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Abstract: Fucoidanase is an unstable enzyme with high specificity that requires a large about of
time to screen it from microorganisms. In this study, enzymatic hydrolysis was used to produce
low-molecular-weight fucoidan from microorganisms via the degradation of high-molecular-weight
fucoidan without damage to the sulfate esterification structure of oligosaccharide. The microbial
strain HN-25 was isolated from sea mud and was made to undergo mutagenicity under ultraviolet
light. Fucoidanase was extracted via ultrasonication and its enzymatic activity was improved via
optimization of the ultrasonic conditions. The enzymatic properties and degradation efficiency of
fucoidanase were characterized. The microbial strain HN-25 is a Gram-negative aerobic and rod-
shaped-cell bacterium, and therefore was identified as Cobetia amphilecti via 16s rDNA. The results
proved that fucoidanase is a hydrolytic enzyme with a molecular weight of 35 kDa and with high
activity and stability at 30 ◦C and pH 8.0. The activity of fucoidanase was significantly enhanced by
sodium and calcium ions and inhibited by a copper ion and ethylenediaminetetraacetate (EDTA).
There was a significant decrease in the molecular weight of fucoidan after enzymatic hydrolysis.
The low-molecular-weight fuicodan was divided into four fractions, mainly concentrated at F3
(20~10 kDa) and F4 (≤6 kDa). These consequences suggest that fucoidanase obtained from Cobetia
amphilecti is stable and efficient and could be a good tool in the production of bioactive compounds.

Keywords: enzymatic activity; enzymatic properties; fucoidanase; low molecular weight;
ultrasonication

1. Introduction

Fucoidan is a class of well-known natural sulfated polysaccharide from brown al-
gae and sea invertebrate animal echinoderms that exhibits a variety of pharmacological
activities such as antioxidation, immunomodulation [1], hypolipidemic activities [2,3],
anticoagulant [4], antiviral [5] and hepatoprotective effects [6] and the combatting of car-
cinogens. Fucoidan is a structurally diverse group of sulfate with high molecular weight
(HMW) and a unique chemical structure. The polysaccharide backbones in fucoidans
are distinguished to type I or type II. Type I chains consist of reiterating (1→3)-linked
α-L-fucopyranose residues, whereas type II chains comprise the interchanging (1→3) and
(1→4)-linked α-L-fucopyranose residues [3,7,8]. Fucoidan is also composed of monosac-
charides such as fructose, mannose, galactose, xylose, rhamnose and uronic acids. Due
to the complex architectures of algal fucoidan [9], the structure–activity relationship of
fucoidan remains unknown. With its biological activities, the application of fucoidan is still
limited due to its HMW, complex chemical composition and low solubility and absorption.
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Fucoidan with HMW is very difficult to be absorbed and utilized by the human body com-
pared with low-molecular-weight fucoidan (LMWF). Therefore, the use of HMW fucoidan
in clinical drugs is limited. Meanwhile, LMWF is relatively homogeneous, easy to absorb
and has strong functional activity and antigenicity.

It is known that biological activity is often manifested by oligomeric fragments of
polysaccharides [10,11]. Several studies have suggested that LMWF exhibits biological
activities such as anti-inflammatory [12], antiangiogenic [13], a hypoglycemic effect [14] and
antioxidant activity [15,16]. In addition, LMWF has also been shown to have a protective
effect against hypertension, hyperlipidemia and the hyper-responsiveness of aortic smooth
muscle in type I diabetic rats [17]. LMWF has great potential as an adjuvant treatment for
cardiovascular complications in type I diabetes mellitus [18]. Moreover, a previous study
demonstrated that LMWF is a candidate drug against diabetic peripheral arterial disease
(PAD) [19]. The biological activities of LMWF are linked to its specific chemical structure
such as its molecular weight [20], composition (i.e., the degree and location link of sulfation
and monosaccharide) [21] and structure (i.e., backbone structure, the degree of branching
and substitution, chain conformation, etc.) [22,23].

Fucoidan with a high degree of sulfation and LMW exhibits stronger anti-diabetic
activity, while fucoidan derivatives with persulfuric acid display strong hypoglycemic
activity [24]. Furthermore, studies have shown that only fucoidans with a 1,3 and 1,4
carbon chain have a greater inhibitory effect on α-D-glucosidase [24].

Fucoidanases are enzymes that catalyze the hydrolysis or degradation of fucoidans.
Fucoidanases can hydrolyze fucoidan to produce sulfated LMWF without the removal of
its side substitute groups. Fucoidanases are either exo- or endo-acting enzymes. Endo-
fucoidanases would be the optimum choice for the preparation of oligosaccharides of
fucoidan. They could additionally be used as a preferred tool to elucidate the structure of
fucoidan [25,26] and avoid the hydrolysis of the sulfate groups of fucoidans to minimize
any adverse effects on the activity of polysaccharide. However, the commercial availability
of fucoidanase is scarce due to a relatively trivial study on the enzyme. Meanwhile, existing
studies have shown that the activity of fucoidanase is much lower than that of other similar
polysaccharide enzymes, including alginate lyase.

