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Abstract: Chinese liquor is a world-famous beverage with a long history. Base liquor, a product
of liquor brewing, significantly affects the flavor and quality of commercial liquor. In this study,
a machine learning method consisting of a deep residual network (ResNet)18 backbone with a
light gradient boosting machine (LightGBM) classifier (ResNet-GBM) is proposed for the quality
identification of base liquor and commercial liquor using multidimensional signals from an electronic
nose (E-Nose). Ablation experiments are conducted to analyze the contribution of the framework’s
components. Five evaluation metrics (accuracy, sensitivity, precision, F1 score, and kappa score) are
used to verify the performance of the proposed method, and six other frameworks (support vector
machine (SVM), random forest (RF), k-nearest neighbor (KNN), extreme gradient boosting (XGBoost),
multidimensional scaling-support vector machine (MDS-SVM), and back-propagation neural network
(BPNN)) on three datasets (base liquor, commercial liquor, and mixed base and commercial liquor
datasets). The experimental results demonstrate that the proposed ResNet-GBM model achieves the
best performance for identifying base liquor and commercial liquors with different qualities. The
proposed framework has the highest F1 score for the identification of commercial liquor in the mixed
dataset due to the contribution of similar microconstituents from the base liquor. The proposed
method can be used for the quality control of Chinese liquor and promotes the practical application
of E-nose devices.

Keywords: Chinese liquor; electronic nose; residual network; light gradient boosting machine

1. Introduction

Chinese liquor is one of the most popular distillates worldwide and has a long his-
tory of over 6000 years [1]. According to the National Bureau of Statistics, approximately
7.2 billion liters of Chinese liquor was consumed in 2021, with sales of US$90 billion [2].
Chinese liquor is a traditional alcohol. It is generally produced from grains using tradi-
tional methods, including fermentation, distillation, storage, and blending [3]. The product
obtained after distillation and storage without blending is called base liquor [4]. Almost
all commercial Chinese liquors are blended using base liquors and specific blending tech-
niques [5]. Although manufacturing processes differ, base liquors determine the quality of
commercial liquors [6]. Due to the different base liquor qualities, there is a great variation
of quality among different commercial liquors [7]. Therefore, evaluating base liquor quality
is necessary for the quality control of commercial liquors.

The main components of Chinese liquors are alcohol and water, accounting for 98%
of the total weight. Other components comprise less than 2% of the trace components
but contribute to the complex aroma of the liquors, including esters, aldehydes, ketones,
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phenols, acids, nitrogen compounds, and sulfides [1]. The most common method for
assessing the quality of base liquors is sensory evaluation and chemical/spectroscopic
analysis [8]. However, the accuracy and objectivity of the results of the sensory evaluation
method cannot be guaranteed because experts may be influenced by their health conditions,
emotional states, or environmental factors [9]. Analysis methods, such as chromatogra-
phy [10] and spectroscopy [11], are demanding and time-consuming. Base liquors that are
inaccurately assessed are downgraded or destroyed, causing unnecessary waste. Therefore,
it is necessary to develop an objective, convenient, rapid, and accurate method to detect
the quality of base liquor.

An electronic nose (E-nose) is a device that simulates human olfactory perception
using gas sensors. It consists of an array of gas sensors, a signal processing system, and a
pattern recognition system [12]. Machine learning (ML) is a rapidly growing technology.
It refers to algorithms that automatically learn information from data input [13]. Many
researchers have distinguished Chinese commercial liquor using ML methods and E-
nose data. Qi et al. [14] used an E-nose and support vector machine (SVM) classifier to
distinguish six types of Chinese liquors with 90.8% accuracy. Jing et al. [15] employed an
E-nose and a multilinear classifier to classify liquors with similar aromas and different
prices, achieving an accuracy of 97.22%. Zhang et al. [16] proposed a channel attention
convolutional neural network (CA-CNN) for the authenticity identification of Chinese
liquor using an E-nose and obtained 98.53% prediction accuracy. Zhao et al. [17] presented
a deep learning method with a stacked sparse autoencoder (SSAE) to classify seven brands
of Chinese liquor utilizing E-nose data, achieving 96.67% prediction accuracy. Although
the E-nose has shown good performance in distinguishing Chinese commercial liquors,
few studies have focused on the classification of base liquors, which generally have similar
microconstituents with very subtle differences, for different aging durations and aging
environments. In addition, it is necessary to develop a method for the simultaneous
identification of base and commercial liquors for practical applications.

