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Abstract: In this study, a typical tea polyphenol epicatechin (EC) was investigated for its impact on
the oxidative stability of whey protein isolate (WPI) in a fish oil-fortified emulsion. The oil-in-water
emulsion system consisted of fish oil (1%, w/w), WPI (6 mg/mL), and EC (0.1, 1, and 2 mM), and
the oxidation reaction was catalyzed by Fenton’s reagent at 25 ◦C for 24 h. The results showed
EC exhibited a dose-dependent activity in the reduction of lipid oxidation (TBARS) and protein
carbonylation. A Western blot analysis demonstrated that protein lipoxidation was inhibited by EC
via interrupting the covalent binding of lipid secondary oxidation products, MDA, onto proteins.
In addition, protein lipoxidation induced a loss of tryptophan fluorescence, and protein hydrolysis
was partially recovered by EC. The findings of this study provide an in-depth understanding of the
performance of phenolic antioxidants in relieving lipid oxidation and subsequent protein lipoxidation
in oil-containing dairy products.

Keywords: lipid oxidation; protein lipoxidation; epicatechin; whey protein isolate

1. Introduction

The nutritional benefits of higher amounts of polyunsaturated fatty acids (PUFAs),
mainly ω-3 PUFAs, promote the development of PUFAs-fortified food products. Fish
oil, microalgae oil, or flaxseed oil are currently the main source ofω-3 PUFAs utilized in
dairy-based foods [1]. However, the incorporation of PUFAs into food matrices is hindered
by its oxidation sensitivity [2]. The double bonds in unsaturated fatty acid chains are
highly susceptible to oxidative attack. Oxidation reactions produce primary peroxides
(i.e., lipid hydroperoxides), and these lipid peroxides further decompose into a broad
range of reactive carbonyl species (RCS) as secondary oxidation products, such as malondi-
aldehyde (MDA), 4-hydroxynonenal (4-HNE), acrolein (ACR), and glyoxal (GO), etc. [3].
In the food system, the amino acids in proteins are targets of these RCS. The reactions
leading to the covalent attachment of RCS to proteins were named “protein lipoxidation”
with the formation of advanced lipid oxidation end products (ALEs). Generally, there are
two common reactions between RCS and proteins: (i) a reaction with protein amino groups
in a hydrophobic manner to form Schiff bases and (ii) a reaction with nucleophiles in the
form of a Michael addition to form carbon–carbon double bonds [4].

RCS-induced protein lipoxidation leads to structural modifications imposed on amino
acids and changes in protein physicochemical and functional properties, formation of toxic
compounds, and a possible transfer of oxidative damage from food proteins to physio-
logical proteins or the human microbiota. With the dietary intake, RCS and ALEs will be
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absorbed through the gastrointestinal tract into lymph or blood stream. Their ingestion
and accumulation are risk factors contributing to the development of atherosclerosis and
several types of cancers, especially the colon cancer [3]. Concerning the adverse effects
of lipid oxidation and protein lipoxidation reactions in food quality and human health,
effective antioxidant measures are applied to prevent and control the progress of oxidation.
The application of natural polyphenols as potential antioxidants has been widely accepted
in the food industry [5]. Polyphenols are extensively present in the nature as secondary
metabolites of plants, mostly found in fruits and vegetables [6]. Among them, epicatechin
(EC), which is found in green tea, cocoa, berries, grape seeds, and apples, is considered one
of the most efficient flavonols in inhibiting oxidation reactions in oil-in-water emulsions [7].
EC has the typical C6-C3-C6 skeleton, and the B ring structure contains ortho-dihydroxyl
groups, which are considered as outstanding antioxidants by scavenging free radicals
or chelating metal ions. Meanwhile, a resorcinol structure of the A ring has high nucle-
ophilic centers for trapping of lipid oxidation-derived RCS [8]. However, the occurrence
of hydroxyl groups in phenolic antioxidants is often accompanied by multiple chemical
reactions with other food components. A mix of both covalent (formation of phenol–protein
compounds) and non-covalent (hydrophobic interactions, hydrogen binding, and ionic
binding) interactions between polyphenols and proteins was found [8,9]. These interactions
might exert influence on protein’s molecular configuration, depending on types and dosage
of polyphenols employed [9,10]. In a previous study, tea polyphenols were demonstrated
to inhibit both lipid and protein lipoxidation at a lower concentration (100 mg/L) while
the promotion of protein carbonylation sulfhydryl loss was found at higher concentration
(400 mg/L) of tea polyphenols [10]. Therefore, the level of polyphenolic antioxidants
should be optimized to avoid the introduction of unwanted quality changes in foods.