Many studies have indicated that fucoidan could be degraded by some marine bac-
teria [27,28], and the hydrolases responsible for the degradation have been observed in
the enteric and digestive glands of marine animals [29]. Fucoidanase comes from a wide
range of sources, but the most important ones of fucoidanase are marine enzyme-producing
microorganisms which are usually screened from algae, marine mud, seawater and the
viscera of marine animals [30,31]. Moreover, fucoidanase has been shown to exist in marine
molluscs such as Lambis sp. [32], Littorina kurila [33], marine echinoderms, the pancreas of
Patiria pectinifera [34], sea cucumber, marine urchins such as Strongylocentrotus nudus [35],
marine shellfish such as Haliotus sp. [36], Patinopecten (Mizuhopecten) yessoensis [37] and
marine bacteria such as Fucobacter marina SI-0098 (Flavobacterium sp. SA-0082) [38], Flavobac-
terium algicola [17] and Vibrio sp. Other groups of marine organisms in which fucoidanase
occurs are N-5 [39], marine proteobacteria such as Pseudoaltero monascitrea KMM 3296,
KMM 3297 and KMM 3298 [28], Alteromonas sp. SN-1009 [25], Luteolibacter algae (H18) [40],
Formosa haliotis [41], marine fungi such as Dendryphiella arenaria TM94 [26], the Mucor sp. 3P
fungal strain [42] and six algal-inhabiting fungi used in the fermentation process [43], etc.

The microorganisms were selected by judging the degradation of fucoidan, moni-
toring microbial growth on specific carbon source medium. However, the fucoidanases
produced by these microorganisms only exhibit low activity. For example, the crude fu-
coidanase production by Dendryphiella arenaria was 3.43 U/mL and 4 U/mL [44]. Thus,
an optimization study to improve fucoidanase production and characterization in marine
microorganisms is essential. Screening microorganisms capable of producing highly active
enzymes such as fucoidanase for the extraction and purification of this enzyme is of great
significance. Meanwhile, information on the enzymological properties and degradation
products of fucoidanase is lacking. Therefore, in this study, microorganisms producing
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fucoidanase were screened from seawater, marine mud and the viscera of marine animals,
utilizing fucoidan from Undaria pinnatifida as a carbon source in order to clarify the activity
of the enzyme, its properties and characteristics under specific ultrasonic conditions. In
addition, the separation and purification of the degraded polysaccharides were carried out
in this paper, which laid a foundation for the analysis of the structure–activity relationship
of degraded polysaccharides and provided a theoretical foundation for the application
of fucoidanase.

2. Materials and Methods
2.1. Extraction of Fucoidans

Fucoidan was extracted from Undaria pinnatifida as described by a previous study [45]
through enzymatic hydrolysis and ethanol precipitation. The filtered seawater and samples
of marine organisms such as sea cucumber, sea urchin, sea mud, sea sand, sea water and
starfish were collected from different sea areas of Dalian, China.

2.2. Screening and Identification of Strains of Marine Organisms

The samples of microorganisms collected from echinoderm viscera, sea mud, sea
sand and seawater, respectively, were diluted using saline water under aseptic conditions.
Thereafter, 100 µL of diluted liquid dissolved in filtered seawater was added to the solution,
spread on screening plates (0.2% of fucoidan, 0.2% of ammonium, 0.2% of nitrate and
0.2% of agar, dissolved using filtered seawater and then sterilized) and incubated. After
incubation at 25 ◦C for 72 h, we selected strains with good growth states and different
morphologies via plate streaking. The obtained strains from the initial screening were
rescreened via inoculation in 50 mL of rescreening liquid medium (0.2% of fucoidan,
5 mg/mL of ammonium nitrate, 0.2% of peptone, dissolved in filtered seawater and
then sterilized). The media were incubated at 150 rpm and 25 ◦C for 72 h in a constant
temperature oscillator. The content of fucoidan was determined using the Methylene Blue
method of Soedjak H S [46] with slight modifications. Fucoidan solutions were thereafter
diluted to 0.02% via an assay procedure using 1 mL of reaction solution. The fermented
broth (1 mL) of each strain was centrifuged to obtain 50 µL supernatant, and then the
absorbance was measured at 559 nm using a spectrophotometer with the blank medium
serving as a control. The degradation rate of fucoidan was determined from a standard
curve. The strains with a degradation rate over 10% were selected as the target strains and
were stored in 20–30% glycerol medium at −80 ◦C for further analysis. The species identity
of the strains was identified using 16s rDNA sequencing [47]. DNA was isolated from
the bacterial culture and its quality was evaluated in 1% agarose gel. The isolated DNA
was amplified using 16s rDNA specific primers (7F&1492R). Polymerase chain reaction
(PCR) was carried out using a standard procedure [48] with some modifications. Products
obtained from the PCR were sequenced at Sangon Biotech (Shanghai, China) Co., Ltd. The
DNA sequences were submitted to the GenBank database. The homology of sequences with
12 strains of the genus Halomonas and one strain of the genus Cobetia was analyzed using
the NCBI BLAST retrieval system. Phylogenetic trees were constructed using the neighbor
joining method with MEGA software version 6.0 (Mega Limited, Auckland, New Zealand).