In this study, we propose a novel ML framework for identifying base liquors and
commercial liquors using multidimensional signals from an E-nose. The contributions of
this paper can be summarized as follows.

1. A novel machine learning framework consisting of a deep residual network (ResNet)18
backbone and a light gradient boosting machine (LightGBM) classifier (ResNet-GBM)
is proposed for the quality detection of base liquor and commercial liquor. The
ResNet18 backbone is a powerful feature extractor and automatically extracts a suffi-
cient number of comprehensive and significant features from the raw, multidimen-
sional E-nose signals. The LightGBM is employed as the classifier to strengthen the
identification ability of the liquor’s quality.

2. Ablation and comprehensive comparative experiments are conducted on three datasets
to analyze the contribution of the models’ components and the performance of the
ResNet-GBM framework using five evaluation metrics (accuracy, sensitivity, precision,
F1 score, and kappa score). A base liquor dataset and a commercial liquor dataset
are used in the comparative experiments to assess the applicability of the proposed
ResNet-GBM framework. In addition, a mixed dataset containing base liquor and
commercial liquor data is used to evaluate the proposed framework’s robustness,
generalization ability, and performance for the identification of Chinese liquors in a
complex application scenario.

3. The proposed method for the quality identification of base liquor and commercial
liquor enables rapid detection and has high accuracy, providing a potential tool for
quality control and promoting the practical application of E-nose devices.

2. Materials and Methods
2.1. Chinese Liquor Samples

All Chinese liquor samples (light flavor) were provided by the Shanxi Luxian Liquor
Industry Co., Ltd. We tested nine types of Chinese liquor (six types of base liquors and three
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types of commercial liquors). The six types of base liquors with different aging durations
were denoted as BL (year), where BL represents the base liquor, and (year) represents the
aging duration. Thus, the six types of base liquors were BL (13), BL (11), BL (8), BL (6), BL
(5), and BL (3). The details are listed in Table 1.

Table 1. Details of the base liquor.

Label Aging Duration Alcohol Content

BL13 13 65
BL11 11 65
BL8 8 65
BL6 6 65
BL5 5 65
BL3 3 65

The three commercial liquors (CL) were blended using different proportions of the six
base liquors. The details are listed in Table 2.

Table 2. Details of the commercial liquors.

Label Production Year Alcohol Content Components Blending Proportion (%)

CL1 2022 42

BL13 0.01
BL11 8.99
BL5 31
BL3 60

CL2 2022 42

BL13 0.008
BL8 5.992
BL5 24
BL3 70

CL3 2022 42

BL13 0.006
BL6 3.994
BL5 16
BL3 80

2.2. Instrument and Experiment

A PEN3 E-nose (Airsense Analytics GmbH, Schwerin, Germany) with a sensor array
with ten metal oxide semiconductor (MOS) sensors (Table 3) was employed to collect the
characteristic flavor information of the liquors.

Table 3. Standard sensor array of the PEN3 E-nose [18].

Number Sensor Main Performance

MOS1 W1C Aromatic constituent
MOS2 W5S Nitride oxides
MOS3 W3C Ammonia and aromatic constituent
MOS4 W6S Hydrogen
MOS5 W5C Alkanes and aromatic constituent
MOS6 W1S Methane
MOS7 W1W Sulfide
MOS8 W2S Alcohol
MOS9 W2W Aroma constituent and organic sulfur compounds

MOS10 W3S Alkanes

All experiments were implemented in a clean and well-ventilated testing room of the
authors’ laboratory at a temperature of 26 ± 2 ◦C and relative humidity of 50 ± 2%. The
experiments lasted 25 days, and 9 different individual samples of each type were measured
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every day within the same procedure (total 25 days× 9 individual samples = 225 individual
samples per type). These individual samples were from different production batches
(the base liquor samples were from different liquor storages, and the commercial liquor
samples were from different bottles) and were provided by the manufacturer directly. Each
sample was measured once and updated if it was used, which ensured that no repeated
measurements existed in the experiments. Therefore, the experiments contained 2025
independent measurements (9 types of liquor samples × 225 individual samples per type).
Before the measurement, 3 mL of each sample was placed into a single hermetic vial
(20 mL) and airproofed for 3 min to allow the liquor’s volatile compounds to disperse into
the sampler.