The aim of this work is to elucidate the inhibitory effects of EC on lipid oxidation
and protein lipoxidation in a fish oil-fortified dairy mimicking system containing WPI
(Whey protein isolate). WPI contains mainly β-lactoglobulin, α-lactalbumin, bovine serum
albumin, immunoglobulin, lactoferrin, and the consumption of WPI has been shown to
enhance protein synthesis for elder persons, effectively improving muscle performance
and preventing muscle atrophy [11]. Most of the WPI products in the market are more or
less fortified with other nutritional supplements, such as fish oil, to achieve a balanced
nutritional profile. Therefore, reinforcing the oxidative stability by adding antioxidants
is of great importance to these products. In this dairy mimicking system, lipid oxidation
was monitored by thiobarbituric acid (TBA) assay while the influence of oxidation on
protein physicochemical properties was revealed by the changes in protein carbonylation,
sulfhydryl content, intrinsic tryptophan, and surface hydrophobicity. Direct evidence
of protein lipoxidation was obtained with Western blot analysis on the identification of
MDA-bound proteins in WPI. In addition, changes in protein surface microstructure and
protein hydrolysis were evaluated. The results of this study may contribute to a better
understanding of oxidation-induced damage to dairy proteins in emulsion-based foods
enriched with PUFAs and facilitate the potential application of natural polyphenols in
controlling or preventing oxidation in emulsion systems.

2. Materials and Methods
2.1. Materials

Pure fish oil was obtained from Zhejiang Shenzhou Marine Bioengineering Co., Ltd.
(Zhoushan, Zhejiang, China). The composition of fatty acids (w/w) was determined
by GC-MS and the total PUFAs content was 31.16%. WPI (protein content 92.9%) was
commercial product of Hilmar Ingredients (Hilmar, CA, USA). Epicatechin (EC), 2,4-
dinitrophenylhydrazine (DNPH), trichloroacetic acid (TCA), thiobarbituric acid (TBA),
phosphate-buffered saline (PBS), phosphate-buffered saline (PBS), brilliant blue R250,
1,1,3,3-tetramethoxypropane, guanidine hydrochloride, and 5,5′-dithiobis (2-nitrobenzoic
acid) were the products of Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) or Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). 1,1,3,3-tetramethoxypropane, porcine
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pepsin (250 units/mg solid), and trypsin (8 USP size) were the products of Sigma-Aldrich
Co. LLC (St. Louis, MO, USA). The rabbit polyclonal antibody to malondialdehyde-
modified proteins (ab27642) and its corresponding secondary antibody was provided by
Abcam (Cambridge, UK).