2.3. Mutagenesis of Strains of Marine Organisms

Mutagenesis of strains of marine organisms was carried out using ultraviolet (UV)
light. The bacterial suspensions obtained from Cobetia amphilecti were cultured for 24 h
and centrifuged at 6000 rpm for 10 min. The supernatant was decanted, and the residue
was diluted to 106 cells/mL in 0.9% saline solution (w/v). Mutagenesis was conducted
by placing 15 mL of the diluted solution in a 90 mm Petri dish under UV lamp (40 W)
with a vertical 30 cm irradiation distance and exposure of 0–180 s irradiation time. Then,
cell suspension (0.1 mL) was spread in solid plate medium and left in the dark for 72 h at
25 ◦C. The strains with a mortality rate of 70–90% were selected using the plate counting
method and the fatality curve was drawn. The residual colonies were picked and trans-
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ferred to 10 mL of fermented medium, and cultured at 25 ◦C with 150 rpm for 72 h. The
enzymatic activity was measured with the original strain as the control. Mutants with
higher enzymatic activity and good genetic stability were selected as the target strains.

2.4. Enzyme Production and Growth Monitoring

The bacteria strain stored at −80 ◦C was used for enzyme production. This was
allowed to be thawed at room temperature, and then inoculated in recovery solid medium
(0.2% fucoidan of Undaria pinnatifida, 0.2% peptone and 2% agar, dissolved in filtered
seawater) at 25 ◦C for 72 h. The single colony on the plate was transferred to 15 mL
liquid medium (0.2% fucoidan of Undaria pinnatifida and 0.2% peptone dissolved in filtered
seawater) and incubated at 25 ◦C for 24 h in a shaking water bath with 150 rpm for the seed
culture. Then, the strain was inoculated in 50 mL of 5% (v/v) of the liquid medium. The
enzyme was thereafter produced at 25 ◦C and 150 rpm for 72 h. The biomass (OD 600) and
enzymatic activity were measured every 12 h for a period of 120 h. The growth of strains
and enzyme production curves were extrapolated.

2.5. Enzyme Extraction

The extraction of enzymes was performed via ultrasonication and was improved via
optimization of the ultrasonic conditions. The post-culture fluid was centrifuged with
10,000 rpm at 4 ◦C for 10 min. The supernatant (extracellular enzyme) and precipitate
(bacterial cells) were collected, respectively. The precipitated bacterial cells were redissolved
in a C-buffer solution (pH 8.0, 20 mmol/L Tris-HCl including 0.2 mol/L NaCl) to control
the concentration of the bacterial solution. The ultrasonication treatment was carried out
with a UV lamp of about 300 W for 15 min (single time 5 s, interval time 5 s). The mixture
was thereafter centrifuged at 10,000 rpm for 10 min. The supernatant was collected as
crude fucoidanase (intracellular enzyme), and the precipitation was redissolved for further
monitoring.

Experiments with single-factor and orthogonal design were carried out for the opti-
mization of ultrasonic parameters, including ultrasonic power, concentration of bacteria, to-
tal treatment time, ultrasonic single time and interval time factors in the ultrasonic process.

2.6. Preliminary Purification of Fucoidanase

Precooled acetone (−20 ◦C) at different volumes was added into 20 mL of crude
enzyme solution, stirred slowly, placed at −20 ◦C for 1 h and then centrifuged at 8000 rpm
and 4 ◦C for 10 min. The supernatant was decanted, and the precipitate was redissolved
in 5 mL of T-buffer (pH 8.0, 20 mmol/L Tris-HCl) to determine enzymatic activity and
protein content. The reaction mixture was dialyzed against distilled water for 48 h (MWCO
1000 Da). The residue was lyophilized to obtain the fucoidanase.

2.7. Assay of Enzymatic Activity

The activity of fucoidanase was monitored using the method of Ying Wang [49] with
minor modifications. One unit (U) of fucoidanase activity was defined as the amount of
enzyme that liberated 1 µmol of L-fucose from 1 mL of enzyme mixture per min. The
reaction mixture consisted of 0.2% fucoidan solution dissolved in T-buffer and fucoidanase
solution in an equal volume. After incubation with 120 rpm in a constant temperature
oscillator at 30 ◦C for 10 min, the enzyme was deactivated in boiling water for 20 min, and
then the content of reducing sugar was measured according to the potassium ferricyanide
method [49], which is a colorimetric assay determining the content of reducing sugar
released from fucoidan after incubation with fucoidanase [31]. The enzyme samples
deactivated in boiling water for 20 min before incubation and centrifugation served as the
control. The enzymatic activity was determined using the following formula:

Y(U/mL) =
4× (x1 − x0)

10
(1)
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where Y (U/mL) is the enzyme activity per milliliter of enzyme solution, x1 is the fucose
content of the test samples, x0 is the fucose content of the control, 4 is 1 divided by 0.25 mL
of sample volume and 10 is the time of 10 min.