The acquisition of the volatile compound profile was conducted in a well-ventilated
location to minimize baseline fluctuations and interference from other volatile compounds.
The zero gas (a baseline) was produced using two active charcoal filters (Filter 1 and
Filter 2 in Figure 1) to ensure that the reference air and the air used for the samples had the
same source.

Figure 1. Schematic diagram of the PEN-3 workflow.

The workflow of the E-nose includes the collection stage and flushing stage. Before
collecting the data, an automatic zero-point trim was conducted for the E-nose by pumping
clean air through filter 2 for 5 s. Then, the volatile compounds of the liquor sample were
pumped into the sensor chamber with a flow rate of 600 mL/min to contact the sensor
array for 100 s. During the collection stage, the gas molecules were adsorbed on the surface
of the sensors, changing the sensors’ conductivity due to the redox reaction on the surface
of the sensor’s active element. The sensors’ conductivity eventually stabilized at a constant
value when the adsorption was saturated. The collection stage lasted 100 s, and sampling
continued at one sample per second. In the flushing stage, clean air was pumped into the
E-nose to flush the analytes. The collection and flushing stages were repeated to acquire
the raw response data of the nine liquor samples. The workflow of the E-Nose followed
the manufacturer’s instructions in the manual of the PEN3 E-nose [19].

2.3. Datasets

Three datasets (Dataset A, Dataset B, and Dataset C) were established using the
multidimensional signals from the E-nose system. Dataset A was used to evaluate the
performance of the proposed method for the classification of the six base liquors with
different aging durations. Dataset B was utilized to test the effectiveness of the proposed
method for the classification of commercial liquors with differing quality. Dataset C (mixed
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dataset) consisted of data from all liquor samples and was used to evaluate the ability of the
proposed method to distinguish the base liquors and commercial liquors simultaneously.

Dataset A: This dataset comprised 1350 samples (25 days × 6 base liquors × 9 individ-
ual samples) of the six base liquors. The dataset for the SVM, random forest (RF), k-nearest
neighbor (KNN), extreme gradient boosting (XGBoost), multidimensional scaling-support
vector machine (MDS-SVM), and back-propagation neural network (BPNN) contained
27,000 samples (1350 samples × 20 measurements of the last 20 s) × 10 (number of sensors).
The dataset for the ResNet-GBM framework contained 135,000 samples (1350 samples ×
100 measurements during 100 s) × 10 sensors.

Dataset B: This dataset comprised 675 samples (25 days × 3 commercial liquors ×
9 individual samples) of the three commercial liquors. The dataset for the SVM, RF, KNN,
XGBoost, MDS-SVM, and BPNN contained 13,500 samples (675 samples × 20 measure-
ments of the last 20 s)× 10 (number of sensors). The dataset for the ResNet-GBM framework
contained 67,500 samples (675 samples × 100 measurements during 100 s) × 10 sensors.

Dataset C: This dataset comprised 2025 samples (25 days × 9 liquors × 9 individual
samples) of the base liquors and commercial liquors. The dataset for the SVM, RF, KNN, XG-
Boost, MDS-SVM, and BPNN contained 40,500 samples (2025 samples × 20 measurements
of the last 20 s) × 10 (number of sensors). The dataset for the ResNet-GBM framework
contained 202,500 samples (2025 samples × 100 measurements during 100 s) × 10 sensors.