2.2. Emulsion Preparation

Oil-in-water emulsion containing fish oil and whey proteins was prepared according
to the method of Obando et al. [12]. First, fish oil and WPI were dissolved in phosphate
buffer saline (20 mM, pH 7.4) with the addition of EC, and the mixtures were homogenized
with a high-speed blender (XFK FSH-2B, Changzhou, Chinese) at 10,000 rpm for 2 min.
Final concentrations of the components in the emulsion were 1% (w/v) of fish oil, 6 mg/mL
of WPI and 0, 0.1, 1, 2 mM of EC. Fenton oxidation reaction mixture consisted of FeCl3
(10 µM), L-ascorbic acid (100 µM), and H2O2 (1 mM). Oxidation reaction was carried out
in the dark for 24 h at 25 ◦C with constant shaking in a thermostatic shaker (TS-100B,
Shanghai TianCheng Experimential instrument Manufacturing Co., Ltd. Shanghai, China).
An amount of 0.05% sodium azide was utilized to suppress the growth of microbes. Trolox
was added immediately to terminate the reaction after 24 h incubation. WPI control
group is the emulsion containing only WPI; WPI fish oil group is the emulsion containing
WPI co-oxidized with fish oil; and WPI fish oil EC groups are emulsions containing WPI
co-oxidized with fish oil in the presence of EC (0.1, 1, 2 mM).

2.3. Analyses of Lipid Oxidation

The degree of lipid oxidation was determined by TBARS (Thiobarbituric acid reactive
substances) assay [13]. Briefly, the sample (0.3 mL) was mixed with an equal amount of
TBA reagent (dissolving 15% TCA and 0.375% TBA in 2 M HCl). The mixture was then
heated in a water bath at 95 ◦C for 30 min. After cooling to room temperature (25 ◦C) and
centrifugation (6000× g for 5 min), the absorbance of pinkish supernatant was monitored at
532 nm by a Varioskan™ microplate reader (Thermo Scientific, Waltham, MA, USA). MDA
was obtained by the hydrolysis of TMP (1,1,3,3-tetramethoxypropane) and TBARS value
(µM) was calculated by the construction of a TBA-MDA standard curve.

2.4. Analyses of Protein Carbonylation

Protein carbonyl content was determined according to the procedure of Levine
et al. [14]. An amount of 0.2 mL DNPH derivatization reagent (0.1% w/v, in 2 M HCl)
was mixed with 0.1 mL of each sample. The derivatization was carried out for 1 h in the
dark at room temperature. An amount of 0.2 mL of 20% TCA solution (w/v) was then
added to precipitate the protein, and the mixture was centrifuged at 6000× g for 5 min. The
precipitate was washed three times with 0.2 mL of ethanol/ethyl acetate (1:1, v/v) solution.
The resultant precipitate was finally dissolved in 0.6 mL of 8 M guanidine hydrochloride.
Protein carbonyl content (nmol carbonyl per mg protein) was measured spectrophoto-
metrically at the UV absorbance of 370 nm for protein hydrazones and calculated by the
absorption coefficient of 22,000 mol−1cm−1.

2.5. Total Sulfhydryl Groups

The content of protein-bound thiols in different treatments were evaluated using
Ellman’s method [15]. Briefly, 0.2 mL urea-SDS solution (8.0 M urea and 30 mg/mL
SDS in 0.1 M phosphate, pH 7.4) was added to 0.1 mL of each sample. The mixture
reacted with 10 mM 5,5′-dithiobis (2-nitrobenzoic acid) at room temperature for 30 min.
After reaction, the mixture was centrifuged (6000× g for 5 min), and the supernatant was
measured colorimetrically at 412 nm. A molar extinction coefficient of 13,600 mol−1cm−1

was adopted for the calculation of total sulfhydryl content, and the results are expressed as
mmol/g protein.
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2.6. Intrinsic Tryptophan Fluorescence

The impact of EC on intrinsic tryptophan fluorescence in WPI under oxidative stress
was measured and analyzed according to the method of Wu et al. [16]. Briefly, each emulsion
sample (3 mL) was mixed with an equal volume of 20% TCA solution (w/v) to precipitate
the protein, and the mixture was centrifuged at 5000× g for 5 min. The precipitated proteins
were re-dissolved in 3 mL PBS before the intrinsic fluorescence intensities were recorded
by a Hitachi-F4600 model fluorescence spectrometer at an excitation wavelength of 285 nm,
an emission wavelength of 300~400 nm, and a slit width of 5 nm.