The standard curve of fucose is An = −0.2348 Xn + 0.5611, where Xn (mg/mL) is
the fucose content of the control and test samples and An is the optical absorbance of the
control and test samples at 420 nm.

2.8. Determination of Enzymatic Characteristics

The fucoidanase was characterized by determining the activity and stability of the
enzyme under various temperatures (20–50 ◦C) and pH values (5–10). The promoting or
inhibiting factors of enzymatic activity were determined by the effect of metal ions (Na+,
Mg2+, K+, Ca2+ and Cu2+) and EDTA on the reaction mixture. Purified enzyme samples
(dissolved in solutions containing different metal ions) were mixed with 0.2% fucoidan,
and the final concentration of metal ions was 5 mmol/L. Then, the enzyme activity was
measured separately via the potassium ferricyanide method, as described in Section 2.7.
The highest activity of the enzyme was regarded as 100% for the determination of the
relative enzymatic activity.

The SDS-PAGE (SDS-polyacrylamide gel electrophoresis) was determined to identify
the purity and estimate the molecular weight of fucoidanase as described by the method in
Chen’s work [50].

2.9. Preliminary Determination of Mode of Fucoidanase Degradation

The mode of fucoidanase degradation was (either lyase or hydrolase) preliminar-
ily determined by monitoring the change in unsaturated chemical bonds during the
enzymatic reaction.

Fucoidan with 0.2% concentration (prepared with T-buffer) was mixed with purified
enzyme 2:1 (V:V). The final NaCl concentration obtained in the reaction system was
adjusted to 0.1 mol/L. The reaction mixture was incubated at 30 ◦C in a shaking water
bath with 120 rpm for 24 h. Samples were taken at 0, 1, 2, 4, 6, 8, 10, 12 and 24 h, and the
absorbance was measured directly at 232 nm. The enzyme that was deactivated at 80 ◦C
for 20 min served as the control.

2.10. Purification of Fucoidanase

The purification of fucoidanase was carried out using column chromatography. En-
zyme solution (5 mL) obtained via acetone precipitation was loaded on a DEAE-Sepharose
Fast Flow column (2.6× 30 cm) at 4 ◦C and the mobile phase parameters were the following:
0–4 h, Tris-HCl buffer (pH 8.0); 4–21 h, NaCl (0–1.3 M). The flow rate was 0.5 mL/min, and
an automatic fraction collector was used to collect the elution (3 mL/tube). The enzyme
activity and protein content of the collected fractions were measured. The elution curve was
determined by plotting the tube number against the enzymatic activity and protein content.

2.11. Preparation of Enzymatic Solution of Fucoidan

The enzyme solution and the fucoidan solution (2.0%) were mixed at 1:1 and placed
in a water bath at 30 ◦C for 24 h. Then, they were inactivated in a boiling water bath
and centrifuged (10,000 r/min, 10 min, at 4 ◦C) to remove the precipitation and obtain
enzymatic solution of fucoidan.

3. Results and Discussion
3.1. Sequence Analysis of 16s rDNA

A total of 82 single colonies with different morphologies were obtained in the prelimi-
nary screening of bacterial strains from different sources. Fucoidan was the only carbon
source in the rescreening medium, while the change in content in the post-culture fluid indi-
cates the degradation ability of fucoidan of the strain. Only three strains had a degradation
rate of more than 5%. The three strains were HN-25 with a degradation rate of 10%, HSE-1-1



Foods 2023, 12, 1555 6 of 17

with a degradation rate of 12.2% and HX-3 with a degradation rate of 7.8%, respectively.
These three strains therefore were taken as the target strains. Molecular identification of the
bacteria strain on the basis of the 16s-rDNA-based molecular technique [47] showed that
HN-25, HSE-1-1 and HX-3 amplified via PCR had bands of 1441, 1456 and 1448 bp, respec-
tively. Therefore, HSE-1-1 was identified as Vibrio splendidus, while HX-3 and HSE-1-3 were
identified as Shewanella, both of which are putrefying bacteria. Moreover, in this study,
these two microorganisms were not regarded as functional strains. The strain HN-25 with
the degradation rate of 10% was selected as the target strain. Meanwhile, 13 strains, includ-
ing Cobetia amphilecti (KMM 296), H. aidingensis (GQ281062), H. alkaliantarctica (AJ564880),
H. alimentaria (AF211860), H. Almeriensis (AY858696) and H. andesensis (EF622233) were
obtained and selected using the BLAST retrieval system (Figure 1).
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The homology of HN-25 to the sequence of Cobetia amphilecti was 100% via 16s
rDNA. HN-25 was identified as Cobetia amphilecti and the morphological and biochemi-
cal characteristics of the strain HN-25 were Gram-negative, aerobic, non-pigmented and
rod-shaped-cell microorganisms. HN-25, therefore, was identified as Cobetia amphilecti,
which is a novel species belonging to the genus Cobetia [51]. Studies have shown that
glutaminase-free L-asparaginase [52], alkaline phosphatase/phosphodiesterase [53] and
poly (3-hydroxybutyrate) (PHB) [54] were found in Cobetia amphilecti. The nucleolytic en-
zymes obtained from Cobetia amphilecti KMM 296 have also shown antibacterial activity [53].
There have been no previous reports obtained on the fucoidanase activity from Cobetia
amphilecti. From the results, this is the first time that Cobetia amphilecti has been confirmed
as a fucoidanase-producing strain.