2.4. Principal Component Analysis

Principal component analysis (PCA) is a common multivariate statistical algorithm
for dimensionality reduction (also known as feature extraction). It reduced the complexity
of the data set while retaining most of the feature information [20]. The PCA accomplishes
dimensionality reduction by transforming the original data into a new coordinate system
according to the largest contribution of the variance from all variables; the coordinates are
called the principal components [21]. Thus, a sample can be represented by a few principal
components. A cumulative variance contribution of the first few principal components of
95% is considered reasonable [22].

2.5. Light Gradient Boosting Machine

The LightGBM is a learning framework based on the gradient boosting decision tree
(GBDT) proposed by Microsoft Research in 2017 [23]. It has many improvements over the
GBDT, such as gradient-based one-side sampling (GOSS) and exclusive feature bundling
(EFB) to deal with data and features. It uses histogram-based algorithms to speed up the
training process [24]. The LightGBM algorithm has the advantages of fast training speed,
low memory overhead, no overfitting, and automatic feature processing. It also supports
parallel processing and is suitable for large sample sizes and high-dimensional data [25].

2.6. ResNet

The ResNet is a commonly used convolutional neural network [26] consisting of a
stack of residual blocks. It is not prone to gradient fading [27]. The residual block is
shown in Figure 2, where x and y are the input and output of the block, respectively. W1
and W2 represent the weights of the first and second layers, respectively. The curvilinear
arrows represent shortcut connections. F(x) represents the first layer’s output after linear
transformation and activation. After the linear transformation by the W2 weight layer, F(x)
and the original input x are added to obtain H(x), which is activated by a ReLU function
to derive output y. Due to the residual blocks, ResNet can optimize the network layer,
reducing redundancy [28].
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Figure 2. The residual block.

2.7. Model Evaluation Metrics

Five evaluation metrics (accuracy, sensitivity, precision, F1 score, and kappa score) were
used to assess model performance. Four parameters were used to calculate the metrics:
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).

Accuracy is defined as the proportion of correctly classified samples (TP samples and
TN samples) to the total number of samples; it is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity represents the proportion of the TP samples to the total number of positive
samples (TP samples and FN samples); it is defined as follows:

Sensitivity =
TP

TP + FN
(2)

Precision (P) represents the proportion of the TP samples to the total number of positive
predictions (TP samples and FP samples); the formula is as follows:

Precision =
TP

TP + FP
(3)

The F1 score is defined as the harmonic mean of the precision and sensitivity; it is
calculated as follows:

F1 =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(4)

The kappa score is an evaluation metric for multi-class classification models that mea-
sures the consistency between categories and the classification accuracy: it is calculated
as follows:

p0 =
TP + TN

TP + TN + FP + FN
(5)
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pe =
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

(TP + TN + FP + FN)2 (6)

kappa =
p0 − pe

1− pe
(7)

where p0 represents the overall classification accuracy, and pe is the expected agreement.

3. Proposed Method

An ML framework called ResNet-GBM, consisting of a ResNet18 backbone and a
LightGBM classifier, was proposed to process the multidimensional signals from the E-
Nose. Figure 3 shows the flowchart of ResNet-GBM.

Figure 3. The classification framework for the quality detection of Chinese liquor.

The raw data obtained from the 10 channels was a 100 (measurement time of 100 s) ×
10 (number of MOS sensors) matrix. Due to the multi-channel input of the ResNet18 model,
a 10-channel input was constructed by converting the raw E-nose data from the sensor
array. The 100 raw response points of each sensor were converted into a 10 × 10 matrix,
and the 10 matrices of the sensor array were converted into a 10 × 10 × 10 matrix used for
the 10-channel input of the ResNet18 model.

As shown in Figure 4c, the ResNet18 backbone consists of six stages, including Conv
1, Layer 1, Layer 2, Layer 3, Layer 4, and Pool. Conv 1 consists of a convolutional layer, a
batch normalization layer, a ReLU layer, and a pooling layer. The kernel size, stride size,
and padding size of the convolutional layer are 7 × 7, 2, and 3, respectively. The kernel size,
stride size, and padding size of the pooling layer are 3 × 3, 2, and 1, respectively. Layer
1 consists of two Basic Blocks 1. Layer 2, Layer 3, and Layer 4 consist of Basic Block 1 and
Basic Block 2. The two Basic Blocks are presented in Figure 4a,b.
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Figure 4. Schematic diagram of the ResNet18 backbone. (a) Basic Block 1; (b) Basic Block 2;
(c) ResNet18 backbone.

