, and the major bands were obtained.
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AF647 (B).

2.2.2. Characterization of Tracers

Tracers were confirmed by HPLC-MS/MS and the saturated antibody binding experi-
ment. For the saturated antibody binding experiment, all the obtained tracers were first
diluted with BB to acquire a working solution (FI values were approximately 50) and the
FP values for the free tracers were measured (denoted as mPmin). An aliquot of 70 µL of
tracers, 70 µL of 1/100 diluted antibody (mAb 5B2 as representative), and 70 µL of BB were
pooled at RT, followed by the measurement of FP values for the bound tracers (denoted
as mPmax). The binding between antibodies and tracers was evaluated by measuring the
maximum polarization shift (δmP = mPmax − mPmin). The FP values were recorded for
ERY-CMO-4′-AMF, ERM-FITC, and ERM-DTAF at λex 485 nm and λem 530 nm (cutoff
515 nm); ERM-SRSC at λex 540 nm and λem 580 nm (cutoff 570 nm); and ERM-AF647 at λex
644 nm and λem 685 nm (cutoff 665 nm). The binding of mAb 5B2 and the five tracers was
measured, and the FP of each tracer that observably changed were utilized for further study.
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2.3. Development of FPIA for ERM
2.3.1. The mAb Dilution Curve

Three mAbs against ERY were double diluted from 1/100 to 1/51,200 in BB and then
mixed with a working tracer solution. Briefly, 70 µL of tracer with 70 µL of mAb and 70 µL
of BB were pooled in a well, and then incubated at RT to measure the change in FP. Then,
the antibody dilutions curves and δmP were plotted and measured. For the developed
FPIA, the antibody titer was the maximal dilution value to produce 50% tracer binding.

2.3.2. The Calibration Curves

The competitive calibration curves for the FPIA were carried out by detecting ERY as
follows: 70 µL of the working tracer, 70 µL of serially diluted ERY standard solution, and
70 µL of the working mAb against ERY was pooled After mixing at RT, the FP values of
the reaction mixture were recorded. Finally, according to our previous study, competitive
calibration curves were generated by plotting the FP values against the logarithm of the ERY
concentrations and fitted to a four-parameter logistic equation [30]. The IC50 is considered
as the concentration of ERY which inhibited 50% of tracer binding to its corresponding
mAb. In addition, IC20–IC80 was defined as the assay’s dynamic range.

2.3.3. The FPIA Optimization

To improve the sensitivity of the assay, the effects of the concentrations of the tracer
and mAb, pH, and reaction time were investigated by evaluating the ratio of IC50 and δmP
(IC50/δmP) obtained from the competitive calibration curves. The parameters showed that
the lower IC50/δmP was desirable.

2.3.4. Specificity Evaluation of the FPIA

The specificity of the FPIA was assessed and analyzed under the optimized conditions.
Cross-reactivity (CR) was studied with the following equation:

CR = (IC50 of ERY) ⁄ (IC50 of tested macrolides) × 100%

where the IC50 values were measured from the competitive calibration curves for ERY and
each of the tested macrolides.

The limit of detection (LOD) of the FPIA was described as the standard concentration
that the average value of 20 independent blank controls plus three times their standard
deviation (mean + 3SD).

2.3.5. Preparation of the Milk Samples

The milk samples were spiked with ERY at concentrations of 50, 100, and 150 µg/L,
then an equal volume of 10% acetonitrile–BB was added. After being vortexed for 5 min,
the samples were allowed to stand at RT for 30 min. The mixtures were centrifuged for
10 min at 10,000× g. The supernatant was collected and diluted six-fold with BB and then
the concentrations of ERY in the milk samples was measured by FPIA.