3.2. Production and Selection of Fucoidanase

In order to improve the efficiency of fucoidanase degradation activity, HN-25 was first
mutated via UV irradiation. After mutagenesis, the activity of fucoidanase in HN-25-M was
increased by 67.4%. This is in accordance with the results obtained by Wang et al. [55] who
reported that the fucoidanase activity of strain Rc2-3-Mut obtained via the UV irradiation
of Flavobacteriaceae RC2-3 increased by 40.5%. The results showed that mutagenesis via
UV was an effective method to improve the activity of fucoidanase.

The growth curves of strain and enzymatic activity were monitored during the cul-
tivation process (Figure 2). The crude enzyme liquid was prepared after centrifugation,
ultrasonication, etc. Enzyme activities in process products, such as cultivation broth, ex-
oenzyme, endoenzyme and residue, were determined, respectively, and meanwhile the
target enzymes were collected according to the enzyme activities. The enzymatic activity
increased gradually as the microbial growth attained the logarithmic phase and reached
its maximum when the bacterial biomass was ≤1, followed by a stable state of microbial
growth. The results obtained from the growth curve showed that the best time to extract
the enzyme was when the microbial growth attained the middle of the logarithmic stage.
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The results also showed that the endoenzymatic activity was higher than the exoenzyme
and residue and equivalent to the enzymatic activity in the cultivation broth, while the
exoenzymatic activity was lower, and no enzymatic activity was obtained in the residue
sediment. The results showed that the enzyme activities in cultivation broth mainly came
from the endoenzyme. Considering the preparation and purification, the exoenzyme was
mixed with medium, making it difficult to separate. Therefore, endoenzymes were selected
as the target enzymes for the study. According to the processes shown in Figure 2, the
strain can be screened and fucoidanase can be extracted and prepared. In addition, the
enzymatic activity is the highest in the logarithmic phase, and the enzyme that degraded
fucoidan was endoenzyme, which has high activity and a feasible preparation process.
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3.3. Optimum Conditions and Factors Affecting Enzymatic Activity during Ultrasonication

The effects of ultrasonic power, bacterial concentration, single ultrasonic time and
interval time on enzymatic activity are shown in Figure 3. There was an increase firstly and
then a decrease in the enzymatic activity as ultrasonic power increased. When the ultrasonic
power was about 300 W, the enzymatic activity reached its maximum value (Figure 3A).
This may be a result of the incomplete crushing effect which led to an incomplete release
of intracellular enzymes in the cell when the crushing power was low. Increasing the
power was conducive to the formation of cavitation bubbles, thus enhancing the ultrasonic
effect [56]. When the crushing power was high, cavitation strength became saturated, which
resulted in bubbles that were not useful. Consequently, the scattering attenuation increased
and the cavitation intensity decreased, which further led to a decrease in enzymatic activity.
Meanwhile, the total ultrasonic time had a significant effect on the activity of fucoidanase
(Figure 3B). The ultrasonic time was too short to generate relatively high activity of the
enzyme, meaning that some cells were not completely broken. With an increase in the total
time, the enzyme amount increased and the enzymatic activity was significantly improved
at 9–15 min. However, the total crushing time was too long (18 min), which led to the
enhancement of the ultrasonic thermal effect on the enzymatic activity, leading to the
deactivation of the enzyme. Considering the above reasons and time cost, the total time
was fixed at 9 min. As the concentration of bacterial suspension became low, the amount
of enzyme released via the ultrasonic treatment decreased (Figure 3C). With an increase
in the concentration of bacterial suspension, the amount of enzyme increased and the
enzymatic activity increased gradually. The enzymatic activity reached its maximum when
the concentration of bacterial suspension was 30 mg/mL. It was difficult for the enzymatic
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activity to increase when the concentration was continuously increased. This was because
the concentration of bacteria was too high, energy was damaged in the transfer process of
the ultrasonic wave and the effect of cell breakage was poor.
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The extraction effect was high and the single time was set at 3 s (Figure 3D). Meanwhile,
a short single time might lead to lower extraction and weak enzymatic activity. However, if
the single time was too long, it could lead to the deactivation of some enzymes due to the
fact that the ultrasonic process generated a lot of heat in a short time that was difficult to
cool down easily. Due to the thermal effect produced via the ultrasonic process, bacterial
suspension should be placed in an ice bath during treatment. This implies that setting
up an appropriate interval time could be an effective means for eliminating the thermal
effect. The enzymatic activity presented a parabolic state within the interval of 1 to 5 s and
reached its peak at 3 s (Figure 3E). This may be due to the increase in the interval time
of the ultrasound which reduced the ultrasonic frequency at a certain period, leading to
incomplete cell breakage.