There are two convolutional layers in Basic Block 1, and the kernel size, stride size,
and padding size of the two convolutional layers have the same value: 3 × 3, 1, and 1,
respectively. Basic Block 2 has three convolutional layers, two of which are down-sampling
layers. The kernel size, stride size, and padding size of the down-sampling convolutional
layer 1 are 3 × 3, 2, and 1, respectively. The kernel size, stride size, and padding size of
the down-sampling convolutional layer 2 are 1 × 1, 2, and 1, respectively. The kernel size,
stride size, and padding size of the third convolutional layer are 3× 3, 1, and 1, respectively.
The details of the ResNet18 backbone are listed in Table 4.

Table 4. Details of the ResNet18 backbone.

Stage Output Structure Details

Conv1
112 × 112 × 64 7 × 7, 64, s = 2, p = 3
56 × 56 × 64 3 × 3, max-pooling, s = 2, p = 1

Layer1 56 × 56 × 64

[
3× 3.64
3× 3.64

]
×2

Layer2 28 × 28 × 128

[
3× 3.128
3× 3.128

]
×2

Layer3 14 × 14 × 256

[
3× 3.256
3× 3.256

]
×2

Layer4 7 × 7 × 512

[
3× 3.512
3× 3.512

]
×2

Pool 1 × 1 × 512 Global average pooling

The 512 features extracted by the ResNet18 backbone were input into the LightGBM
model. In the LightGBM, a grid search method (GSM) was employed to derive the main
parameters (num_leaves and learning_rate) and obtain the best performance of the classifier.
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After training the proposed model using the training set, the test set was used to evaluate the
effectiveness of the trained model for the quality detection of base liquors and commercial
liquors.

4. Results and Discussion
4.1. Principal Component Analysis

Since the measurement phase lasted 100 s, and the response value of each sensor
was stable after 80 s, the last 20 response points were chosen as the input features for
PCA. As shown in Figure 5, the x-axis, y-axis, and z-axis represent principal component
1 (PC1), principal component 2 (PC2), and principal component 3 (PC3), respectively.
The percentages of the variance of PC1, PC2, and PC3 were 69.4%, 15.3%, and 11.5%,
respectively. The cumulative variance of PC1, PC2, and PC3 was 96.2%, indicating that
sufficient sample information was contained in the three principal components. However,
the subplot indicated that the clusters were in close proximity, i.e., there was overlap.
During dimensionality reduction, some principal components with a small contribution
rate were overlooked, but these components may have contained critical information.
Therefore, PCA is not an effective method for separating the classes in this study.

Figure 5. PCA score plot of the liquor samples with the first three principal components.

4.2. Experiments

Four sets of experiments were conducted: experiment I, experiment II, experiment III,
and experiment IV. Experiment I was an ablation study to verify the contributions of the
proposed ResNet-GBM’s components. Experiments II to IV were performed to compare
the proposed ResNet-GBM framework with six other methods (including four common
machine learning methods (SVM, RF, KNN, and XGBoost) and two methods proposed by
other authors (MDS-SVM and BPNN)) on Dataset A, Dataset B, and Dataset C, respectively.
MDS-SVM is a pattern recognition method based on multidimensional scaling and SVM.
It was developed by Li et al. [29] to classify ten brands of Chinese liquors. BPNN is a
multi-layered feedforward neural network that was used by Liu et al. [30] to distinguish
different wines based on their properties. The models were implemented using NVIDIA
GeForce MX250 graphics cards and the open-source PyTorch framework.
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4.2.1. Experiment I: Ablation Study of ResNet-GBM

The comparative results of the ablation experiments on Datasets A, B, and C are
displayed in Table 5. The proposed ResNet-GBM had the best performance for the classi-
fication of the Chinese liquor on the three datasets with accuracies of 0.9704, 0.9814, and
0.9803, respectively. The LightGBM provided an unsatisfactory performance and could
not identify the liquors accurately. It is possible that it cannot mine a sufficient number
of features. The ResNet18 exhibited better performance than the LightGBM, indicating
that the automatic feature extraction capability significantly improved the classification
performance. The proposed ResNet-GBM model combines the merits of ResNet18 and the
LightGBM classifier, reducing the possibility of overfitting during training and improving
the model’s classification performance.