3. Results and Discussions
3.1. Synthesis and Characterization of Tracers

In this study, ERY-CMO was obtained using ERY modified by CMO at the C9 position
and introducing a reactive carbonyl group as previously described [28]. Tracer synthesis is
important for the establishment of a highly sensitive and specific FPIA, once the antibody
is prepared [29,31]. Therefore, to achieve highly sensitive detection of ERY, five new tracers
including ERY-CMO-4′-AMF, ERM-FITC, ERM-DTAF, ERM-SRSC, and ERM-AF647 were
designed using two haptens and five fluoresceins (Figure 2). After the separation and
purification by TLC, the primary bands for ERY-CMO-4′-AMF with a Rf of 0.7, ERM-
FITC with a Rf of 0.5, ERM-DTAF with a Rf of 0.56, ERM-SRSC with a Rf of 0.66, and
ERM-AF647 with a Rf of 0.58 were collected (Figure S1). Due to the unclear structure of
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fluorescein, ERM-AF647 was not subjected to mass spectrometry, but the other four tracers
were validated with mass spectrometry. The mass spectrometry results of three tracers were
successfully obtained and the molecular ion peaks (m/z) were 1151.7 for ERY-CMO-4′-AMF,
1125.7 for ERM-FITC, and 1324.7 for ERM-SRSC in positive ion mode (Figure S2A–C); the
identification of the tracer ERM-DTAF failed.

Five tracers were further determined by the FPIA. As shown in Figure 3, ERY-CMO-
4′-AMF, ERM-FITC, ERM-SRSC, and ERM-AF647 showed obvious binding to the 1/100
diluted mAb 5B2 with an δmP of 189.2, 204.8, 192.3, and 118.8, respectively. The tracer ERM-
DTAF showed no significant change in FP values before and after the binding to the mAb
5B2. The above data suggested that the synthesis of the four tracers (ERY-CMO-4′-AMF,
ERM-FITC, ERM-SRSC, and ERM-AF647) could be used to develop the FPIA.
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3.2. Selection of the mAb–Tracer Pairs

The antibody and tracer pairs are the most crucial elements in the sensitivity of the
FPIA. Antibody titers reflect the binding affinity between the antibody and the tracer. Three
mAbs (5B2, 6C2, and 6D9) were paired with all tracers and investigated. The antibody titers
of the three mAbs with four tracers were acquired by the antibody dilution curves (Table 1
and Figure S3A–D). Tracers ERY-CMO-4′-AMF, ERM-FITC, and ERM-AF647 supplied
enough increase in the detection signal for 109–225 mP and high antibody titers, indicating
a stronger recognition between the antibody and the tracer. In addition, the tracer ERM-
AF647 showed a higher antibody dilution (from 1/3000 to 1/10,000) than others, followed
by ERY-CMO-4′-AMF, and ERM-FITC.

The competitive calibration curves of the FPIA for ERY were established by screening
the most sensitive mAb–tracer pairs (Figure S4A–D). The IC50 of all the calibration curves
of the mAb–tracer pairs are shown in Table 1. The tracers ERM-AF647 and ERM-FITC
paired with mAb 5B2 showed the higher sensitivities with IC50 values of 13.0 ng/mL and
24.0 ng/mL, respectively. The result clearly suggested that the optimized combination
of mAb and tracer successfully improved the sensitivity of the FPIA. For instance, the
IC50 from the pair of mAb 6C2 and ERM-SRSC (IC50 of 390.0 ng/mL) were 30-fold higher
than that from the pair of mAb 5B2 and ERM-AF647. The IC50 from the pairs of mAb 5B2
with ERM-FITC and ERM-AF647 were similar, but after considering the cost of fluorescein
(e.g., 20 CNY/mg for FITC, and 5900 CNY/mg for AF647 from Thermo Fisher Scientific Inc.,
Waltham, MA, USA), the pair of mAb 5B2 and ERM-FITC was employed as the mAb–tracer
pair and was utilized in the next experiment.
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Table 1. Analytical parameters of each antibody–tracer pair in buffer.