Orthogonal experiments with four factors and three levels were set up based on
single-factorial experiments with the interval time durations fixed at 4 s as Table S1 of Sup-
plementary Materials. From the results obtained obtained from Table S2 of Supplementary
Materials, the influence order of experimental factors on enzymatic activity was as follows:
ultrasonic power > total time > concentration of bacteria > single time. After the verification
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experiment (Table S3), the ultrasonic power for the optimal extraction state was 300 W, the
concentration of bacteria was 40 mg/mL, the total time was 12 min and the single time
was 5 s. The highest enzymatic activity was reached at 275 U under the optimal reaction
conditions. In addition, the enzymatic activity was also related to the growth state of the
cultured microorganisms. In conclusion, it can be seen from Figure 3 that in the process of
enzyme extraction, ultrasonic conditions have a significant effect on the enzymatic activity,
and the research results can provide guidance for the efficient extraction of fucoidanase.

3.4. Purification of Fucoidanase via Acetone Precipitation

Table 1 shows the activity of fucoidanase before and after purification, the specific
activity and the yield of enzymatic activity. The results revealed that after purification
with a volume ratio of enzyme solution to acetone of 1:2.0, the loss in total enzymatic
activity was small, the protein was purified, the specific activity was increased by 1.21 times
compared with the unpurified enzyme and the yield of enzymatic activity reached 98%.
Therefore, to purify fucoidanase via acetone precipitation, the optimal volume ratio of
enzyme liquid to acetone required was 1:2.0, and the specific activity was 0.43 U mg−1.
Burtseva et al. [57,58] isolated enzymes with fucoidan hydrolase activity from 33 species
of marine invertebrates, and obtained activities between 0.20 and 0.26 U mg−1 protein.
Rodríguez-Jasso [42] obtained fucoidanase with Mucor sp. 3P grown on autohydrolyzed
alga substrate under agitation, and the fucoidanase activity achieved was 0.37 U mg−1

protein after 72 h of cultivation. In general, the enzymatic activity obtained in this paper is
consistent with that reported in the literature.

Table 1. Summary of purification of fucoidanase via acetone precipitation.

No. Enzymolysis Liquid:
Acetone (V :V)

Total Activity
(U)

Specific Activity
(U mg−1) Purification (Fold) Yield (100%)

1 1:0 6.60 0.41 1.00 100
2 1:1.0 2.49 0.16 0.39 38
3 1:1.5 3.48 0.25 0.60 53
4 1:2.0 6.44 0.43 1.21 98
5 1:2.5 4.44 0.38 0.93 67
6 1:3.0 5.56 0.38 0.92 84

3.5. Characteristics of Fucoidanase

Figure 4 shows the crude enzyme precipitated via acetone, dissolved in buffer and
purified via column chromatography using the DEAE-Sepharose Fast Flow column. The
figure shows three peaks of the protein (P1–P3). The P2 and P3 protein peaks were the
peaks of enzymatic activity after detection. These two protein peaks were the peaks
of fucoidanases. The maximum peak (P2/E1) of the enzymatic activity was collected
and used to purify fucoidanases. The results obtained in this study from SDS-PAGE
after freeze-drying show that the molecular weight of fucoidanase was 35 kDa, the result
was shown in Figure S1 of Supplementary Materials. However, fucoidanase might have
different molecular weights in different organisms. For example, it was reported that the
molecular weights of fucoidanases in E1, E2 and E3 of Vibrio sp. N-5 were 39, 68 and 68
kDa, respectively, via the SDS-PAGE [39]. Chen et al. [50] also reported that the molecular
weight of fucoidanase was 41 kDa obtained from Flavobacteriaceae RC2-3, while Wang
et al. [56] indicated that the molecular weight of fucoidanase produced via UV-mutagenized
Flavobacteriaceae RC2-3 was around 91 kDa, which was different from the results obtained
in previous studies. From the reports of other studies such as the fucoidanase from
hepatopancreas of P. yessoensis [59], which was 100–200 kDa, the fucoidanase obtained
from Dendryphiella arenaria TM94, which was about 180 kDa [26], Luteolibacter algae H18,
which was 112 kDa [40] and the relative molecular mass of a purified fucoidanase (FNase
S), which was estimated to be 130 kDa [60], it was observed that the molecular weight
of fucoidanases determined in this study was lower than those documented in previous
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reports. This implies that the molecular weights of fucoidanase from different organisms
and sources are likely to be different.
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P2 and P3 are three peaks of protein, and E1, E2 are two peaks of enzymatic activity.