2.7. Surface Hydrophobicity

Sodium 8-aniline-1-naphthalenesulfonate (ANS) was used as a fluorescent probe for
protein surface hydrophobicity according to the procedure of Li et al. [17]. Briefly, each
sample was diluted to a range of concentrations from 0.1 to 0.5 mg/mL with PBS, and
3 µL of ANS reagent was added to each diluted sample (0.2 mL), and the fluorescence
intensity were recorded at an excitation wavelength of 365 nm and an emission wavelength
of 484 nm. The protein surface hydrophobicity index was expressed as the slope of linear
regression of fluorescence intensity versus protein concentration (mg/mL).

2.8. Measurement of Protein Hydrolysis

The degree of hydrolysis (DH) of the proteins was measured by o-phthaldialdehyde
(OPA) method according to the procedure of Church et al. [18]. OPA reagent was prepared
by mixing of 0.1% SDS (w/v), 0.08% OPA (w/v), and 0.088% dithiothreitol (w/v) in 2%
ethanol (v/v). The sample was first adjusted to pH 1.5 with HCl, and pepsin was added,
and gastric phase digestion was carried out at 37 ◦C. After 1 h of digestion, pH was adjusted
to 7 with NaOH, and pepsin was added to initiate intestinal digestion at 37 ◦C for 2 h.
Aliquots 30 µL were taken and mixed with 600 µL OPA reagent at different time points
(30, 60, 90, and 180 min) during digestion for the measurement of DH. Absorbance was
measured at 340 nm immediately after a 37 ◦C water bath for 2 min. A standard curve was
constructed with 0~10 mM serine, and free amino content was calculated from the standard
curve for estimation of the degree of hydrolysis. A = 1 and β = 0.4 for WPI. The formula
was as follows:

Wserine−NH2 = Cserine−NH2 ×
V·N

X·P%

h =
Wserine−NH2−β

α

DH = h
htot

where Wserine−NH2 is the amount of serine-NH2 per gram of protein; X (g) is the mass of
the sample; P% is the mass fraction of protein in the sample; V (L) is the volume of the
sample; N is the dilution factor of the sample; h (mmol/g) is the number of peptide bonds
broken per gram of protein during digestion during the hydrolysis process; htot (mmol/g)
is the total number of peptide bonds per gram of protein; the htot of WPI is 8.8; and α and
β are represented by constants 1 and 0.4, respectively.

2.9. SDS-PAGE Analysis

SDS-PAGE was used to analyze the distribution of molecular weight of WPI proteins.
In general, each protein sample (3 µL) was heated and processed by mixing with 3 µL
loading buffer (4×) containing β-mercaptoethanol. The samples were denatured for 5 min
at 95 ◦C before loading onto a 5% polyacrylamide stacking gel. Proteins were separated
on a 15% polyacrylamide resolving gel under a voltage of 200 V. The gels after protein
separation were stained with Coomassie Brilliant Blue R250.

2.10. Western Blot Analysis

The protein molecules were separated by gel electrophoresis and then transferred to
a PVDF membrane for subsequent immunoblotting. Non-specific binding was blocked
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by 0.05 g/mL non-fat milk overnight at 4 ◦C. The membrane was washed 4 times with
PBS-Tween (PBS buffer containing 0.05% Tween 20, pH 7.4) before incubation with a 1:5000
dilution (v/v) of primary anti-antibody (anti-MDA, ab27642, Abcam) for 3 h at 25 ◦C.
The membrane was washed 3 times and incubated with a corresponding secondary HRP-
conjugated antibody for 1 h. Chemilluminescence images of MDA-bound protein in WPI
was finally visualized in a Kodak X-ray film using a Pierce visualizer spray & glow ECL
Western Blot detection kit (Thermo Fisher, Waltham, MA, USA).

2.11. Scanning Electron Microscope (SEM) Observation

The surface microstructure of WPI was observed using a high-resolution S-4800 SEM
(Hitachi Co., Tokyo, Japan). Specimens were fixed on conductive gel and coated with gold.
The microstructure was observed and photographed at a magnification of 3000 times under
an accelerating voltage of 3 kV.