Tracers mAbs δmP (mP) Antibody Dilution IC50 (ng/mL)

ERY-CMO-4′-AMF
mAb 5B2 145 1/1500 80.3
mAb 6C2 164 1/2500 107.4
mAb 6D9 183 1/2000 92.0

ERM-FITC
mAb 5B2 210 1/1000 24.0
mAb 6C2 109 1/1200 154.3
mAb 6D9 225 1/1700 34.7

ERM-SRSC
mAb 5B2 97 1/600 62.1
mAb 6C2 90 1/1600 390.0
mAb 6D9 76 1/500 159.5

ERM-AF647
mAb 5B2 156 1/3000 13.0
mAb 6C2 177 1/10,000 85.0
mAb 6D9 142 1/3000 65.9

3.3. Development and Optimization of the FPIA for ERY

In FPIA, limited tracer and antibody concentrations are considered to achieve the
desired performance [29]. In addition, the dyes applied in this study were pH-sensitive
reagents, and the combination between the mAb and tracers could be significantly affected
by buffer pH [31,32]. Thus, the influence of these factors was assessed by contrasting the
IC50/δmP ratios achieved under different experimental conditions.

3.3.1. Optimization of the Tracer Concentration

The tracer concentration was empirically utilized at the beginning of this work, which
defined as the concentration when its FI value was about 10-fold higher than the FI value
of BB. The FI value of the BB used was approximately 2.8. Therefore, the FI values of the
tracer concentrations at 30, 45, 55, and 65 were assessed. As can be seen in Figure 4A, the
lowest IC50/δmP was screened when the FI of ERM-FITC was 45.
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3.3.2. The Effect of the Buffer pH

The combination of the antibody and tracer could be significantly affected by pH.
To evaluate the influence of pH, BB was adjusted to different pH values. As observed in
Figure 4B, detrimental effects on the IC50 and δmP were shown when the pH was higher
or lower. However, no obvious effect was demonstrated from pHs ranging from 6.0 to 8.0.
The lowest IC50/δmP of 0.08 was acquired at pH 7.0.

3.3.3. Optimization of the mAb 5B2 Concentration

Different concentrations of mAb at 1/600, 1/750, 1/900, 1/2200, and 1/2500 were
supplied to pursue the best IC50/δmP. The results depicted in Figure 4C show that both the
IC50 values and the δmP decreased along with the decreased concentration of mAb. In all
the mAb dilutions assessed, the 1/2500 for the mAb 5B2 was utilized due to it producing
the lowest IC50/δmP.

3.3.4. The Study of Reaction Kinetic of the Competition

The FP signal varied over time until the competitive reaction equilibrium was achieved
among the standard ERY, mAb 5B2, and ERM-FITC. A kinetic study of FPIA was performed
from 5 to 30 min. As presented in Figure 4D, it was found that the IC50/δmP were
comparative stabile from 0.11 to 0.15 as incubation times varied from 5 to 30 min. Therefore,
it can be concluded that the equilibrium of the reaction was reached after 5–10 min of
incubation. Thus, 5 min was employed as the optimal reaction time. Under the optimal
conditions, the calibration curve of the FPIA for ERY was established with an IC50 of
7.39 ng/mL in buffer, as depicted in Figure 5.

3.3.5. Specificity of the FPIA

To evaluate the specificity of the constructed FPIA (expressed by its CR), 12 macrolides
(DIR, ROX, ERE, CLA, ERM, KIT, JOS, OLE, IVM, AVE, TYL, and SPI) and two pleuro-
mutilins (VAL and TAM) were tested. As shown in Figure 5A and Table S1, the FPIA
method showed an obvious CR with the macrolide antibiotics with 14-member lactone
rings, i.e., ERY (100%), DIR (156.9%), ROX (91.8%), ERE (43.7%), CLA (26.7%), and ERM
(44.0%), except for OLE (<0.1%). Other macrolide antibiotics containing 16-membered
lactone rings (KIT, JOS, IVM, AVE, TYL, and SPI) or the pleuromutilins (VAL and TAM)
were not recognized by the antibody (CR < 0.1%). The antibody–antigen recognition was
primarily determined by molecular shape and electrical properties [29]. In this study, the
number of lactone ring atoms and substituent groups inevitably changed the conformation
and electron distribution of the macrolide antibiotic, meaning they exert a great influence
on antibody recognition. The existence of a 14-membered lactone ring in the macrolide can
produced high antibody affinities. However, we speculated that the lack of one methyl
group on L-cladinose of OLE (red circle, Table S1) resulted in no antibody binding even
though OLE does possess a 14-membered lactone ring.