Table 5. Results of ablation experiment.

Test Dataset Dataset A Dataset B Dataset C

LightGBM

Accuracy 0.4053 0.5088 0.4304
Sensitivity 0.4053 0.5088 0.4304
Precision 0.3732 0.5287 0.4141
F1 score 0.3768 0.5150 0.4138

Kappa score 0.2863 0.4789 0.3592

ResNet18

Accuracy 0.9037 0.9185 0.9074
Sensitivity 0.9037 0.9185 0.9074
Precision 0.9238 0.9274 0.9181
F1 score 0.9064 0.9183 0.9084

Kappa score 0.8844 0.9022 0.8889

ResNet-GBM

Accuracy 0.9704 0.9814 0.9803
Sensitivity 0.9704 0.9814 0.9803
Precision 0.9716 0.9825 0.9819
F1 score 0.9710 0.9815 0.9801

Kappa score 0.9644 0.9722 0.9778

4.2.2. Experiment II: Performance of the Proposed Framework on Dataset A

Dataset A was used in Experiment II. It contains 6 types of base liquor with different
aging durations. Dataset A was divided into training sets (data from the first twenty days:
20 days × 6 liquor samples × 9 individual samples) and test sets (data from the last five
days: 5 days × 6 liquor samples × 9 individual samples).

The radial basis function (RBF) was selected as the kernel function of the SVM model. The
SVM model includes two important parameters: the penalty coefficient (C) and kernel function
coefficient (gamma). A GSM with C ∈ [10, 50, 100, 200, 500] and gamma ∈ [0.1, 1.0, 5.0, 10.0, 20.0]
was employed to determine the optimal parameters. The C was 100, and the gamma was
1. The number of decision trees and the number of randomly selected features obtained
from each decision tree (NF) in the RF model were selected using the equation NF =

√
M,

where M represents the number of features. In our experiments, 10 decision trees (NF = 10)
were used. In the KNN model, the n_neighbors is a critical parameter; it was set to 3.
The parameters of the XGBoost model were similar to those of the LightGBM model.
The number of leaves (num_leaves) and the learning rate (learning_rate) are important
parameters of the LightGBM model. The GSM was employed to search the parameters;
the range of values for num_leaves was [8, 16, 32, 64, 128], and the learning_rate was
[0.001, 0.01, 0.1, 0.5, 1]. The num_leaves was 16, and the learning_rate was 0.1.

The classification results derived from the seven models are displayed in Table 6. Five
evaluation metrics were used to evaluate the classification models. As shown in Table 6, the
proposed ResNet-GBM obtained the best performance for all evaluation metrics, with an
accuracy of 0.9704, a sensitivity of 0.9704, a precision of 0.9716, an F1 score of 0.9710, and a
kappa score of 0.9644. SVM, RF, KNN, XGBoost, MDS-SVM, and BPNN achieved accuracies
of 0.3175, 0.4018, 0.4053, 0.4246, 0.7852, and 0.8963, respectively. The performances of
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these six models were unsatisfactory because they failed to extract a sufficient number
of deep features. The experimental results demonstrated the effectiveness and superior
performance of the proposed ResNet-GBM framework to identify different base liquors.

Table 6. Classification results of seven models in Experiment II.

Model Accuracy Sensitivity Precision F1 Score Kappa Score

SVM 0.3175 0.3175 0.3531 0.3042 0.1811
RF 0.4018 0.4018 0.3696 0.3590 0.2821

KNN 0.4053 0.4053 0.3732 0.3768 0.2863
XGBoost 0.4246 0.4246 0.4437 0.4096 0.3095

MDS-SVM [28] 0.7852 0.7826 0.8206 0.7740 0.7419
BPNN [29] 0.8963 0.8962 0.8995 0.8948 0.8755

ResNet-GBM 0.9704 0.9704 0.9716 0.9710 0.9644

4.2.3. Experiment III: Performance of the Proposed Framework on Dataset B

Experiment III used commercial liquor samples to assess the generalization perfor-
mance of the models. Dataset B was divided into training sets (data from the first twenty
days: 20 days × 3 liquor samples × 9 individual samples) and test sets (data from the last
five days: 5 days × 3 liquor samples × 9 individual samples).