2.12. Data Analyses

All experiments were run in triplicates, and data was reported as mean and standard
deviation using SPSS software for data analysis. Duncan’s multiple extreme difference test
was used for analysis of variance (ANOVA) with a significance threshold of 5%.

3. Results and Analysis
3.1. Lipid Oxidation

The oxidative stability of fish oil was assessed by formation of lipid oxidation sec-
ondary products using TBARS assay. As shown in Figure 1A, when compared to the control
(0.03 µM), the oxidation products of fish oil developed rapidly as the TBARS reached a max-
imum value of 0.88 µM in oil-in-water emulsion. TBARS value declined dose-dependently
to 0.40, 0.31, and 0.21 µM in the presence of EC (0.1, 1, and 2 mM), respectively. Similar
to the present study, the prevention of lipid oxidation by phenolic compounds (black rice
anthocyanins, rosemary extract, and green tea polyphenols) was observed in oil-containing
emulsion systems [7,19,20]. The ortho-dihydroxyl groups in B ring of EC play a vital role in
antioxidative activities via neutralizing free radicals via donating electron(s) or chelating
transition metal irons [21]. The inhibition of the lipid oxidation by EC might contributed to
the mitigation of protein lipoxidation initiated by lipid oxidation products.
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3.2. Protein Carbonylation

Since carbonylated amino acids are not intrinsic constituents of native proteins, these
highly reactive groups must be introduced under oxidative stress [22]. RCS were derived
from lipid oxidation, and an increase in protein carbonyl content is also one of the most
important signs of protein lipoxidation. Changes in protein carbonyls are depicted in
Figure 1B; the carbonyl content of native WPI was 0.47 µmol/g, which was significantly
lower than that of 1.58 µmol/g protein in the presence of oxidized fish oil (p < 0.05). The
carbonyl content decreased to 1.27 µmol/g protein with the addition of EC (0.1 mM) and
further reduced to 0.80 and 0.69 µmol/g protein when the concentration of EC was 1 and
2 mM, respectively. Protein carbonyls in dairy proteins were generally produced through
several pathways (i.e., via direct carbonylation of amino acid side chains or indirect modifi-
cation by lipid oxidation products or glycation/glycoxidation products) [23]. In our study,
the existence of 1% fish oil led to lipid oxidation, and the development of TBARS and pro-
tein carbonyls was timely coupled. Hence, it is highly unlikely that the lipid oxidation and
protein lipoxidation take place independently in the oil-in-water emulsions. Presumably,
the inhibition of protein carbonylation by EC might be attributed to its interruption of
lipid oxidation with a lowered generation of carbonyl compounds as a precursor of protein
carbonylation. However, the dose-dependent antioxidant activities of tea polyphenols
have been not observed in walnut oil-in-water emulsions. While a lower concentration
(100 mg/L) of polyphenols was effective in inhibiting protein carbonylation, high concen-
tration (400 mg/L) of polyphenols promoted the formation of protein-bound carbonyls [10].
The molecular mechanism of these controversial effects is still unclear. Other influencing
factors include environmental pH and the presence of transition metal chelators. Therefore,
the dosage of tea polyphenols must be optimized before the application in O/W emulsions
according to their type, concentration, localization, and molecular environment [9].

3.3. Intrinsic Fluorescence Changes

The fluorophores in tryptophan, tyrosine, and phenylalanine residues are regarded
as the main source of endogenous fluorescence in proteins, and the loss of tryptophan
fluorescence is one of the most common markers of protein modification under oxidative
stress [24]. The fluorescence profile of WPI with different treatments was shown in Figure 2,
the unoxidized WPI control has a maximum fluorescence emission wavelength (λmax) at
330 nm when excited at the wavelength of 280 nm. Intrinsic fluorescence intensity sharply
declined under oxidative stress with a red shift of the absorption peak. A similar phe-
nomenon was also seen in oxidized β-lactoglobulin under the oxidative stress of H2O2 [25]
and WPI treated by the lipid oxidation product MDA [26]. The λmax of tryptophan located
inside the protein is roughly 330 nm while the λmax of tryptophan located on the surface
of the protein corresponds to a maximum absorption wavelength of roughly 345 nm [27].
The oxidation of tryptophan in nucleophilic side chains and the interaction between trypto-
phan and other molecules changed the structure and location of tryptophan residues and
contribute to the red shift of λmax.