The effect of temperature on enzymatic activity is shown in Figure 5A. The suitable
temperature for the activity of fucoidanase was 30 ◦C. The enzymatic activity decreased
rapidly as temperature increased above 30 ◦C. When the temperature was higher than 40
◦C, the enzyme was gradually deactivated. Therefore, the reaction temperature should
be set at about 25–35 ◦C in order to ensure the efficiency of fucoidanase. The effect
of pH on enzymatic activity is shown in Figure 5B. The enzyme showed higher activ-
ity at pH values of 7.0 and 9.0. These results were in line with the report that it was
favorable for enzymolysis under neutral and weak alkaline conditions [61]. Three tem-
peratures (25, 30 and 35 ◦C) were selected to explore the thermal stability of the enzyme
within 24 h. The order of preservation in the stability of the enzyme was 30 ◦C > 35 ◦C > 25 ◦C
(Figure 5C). Additionally, pH values of 7.0, 8.0 and 9.0 were selected to explore the pH-
dependent enzyme stability within 12 h. The results indicated that the enzyme was rela-
tively stable at pH 7.0 within a short reaction duration, although there was no significant
difference in enzyme stability at pH 7.0 and 9.0 for longer reaction durations. At pH 8.0, the
enzymatic activity was relatively stable at about 80% of the original enzyme (Figure 5D).
This is in accordance with the results obtained by a previous study [61] on a C-terminal
deletion mutant fucoidanase Fhf2∆484, which was active at 20–45 ◦C and at pH 6–9 and
had optimal activity at 37 ◦C and pH 8. Kim et al. [60] also reported that the optimum
pH and temperature of FNase S, an endo-acting fucoidanase that degrades Miyeokgui
fucoidan, were pH 6.0–7.0 and 40–45 ◦C, respectively.

The effects of different metal ions (Na+, Mg2+, K+, Ca2+, Mn2+ and Cu2+) and EDTA on
the activity of fucoidanase are shown in Figure 5E. From the results obtained, Na+ and Ca2+

had activation effects on fucoidanase (Figure 5E). Na+ had the strongest activation effect
and enhanced fucoidanase HN-25-M activity by 31.7%, because the enzyme originates
from marine bacteria. Ca2+ enhanced the activity of the enzyme by 12.5%. Cu2+ and
EDTA had significant inhibitory effects on fucoidanase. Meanwhile Cu2+ reduced the
activity of HN-25-W by 92.1%. This variation in the effect of metallic ions on the activity
of fucoidanase may be a result of the fact that the enzymatic properties of fucoidanase



Foods 2023, 12, 1555 11 of 17

from different sources vary greatly, which is consistent with the results of taxonomic
identification. This result is consistent with the results obtained on the effect of Cu2+ on
the activity of tFda1B and endo-fuocidanases. Cu2+ completely deactivated tFda1B and
decreased the activities of endo-fucoidanases from Lambissp [32] and Formosa algae KMM
3553T (FFA1 and FFA2) [62,63]. Meanwhile Cu2+ did not affect the endo-fucoidanase from
Haliotus sp. [36]. Ca2+ promoted the activity of the fucoidanase from HN-25-W, increasing
its activity by 12.5%. This is consistent with the report of previous reports showing that
Ca2+ activated FFA1, FFA2 [62,63] and Alteromonas sp. SN-1009 [64]. Furthermore, Mg2+

caused an inhibitory effect by reducing the activity of fuocidanase by 8.6%. From previous
reports, Mg2+ stimulates the activity of tFda1B, but it inhibits fuocidanase action on FFA1,
FFA2 [62,63] and endo-fuocidanases from Lambis sp. [32] and shows no obvious impact
on endo-fucoidanase in Alteromonas sp. SN-1009 [64]. K+ shows no obvious impact on
HN-25-W, nor on endo-fucoidanase in Alteromonas sp. SN-1009 [64]. The effects of different
metal ions on enzymatic activity vary with different enzymes. In addition, the activity of
fucoidanase was the highest when the concentration of NaCl was 0.1 mol/L (Figure 5F).
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Figure 5. Effects of temperature, pH and metal ions on fucoidanase HN-25-M activity. (A) Effects
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3.6. Degradation Mode of Fucoidanase

Polysaccharide lyases are a class of enzymes that cleave specific glycosidic linkages,
exist in acidic polysaccharides and result in depolymerization [65]. These enzymes act by
eliminating the mechanism to produce unsaturated oligosaccharide with UV absorption at
232 nm. In this study, the absorbance 232 nm was thereby used to monitor the changes in
unsaturated chemical bonds in the process of the enzyme reaction. Using this method, the
type of enzyme digestion was preliminarily determined. The occurrence of unsaturated
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bonds in the process of the enzymatic reaction indicates that the enzyme is a lyase but not
a hydrolytic enzyme [66].