To further understand the displayed CRs, we conducted a computational chem-
istry analysis to further compare the structural difference of the seven analytes with
a 14-membered lactone ring. These analytes were acquired under the lowest conforma-
tions, and only the backbone of these analogues was shown without hydrogen atoms. The
observed molecular shape among the seven analytes were significantly different and may
affect antibody–antigen recognition, and therefore affecting uniform recognition (Figure 5B).
Furthermore, the other significant factor of antibody recognition is considered to be the
electronic contribution of small molecules. We provided the numbers of the main skeleton
C atoms of the seven analytes (Figure 5B) and analyzed the electron distribution of C26,
where OLE lacks one methyl group. As shown in Figure 5C, the charges on C26 of the
seven analytes were similar. This result demonstrates that the lack of the methyl group did
not greatly change the atomic charges of OLE. Therefore, it is not the main factor affecting
antigen and antibody binding. As displayed in Figure 5D, the area distributions of different
electrostatic potential (ESP) intervals on the van der Waals surface were measured. The
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figure demonstrates that the surface areas in the different ESP ranges were mainly between
−10 and 20 kcal/mol. The data demonstrated no discernable difference from each other. In
conclusion, the results of the conformations and electronic properties indicated that the
recognition of 14-membered lactone ring except OLE by the mAb may be mainly due to
shape matching.

Foods 2023, 12, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 5. (A) The CR of macrocyclic lactones in FPIA; (B) lowest energy conformation of ERY, DIR, 

ROX, ERE, CLA, ERM, OLE, and the numbers of the main skeleton C atoms of seven analytes; (C) 

calculated partial atomic Mulliken charges of the numbers shown in (B); (D) superficial area in ESP 

range on the van der Waals surface of ERY and analogs; (E) calibration curves of the FPIA for ERY. 

3.3.5. Specificity of the FPIA 

To evaluate the specificity of the constructed FPIA (expressed by its CR), 12 macro-

lides (DIR, ROX, ERE, CLA, ERM, KIT, JOS, OLE, IVM, AVE, TYL, and SPI) and two pleu-

romutilins (VAL and TAM) were tested. As shown in Figure 5A and Table S1, the FPIA 

method showed an obvious CR with the macrolide antibiotics with 14-member lactone 

Figure 5. (A) The CR of macrocyclic lactones in FPIA; (B) lowest energy conformation of ERY, DIR,
ROX, ERE, CLA, ERM, OLE, and the numbers of the main skeleton C atoms of seven analytes;
(C) calculated partial atomic Mulliken charges of the numbers shown in (B); (D) superficial area
in ESP range on the van der Waals surface of ERY and analogs; (E) calibration curves of the FPIA
for ERY.



Foods 2023, 12, 1581 10 of 13

3.4. Analysis of Milk Samples

FPIA is a rapid, high-throughput, and robust method for high-throughput detection
of samples. Milk is a very complex solution consisting of many components, such as fats,
proteins, and sugars, which may affect the quantification of the target by impacting its
specific recognition by the antibody [33,34]. Reducing the impact of the matrix is necessary
to obtain a high accuracy and precision. Traditional methods for extracting antibiotics from
milk involve precipitating the proteins with organic solvents. Ethyl acetate was considered
for extracting ERY [13]; however, the main chemical properties of ERY is unstable in acidic
media [35,36], and has a low recovery of less than 60%. Various solvents were applied to the
extraction of macrolide compounds such as saturated ammonium sulfate and trichloroacetic
acid, but the recoveries were as low as that with ethyl acetate. Acetonitrile can be employed
for the extraction since it provides an effective protein precipitant. However, the high
concentration of organic solvent may reduce the affinity of the mAb, resulting in inaccurate
detection. Thus, the extract was frequently required to be evaporate to near dryness under
a gentle stream of nitrogen which was very time-consuming. To improve the extraction
yield and minimize matrix effects, 10% acetonitrile-BB with the same good extraction
effect was applied for extracting ERY from milk. Compared to the BB calibration curve,
the milk matrix reduced the signal value (δmP from 74.2 to 47.0), but it had the effect of
improving the sensitivity of the FPIA (IC50 from 7.39 ng/mL to 4.95 ng/mL, Table S2). By
comparing the milk matrix calibration curve with the BB calibration curve with added
0.4% skimmed milk powder (mass fraction), the working ranges of 2.02–12.14 ng/mL and
1.95–16.39 ng/mL, respectively, were almost overlapped indicating that the aforementioned
sample pretreatment was feasible. The detailed results can be seen in Figure 5E and Table S2.