The addition of EC led to a dose-dependent recovery of the loss in fluorescence inten-
sity. A possible explanation is the alleviation of lipid oxidation and protein carbonylation
by EC, with lesser structural modification on tryptophan. However, decrease in protein
intrinsic fluorescence intensity and red shifted λmax were observed in O/W emulsions
mixed with certain polyphenols due to covalent or non-covalent binding between polyphe-
nolic compounds and proteins [28]. In this study, on the contrary, the recovery of intrinsic
fluorescence was observed in the presence of EC, suggesting the protective effects of EC in
lipoxidation-induced impairment on protein intrinsic fluorescence.
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3.4. Protein Sulfhydryl Content

During protein lipoxidation, the carbonyl groups are not the only oxidized sites.
Other important structures, such as Cys residues, are also sensitive to oxidation reac-
tion. The content and distribution of sulfhydryl and disulfide bond groups were change-
able according to the redox state of Cys and the equilibrium constant of the sulfhydryl-
disulfide bond exchange reaction. As a result, the quantification of protein sulfhydryl
groups is a valuable means to assess protein damage [29]. As expected, in our study, the
sulfhydryl content in the non-oxidized WPI was 30.7 nmol/mg protein, and its level signif-
icantly decreased to 18.4 nmol/mg protein when WPI was oxidized together with fish oil
(Figure 3A). The loss of protein sulfhydryl content can be attributed to the alteration of
protein hooks, which resulted in the formation of disulfide bonds [30]. In the presence
of EC at the dosage of 0.1 and 1 mM, the sulfhydryl increased to 23.8 and 26.9 nmol/mg
protein, respectively. Higher doses of EC promoted the reduction of sulfhydryl content to
21.3 nmol/mg protein. A plausible explanation for this is the role of EC as a pro-oxidant
at high doses, which might lead to the depletion of protein sulfhydryls. It is commonly
accepted that in an oxidizing environment, phenolic compounds can be oxidized to elec-
trophilic quinones, which further react with nucleophilic groups of proteins (C-N or C-S) via
a Michael addition, and non-covalent binding is also found to be involved in the interaction
between polyphenols (chlorogenic acid, ferulic acid, and epigallocatechin-3-gallate) and
β-lactoglobulin [28,31].
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3.5. Protein Surface Hydrophobicity

Surface hydrophobicity reflects the number of hydrophobic groups exposed on protein
surfaces, and it considerably affects the stability of proteins in O/W emulsions. In this
study, the surface hydrophobicity of the complexes was assessed using ANS as a fluorescent
probe [32]. As shown in the Figure 3B, the surface hydrophobicity of oxidized WPI (124.9)
was significantly reduced compared to unoxidized WPI (157.0). The hydrophobic groups
originally exposed on the protein surface lost their ANS binding sites due to changes in
the protein tertiary structure and oxidative damage [33]. The binding of lipid oxidation
derived products (e.g., hydroxyl radicals, hydroperoxides, and carbonyl groups, etc.) to the
non-polar regions of WPI might contribute to the drop in protein surface hydrophobicity.
The effects of 0.1 mM and 1 mM EC on hydrophobicity were not significant compared
to oxidized WPI, but a higher dose of EC (2 mM) triggered a distinct loss of surface
hydrophobicity on WPI. Similar to the above results for protein sulfhydryl groups, the
change in hydrophobicity was more likely the result of protein–quinone production. In
conclusion, the conformation of protein could be affected by lipoxidation and the interaction
between EC and WPI, leading to an increase in the disordered structure, thus causing some
degree of molecular stretch and exposure of internal hydrophobic groups and conversion
of hydrophilicity to hydrophobicity.