The parameters of the models were the same as those in Experiment II. The results
are listed in Table 7. The ResNet-GBM model exhibited the best results for the commercial
liquors, with an accuracy of 0.9814, a sensitivity of 0.9814, a precision of 0.9825, an F1
score of 0.9815, and a kappa score of 0.9722. SVM, RF, KNN, XGBoost, MDS-SVM, and
BPNN achieved accuracies of 0.3649, 0.6351, 0.5088, 0.6105, 0.8235, and 0.9118, respectively.
The results showed that the proposed model could accurately detect different grades
of commercial liquor. The classification performance of the model was better for the
commercial liquor than for the base liquor.

Table 7. Classification results of seven models in Experiment III.

Model Accuracy Sensitivity Precision F1 Score Kappa Score

SVM 0.3649 0.3649 0.3677 0.3501 0.2379
RF 0.6351 0.6351 0.6453 0.6322 0.5237

KNN 0.5088 0.5088 0.5099 0.5086 0.4912
XGBoost 0.6105 0.6105 0.6767 0.6165 0.5064

MDS-SVM [28] 0.8235 0.8202 0.8737 0.8206 0.7345
BPNN [29] 0.9118 0.9130 0.9183 0.9115 0.8677

ResNet-GBM 0.9814 0.9814 0.9825 0.9815 0.9722

4.2.4. Experiment IV: Performance of the Proposed Framework on Dataset C

Experiment IV evaluated the generalization performance of the ResNet-GBM model
on Dataset C (a mixture of base liquors and commercial liquors). Dataset C was also
divided into training sets (data from the first twenty days: 20 days × 9 liquor samples ×
9 individual samples) and test sets (data from the last five days: 5 days × 9 liquor samples
× 9 individual samples).

The classification results of the seven models are listed in Table 8. The ResNet-GBM
framework obtained the best results with an accuracy of 0.9803, a sensitivity of 0.9803, a
precision of 0.9819, an F1 score of 0.9801, and a kappa score of 0.9778 for the simultaneous
classification of the base liquors and commercial liquors. SVM, RF, KNN, XGBoost, MDS-
SVM, and BPNN achieved accuracies of 0.3389, 0.4468, 0.4304, 0.4901, 0.8148, and 0.9074,
respectively. The comparison results indicate that the ResNet-GBM framework achieved
better performances for extracting significant features from the multidimensional sensor
signals and provided superior performance for the classification of base liquors, commercial
liquors, and a mixture of both.
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Table 8. Classification results of seven models in Experiment IV.

Model Accuracy Sensitivity Precision F1 Score Kappa Score

SVM 0.3389 0.3389 0.3299 0.3268 0.2563
RF 0.4468 0.4468 0.4764 0.4290 0.3776

KNN 0.4304 0.4304 0.4141 0.4139 0.3592
XGBoost 0.4901 0.4901 0.5337 0.4849 0.4263

MDS-SVM [28] 0.8148 0.8148 0.8420 0.8161 0.7917
BPNN [29] 0.9074 0.9074 0.9170 0.9074 0.8958

ResNet-GBM 0.9803 0.9803 0.9819 0.9801 0.9778

We further analyzed the results of each sample and selected the comprehensive evalu-
ation metric F1 score to assess the performance of ResNet-GBM. The results are listed in
Table 9. The proposed model achieved similar performances in Experiment II and Exper-
iment IV for the classification of the base liquors (BL13, BL11, BL8, BL6, BL5, and BL3).
The F1 scores of CL1 and CL2 in Experiment IV are 1.0000, higher than that in Experiment
III. The comparison results showed that the classification performance of the proposed
model for commercial liquor was higher when base liquors and commercial liquors were
analyzed simultaneously. This result indicated that the model could mine deeper features
based on the base liquor samples, which contributed to the high classification accuracy of
the commercial liquors in Experiment IV.