A calibration curve with 0.4% skimmed milk powder (mass fraction) was performed
to analyzing the ERY-spiked milk for the evaluation of sensitivity, accuracy, and preci-
sion. The LOD of ERY in milk was calculated to be 14.08 µg/L with a detection range
of 25.06–235.76 µg/L, which was sensitive enough to achieve the detection requirements
of MRL for ERY in milk set by the EU and China. The blank milk was spiked with ERY
at 50, 100, and 150 µg/L, and the ERY measurement was carried out with the developed
FPIA after pretreatment. The results shown in Table 2 suggested that the mean recoveries
of the milk samples were 96.08–107.77%, with a CV between 3.41% and 10.97%. These
results indicated that the established FPIA supplied an acceptable performance in terms
of specificity, accuracy, and precision for detecting ERY residues in milk. The LOD of the
ELISA with 0.3 µg/L was lower than that of the developed FPIA with 14.08 µg/L using
the same mAb 5B2 in milk [28]; however, the homogeneous FPIA demands a much shorter
time of about 5 min for the detection of ERY in milk, which is urgently required for rapid
screening methods. Table S3 shows the LOD and assay time of the developed FPIA com-
pared with typical instrumental analytical methods and immunoassays [1,12,13,28,36–38],
demonstrating that the newly established FPIA had the shortest detecting time for ERY un-
der a satisfactory LOD, which confirmed the suitability of this assay for the rapid, accurate,
and precise determination of ERY in real samples.

Table 2. Recoveries and CVs for ERY in spiked milk simples by FPIA.

Sample LOD (µg/L) Spiked Level (µg/L) Recovery (%) CVs (%)

milk 14.08
50 107.77 6.15

100 97.33 3.41
150 96.08 10.97

4. Conclusions

In summary, we have developed a homologous FPIA with great detecting perfor-
mances, low cost, and time-savings for the analysis of ERY in milk. The more sensitive
FPIA was acquired under an optimal antibody–tracer pair, physicochemical conditions,
and reaction time. As a homogeneous method, the assay exhibited time efficiency within
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5 min while avoiding coating and washing, which was a unique advantage for the rapid
screening of ERY. The reliability and robustness of the developed FPIA, including the LOD,
detectable range, specificity, accuracy, and precision, confirmed the suitability of this assay
as a tool for the rapid, simple, sensitive, and high-throughput screening of ERY in milk.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12081581/s1, Figure S1: The TLC purification of tracers;
Figure S2: Mass spectra of ERY-CMO-4′-AMF(A), ERM-FITC (B), and ERM-SRSC (C); Figure S3: Bind-
ing curves for three antibodies with the ERY-CMO-4′-AMF (A), ERM-FITC (B), ERM-AF647 (C),
and ERM- SRSC (D); Figure S4: Standard curves for three antibodies with ERY-CMO-4′-AMF
(A), ERM-FITC (B), ERM-SRSC (C), and ERM-AF647 (D); Table S1: The IC50 values and CRs of
FPIA; Table S2: The parameters of standard curves in BB, BB with skimmed milk powder, and
milk matrix; Table S3: Summary of typically reported immunoassays for the determination of ERY.
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