3.6. Protein Hydrolysis

Based on the reaction of OPA with primary amines, the OPA spectrophotometric
assay is a rapid, convenient, and sensitive method for the measurement of proteolysis
in dairy proteins. The degree of protein hydrolysis (DH) is expressed as the ratio of
the number of hydrolyzed peptide bonds to the total number of peptide bonds, which
represents protein hydrolysis. As shown in Table 1, at the end of digestion, a sharp
decrease to 8.22% of DH was observed after total gastrointestinal digestion while the
DH of unoxidized WPI was 13.92%, suggesting the oxidized WPI was less accessible
for proteases. The impact of oxidation on protein hydrolysis has been investigated in
several previous studies and protein modification, and cross-linking and aggregation are
thought to be responsible for changed digestive behavior, especially in the presence of
PUFAs, which are more prone to oxidation [12,34]. In this study, a gradual increase in
DH of WPI was found in EC-incorporated emulsions. When the concentration of EC
reached 2 mM, the DH at the end of digestion was 14.95%, which was not significantly
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different from unoxidized WPI. The recovery of DH might be attributed to a progressively
reduced degree of lipid and protein lipoxidation in the presence of EC. The result of protein
digestibility was in accordance with Western blot analysis of protein modification and
SEM observation of protein microstructure, indicating the protective effects of EC on the
protein lipoxidation.

Table 1. Protein hydrolysis (%) of WPI in emulsions containing fish oil in the absence and presence of
EC (0.1, 1, and 2 mM). Means (n = 3) of groups with no common letter in the same columns differ
significantly (p < 0.05).

Sample

Time (min)

Gastric Tract Intestinal Tract

30 60 90 180

WPI Control 4.20 ± 0.3 a 4.51 ± 0.3 a 6.76 ± 1.5 a 13.92 ± 0.4 b
Oxidized WPI 6.52 ± 0.3 a 8.07 ± 0.8 b 9.85 ± 0.3 a,b 8.22 ± 2.7 a

Oxidized WPI EC0.1 6.32 ± 0.5 a 8.01 ± 1.7 b 7.41 ± 0.8 a 11.40 ± 0.6 a
Oxidized WPI EC1 10.82 ± 2.1 b 11.11 ± 2.3 b,c 14.20 ± 2.0 c 12.04 ± 0.7 a
Oxidized WPI EC2 10.03 ± 1.1 b 12.02 ± 1.1 c 13.13 ± 2.4 b,c 14.95 ± 0.7 b

3.7. SDS-PAGE Analysis

SDS-PAGE was used to examine the impacts of oxidation on the molecular weight
distribution of WPI. Electrophoresis results showed that two major proteins, β-lactoglobulin
(β-Lg, 18.4 KDa) and α-lactalbumin (α-La, 14.2 KDa), were detected in WPI (Figure 4).
A comparison of the protein profiles in unoxidized WPI and oxidized WPI revealed that
the impact of oxidative damage on WPI was mainly found in both β-Lg and α-La. The
band of β-Lg in oxidized WPI slightly shifted upward, indicating an increase in molecular
weight, presumably due to covalent binding of small molecule lipid oxidation products
to β-Lg. The band of α-La significantly faded, suggesting α-La is more susceptible to
modification, even led to its fragmentation or degradation. Similarly, sharply decreased
band intensity in α-La in oxidatively damaged WPI in the presence of fish oil and walnut
oil has been observed [20]. Oxidation-induced protein modification was also revealed by
the accumulation of larger protein aggregates, which cannot migrate across the stacking gel.
The oxidative damage of α-La was partially alleviated by EC (0.1, 1, and 2 mM) as the band
intensity gradually recovered. The above studies and our results suggest that cross-linking,
polymerization, and degradation of proteins are unavoidable during oxidative damage.
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3.8. Western Blot Analysis