Table 9. Results of F1 scores for each sample obtained from ResNet-GBM in Experiments II, III, and IV.

Label Experiment II Experiment III Experiment IV

BL13 0.9778 n.e. 0.9778
BL11 0.9524 n.e. 0.9545
BL8 0.9565 n.e. 0.9565
BL6 0.9787 n.e. 0.9778
BL5 0.9565 n.e. 0.9787
BL3 0.9645 n.e. 0.9767
CL1 n.e. 0.9730 1.0000
CL2 n.e. 0.9714 1.0000
CL3 n.e. 1.0000 1.0000

n.e.: not existent

5. Conclusions

We proposed a ResNet-GBM framework to identify base liquors and commercial
liquors with different qualities using a MOS-based E-nose. The main conclusions are
as follows:

PCA was used to distinguish nine liquor samples using the E-nose data. High coin-
cidence points in the PCA result indicated that the odor information of different liquors
was highly similar. The unsatisfactory PCA results indicated that this method could not
distinguish liquors with different qualities, and meaningful feature information was lost
during dimensionality reduction.

A ResNet-GBM framework consisting of the ResNet18 backbone and the LightGBM
classifier was proposed for the quality detection of base liquors and commercial liquors.
Ablation experiments were conducted to determine the contributions of the ResNet-GBM’s
components for identification. The results indicated the effectiveness of the proposed frame-
work. The significant features contained in the multidimensional signals were extracted
by the ResNet18 backbone. The LightGBM classifier strengthened the identification ability
of the ResNet model, and the proposed model achieved classification accuracies of 0.9704,
0.9814, and 0.9803 for Datasets A, B, and C, respectively.

The superiority of the proposed framework was demonstrated by comparing it with
six other methods (SVM, RF, KNN, XGBoost, MDS-SVM, and BPNN) using the three
datasets. The comparative experiments proved that the proposed framework had higher
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classification performance and better generalization ability than the other models using the
multidimensional E-nose signals as input.

The F1 scores of the ResNet-GBM model for all samples were compared using the three
datasets (base liquor dataset, commercial liquor dataset, and mixed dataset). The proposed
ResNet-GBM model achieved better performance for the classification of commercial
liquor using the mixed dataset (1.0000 for CL1, CL2, and CL3) than the commercial liquor
dataset (0.9730 for CL1, 0.9714 for CL2, and 1.0000 for CL3). The results indicated that the
excellent performance for distinguishing base liquors resulted in a higher classification
accuracy of commercial liquors when base liquors and commercial liquors were analyzed
simultaneously.

The results were encouraging and demonstrated that a deep learning framework
could be used to identify base liquors and commercial liquors with different qualities using
E-nose data. This approach provides a potential tool for the quality control of liquor and
promotes the practical application of E-nose devices. This deep learning framework is
expected to have broad application value for food quality control.
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Abbreviations

The following abbreviations are used in this manuscript:

ResNet Residual Network
LightGBM Light Gradient Boosting Machine
ResNet-GBM A Resnet18 backboned with a LightGBM classifier
E-nose Electronic nose
SVM Support Vector Machine
RF Random Forest
KNN K-nearest Neighbor
XGBOOST Extreme Gradient Boosting
MDS Multidimensional Scaling
MDS-SVM Algorithm based on MDS and SVM
BPNN Back-Propagation Neural Network
ML Machine Learning
CA-CNN Channel Attention Convolutional Neural Network
SSAE Stacked Sparse Autoencoder
BL Base Liquor
CL Commercial Liquor
MOS Metal Oxide Semiconductor
PCA Principal Component Analysis
GBDT Gradient Boosting Decision Tree
GOSS Gradient-based One-side Sampling
EFB Exclusive Feature Bundling
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TP True Positive
FP False Positive
TN True Negative
FN False Negative
GSM Grid Search Method
PC1 Principal Component 1
PC2 Principal Component 2
PC3 Principal Component 3
RBF Radial Basis Function
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