The change in absorbance of the products in the enzymatic reaction at 232 nm within
24 h is shown in Figure 6. From the results obtained, it was observed that with the extension
of the reaction time, the absorbance at 232 nm of the control and test samples decreased
initially and then increased throughout the course of the experiment while both trends were
very consistent. The enzyme which was first deactivated in boiling water for 20 min served
as the control. From this study, it can be inferred that the increase in absorbance was not
caused by the enzyme action product such as unsaturated oligosaccharide. Furthermore,
the absorbance of the samples increased in the same range as that of the control, indicating
that the products of the enzyme should not cause a change in the absorbance at 232 nm. It
was therefore observed that the enzyme is not a lyase but a hydrolytic enzyme. Further
studies are needed to elucidate the mode of action of this enzyme. There is a study that
evaluated the production of fucoidan hydrolytic enzymes via two fungal strains (Aspergillus
niger PSH and Mucor sp. 3P) through solid state fermentation in a rotating drum bioreactor.
Different algal biomasses (untreated, autohydrolyzed and microwave-processed seaweed
Fucus vesiculosus) were used as the substrate. The result found that none of the fungal
strains produced fucoidan-hydrolyzing enzymes from untreated alga [42]. FdlA and FdlB
were two unclassified endo-fucoglucuronomannan lyases and were previously claimed
to be lyases acting on manno-glucurono-linkages in fucoidan from K. crassifolia [67]. The
degradation modes of enzymes vary with different microbial sources.
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3.7. Molecular Weights of Degradation Products

LMWF was obtained via a series of enzymatic processes and was separated via
Sephocryl-100 column chromatography. By comparing the original fucoidan with the
degradation products, it was observed that fucoidan is distributed mainly in the molecular
weight range of 70 kDa. The content of fucoidan in >70 kDa, 20–40 kDa and 10 kDa
was very small, and the overall molecular weight was large. From the elution curve
(Figure 7), the elution peak at 70 kDa of the degradation products decreased significantly,
and elution peaks were also observed at 20–10 kDa and <6 kDa, indicating that most of the
fucoidans from Undaria pinnatifida were degraded into LMWFs during enzymolysis. The
results obtained from this study indicated that the fucoidanase from Cobetia amphilecti had
high efficiency for the degradation of fucoidan. From the standard curve, the degraded
polysaccharides were divided into F1 (70 kDa > M > 40 kDa), F2 (40 kDa > M > 20 kDa), F3
(20 kDa > M > 10 kDa) and F4 (M < 6 kDa) based on their molecular weights, while LMWFs
were mainly concentrated in F3 and F4 fractions. This result is in line with that of Kim
et al. [60] who reported that an endo-acting fucoidanase degraded Miyeokgui fucoidan
into smaller-sized galactofuco-oligosaccharides (1–4 kDa). The oligosaccharides generated
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were resolved into seven distinct low-molecular-mass fractions via Bio-Gel P-4, with the
relative molecular weights of 3312 Da (peak 1), 2494 Da (peak 2), 1699 Da (peak 3), 1543 Da
(peak 4) and 1312 Da (peak 5) [60].
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In addition, the sulfate content of crude fucoidan was 26.97%, and those of fragments
of degraded polysaccharides varied from 22.73 to 37.38%. According to the results, some of
the fragments had lower and the other of the fragments had higher sulfate contents than
that of crude fucoidan. The study concluded that the difference in sulfate content might be
caused by the separation and purification process. Therefore, it was speculated that the
fucoidanase had little effect on the sulfate group and would not eliminate the ester group.

4. Conclusions

From this study, it was observed that the HN-25 is Gram-negative, aerobic, non-
pigmented and rod-shaped-cell bacteria, and was identified as Cobetia amphilecti via 16s
rDNA sequencing. The optimal extraction efficiency for fucoidanase in the ultrasonication
process was obtained at 300 W ultrasonic power, 30 mg/mL of bacteria and single and
interval time durations of 4 s, and the highest enzymatic activity reached 275 U. The ratio
of reaction mixture after ultrasonication to acetone (V:V) was 1:2.0. It was observed that the
specific activity of the enzyme was increased by 1.21 times compared with the unpurified
enzyme, the yield of enzymatic activity reached 98% and little or no loss was observed.
After purification via DEAE Sepharose Fast Flow column chromatography, the molecular
weight of fucoidanase was 35 kDa. The optimal conditions for the stability of the enzyme in
the reaction system were 30 ◦C and pH 8.0. In addition, Na+ and Ca2+ had activation effects
on fucoidanase by promoting the enzymatic activity to 132% and 113%. The enzymatic
activity was much better when the concentration of NaCl was 0.1 mol/L. Cu2+ and EDTA
had significant inhibitory effects on fucoidanase. The enzymolysis showed that fucoidanase
was a hydrolytic enzyme rather than a lyase. The overall molecular weight of fucoidan was
reduced after enzymic degradation, and four fractions with different molecular weights
were obtained via Sephacryl-100 gel chromatography. In conclusion, our results suggest
that fucoidanase obtained from Cobetia amphilecti is stable and efficient and could be a
worthy tool with feasible application in the production of bioactive compounds. Further
study on the biological activities of LMWF components needs to be performed.
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