Lipid oxidation-derived RCS could exert oxidative modifications on dietary proteins
in various food systems [22,35]. MDA is one of the major secondary oxidation products
ofω-3/ω-6 fatty acid oxidation, comprising 70% of the total aldehydes [36]. Proteins are
spontaneously attacked by highly reactive MDA at the N-termini of peptides and nucle-
ophilic ε-amino groups on amino acid side-chains (MDA-modified amino acid residues,
predominantly MDA-lysine adducts), with the generation of fluorescent dihydropyridine
(DHP)-type products, Schiff base adducts, and cross-links in proteins [31]. In our study, a
highly specific MDA antibody was employed to monitor the formation of MDA-induced
protein modification in WPI (Figure 5). As expected, no MDA-bound protein was detected
in a control group when WPI was incubated without fish oil. MDA-bound proteins were
observed in WPI when co-oxidized with fish oil, and the most intensive immunoreactivity
was noticed in the band of β-Lg, suggesting β-Lg was the preferential targets of MDA
in WPI. The existence of MDA-modified WPI in this study also indicated that protein
modification takes place by attachment of reactive carbonyls to the protein. In combination
with the slightly upward shift of the bands of β-Lg and α-La as visualized in SDS-PAGE
electropherogram, it is assumed that higher molecular-weight adducts and intermolecular
cross-linking were generated from lipid oxidation-derived carbonyl compounds, such as
MDA. The Western blot analysis also confirmed the potency of EC to reduce the formation
of MDA-bound proteins, as the immunoreactivity of the bands was appreciably depressed
in a dose-dependent manner. This result is in agreement with the results of TBARs and pro-
tein carbonylation tests, as well as reported in previous studies suggesting tea polyphenols
as effective agents in maintaining protein oxidative stability in O/W emulsions [37,38]. The
underlying mechanism might be attributed to the antioxidant properties of EC in reducing
the production of MDA. An alternative explanation is the nucleophilic property of tea
polyphenols in direct reaction with MDA as an electrophile. MDA was preferentially react-
ing with tea polyphenols with lowered level of precursor in the formation of MDA-bound
proteins [32,37,39].
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3.9. Morphological Examination

Attempts were made to visualize the changes on protein surface morphology by
scanning electron microscopy. It can be seen in Figure 6 that the WPI particles in the
control group were small and uniformly distributed, with smooth surfaces and clear
boundaries. Under oxidative stress, the WPI particles underwent obvious aggregation,
with the formation of large, irregular polymers. It is speculated that the attack of lipid
oxidation products on protein side chains may have led to protein cross-linking and protein
aggregation [40]. This is consistent with the appearance of larger protein particles under
oxidative stress in this study. The incorporation of EC did not restore protein microstructure
to its unoxidized state as protein aggregation still existed. Besides protein cross-linking and
protein aggregation, the interactions between polyphenols and proteins also contributed to
the disrupted protein surface morphology.
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4. Conclusions

Owing to the possibilities for multiple oxidative reactions in oil-in-water system,
a comprehensive evaluation on both lipid oxidation and protein lipoxidation with the
addition of phenolic antioxidant was performed in this study. Our results showed that
tea polyphenol EC significantly inhibited TBARS formation and protein carbonylation. A
Western blot analysis indicted an interruption of the binding of MDA to a protein was
responsible for the attenuated protein lipoxidation. Meanwhile, at high concentration of EC
(up to 2 mM), the polyphenol–protein interactions could contribute to the physicochemical
property changes in WPI (sulfhydryl groups, surface hydrophobicity, protein hydrolysis,
and surface morphology). Taken together, the addition of polyphenolic antioxidants to
dairy products for protein lipoxidation is theoretically feasible, and the effect of the dosage
on the protein itself cannot be ignored.
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