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Abstract: Umami peptides enhance the umami taste of food and have good food processing prop-
erties, nutritional value, and numerous potential applications. Wet testing for the identification of
umami peptides is a time-consuming and expensive process. Here, we report the iUmami-DRLF
that uses a logistic regression (LR) method solely based on the deep learning pre-trained neural
network feature extraction method, unified representation (UniRep based on multiplicative LSTM),
for feature extraction from the peptide sequences. The findings demonstrate that deep learning repre-
sentation learning significantly enhanced the capability of models in identifying umami peptides
and predictive precision solely based on peptide sequence information. The newly validated taste
sequences were also used to test the iUmami-DRLF and other predictors, and the result indicates
that the iUmami-DRLF has better robustness and accuracy and remains valid at higher probability
thresholds. The iUmami-DRLF method can aid further studies on enhancing the umami flavor of
food for satisfying the need for an umami-flavored diet.

Keywords: umami peptide; deep representation learning; SMOTE; ANOVA; light gradient boosting;
mutual information; multiplicative LSTM

1. Introduction

Umami taste has been widely accepted as the fifth basic taste, along with the four
other basic tastes of sweet, sour, salty, and bitter [1]. Umami substances are important for
enhancing the flavor of food and healthy eating [2]. Umami peptides frequently contain
aspartic acid, glutamic acid, asparagine, or glutamine residues. Peptides that contain these
umami amino acids may or may not have an umami flavor, and may instead have a bitter
flavor in the absence of umami amino acids [3]. Umami peptides are a novel class of umami
agents with numerous potential uses and a distinctive flavor. Additionally, these peptides
act synergistically with other umami compounds to enhance the sweetness of sweet items
and the saltiness of salty items, but reduce sour and bitter tastes, thus softening the taste.
Umami is a very important factor affecting the quality of food, and increasing the content
of umami substances in the food improves the overall palatability.

Wet tests are costly and time-consuming when identifying umami peptides. The post-
genomic era’s proliferation of peptide sequence databases [4,5] has had a significant impact
on the practical application of automated mathematical methods for the discovery of novel
umami peptides. The development of umami peptide prediction tools using deep represen-
tation learning features has attracted increasing interest in the field of bioinformatics [6–8].
Umami-SCM [9] was developed in 2020 and uses the scoring card method (SCM). It is
combined with the propensity score of amino acids and dipeptides for identifying umami
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peptides [10]. The independent test accuracy of this method was reported to be 0.865 and
the predictor performed better in 10-fold cross-validation tests than in existing methods.
Charoenkwan et al. developed UMPred-FRL in 2021 [11], which integrated seven different
traditional feature codes for constructing the umami peptide classifier. Jiang et al. proposed
iUP-BERT in 2022 [12], which is based on the use of a single deep representational learning
feature encoding method (BERT: bidirectional encoder representations from transformer).
Compared to Umami-SCM and UMPred-FRL, iUP-BERT has superior performance in
both independent testing and cross-validation. Despite notable advancements in the field,
particularly in terms of independent testing, machine learning (ML)-based umami peptide
detection algorithms that rely exclusively on sequence data still need to significantly im-
prove in terms of performance. The above predictors are still not accurate enough, and
there is still room for improvement. For instance, we found that iUP-BERT was not as
robust as expected.

Representation learning [13,14] comprises ML techniques that enable the automatic
identification of representations from raw data for feature detection or classification. This
eliminates the need for manual feature engineering and enables machines to learn the
features of protein or peptide sequences, and apply them to perform specific tasks. During
depth evaluation in representation learning, ML techniques are used for transforming data
from the original representation to a new representation that preserves the information nec-
essary for the object of interest [15–22], while discarding the redundant information [23–31].
Sequence-based deep representation learning has been recognized as an innovative and
efficient construction in protein and peptide research for protein feature prediction [32–39],
including the unified representation (UniRep) method [40] and BiLSTM [41].

In this study, sequence-based unified representation (UniRep) features based on multi-
plicative LSTM were solely used for developing an ML-based model, iUmami-DRLF, for
the identification of umami peptides. iUmami-DRLF showed exceptional outcomes in the
independent tests and 10-fold cross-validation studies. The obtained results had high accu-
racy, and more importantly, the results of independent testing proved iUmami-DRLF to be
far superior to the current techniques and conventional non-deep representation learning
techniques. Additionally, iUmami-DRLF has a wider range of applications and excellent
umami peptide discrimination potential. The iUmami-DRLF predictor outperformed the
conventional forecasting techniques in the 10-fold cross-validation tests (Sn = 0.959 and
auROC = 0.957) and independent tests (ACC = 0.921, MCC = 0.815, Sn = 0.821, Sp = 0.967,
auROC = 0.956, and BACC = 0.894). The independent test accuracy of iUmami-DRLF is
improved by 2.45% as compared with that of iUP-BERT. The effects of various feature
analysis methods and various deep representation learning features for classification re-
sults were examined using the unified manifold approximation and projection (UMAP)
dimensionality reduction approach. Compared with other SOTA methods, iUmami-DRLF
in this study has higher accuracy under various probability thresholds, and shows better
robustness and generalization performance. The steps performed for the construction of
iUmami-DRLF are depicted in Figure 1.
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Figure 1. Overview of model development. The pre-trained UniRep sequence embedding model 
was used to embed the peptide sequences into eigenvectors. The peptide sequences were converted 
into 1900-dimensional (D) UniRep eigenvectors. The synthetic minority over-sampling technique 
(SMOTE) was used for balancing the imbalanced data. These features were used as inputs to the k-
nearest neighbors (KNN), logistic regression (LR), support vector machine (SVM), random forest 
(RF), and light gradient boosting machine (LGBM) predictor algorithms. Feature extraction was per-
formed for model optimization using analysis of variance (ANOVA), LGBM, and mutual infor-
mation (MI). The selected feature sets were subjected to another round of analysis using the three 
feature extraction algorithms and various hyperparameters. The final optimized model was devel-
oped by comparison of model performance in 10-fold cross-validation and independent tests. Based 
on the 91 wet-test validated umami peptide sequences reported in the latest research (UMP-VERI-
FIED), we evaluated iUmami-DRLF in comparison to state-of-the-art methods. 

  

Figure 1. Overview of model development. The pre-trained UniRep sequence embedding model
was used to embed the peptide sequences into eigenvectors. The peptide sequences were converted
into 1900-dimensional (D) UniRep eigenvectors. The synthetic minority over-sampling technique
(SMOTE) was used for balancing the imbalanced data. These features were used as inputs to the k-
nearest neighbors (KNN), logistic regression (LR), support vector machine (SVM), random forest (RF),
and light gradient boosting machine (LGBM) predictor algorithms. Feature extraction was performed
for model optimization using analysis of variance (ANOVA), LGBM, and mutual information (MI).
The selected feature sets were subjected to another round of analysis using the three feature extraction
algorithms and various hyperparameters. The final optimized model was developed by comparison
of model performance in 10-fold cross-validation and independent tests. Based on the 91 wet-test
validated umami peptide sequences reported in the latest research (UMP-VERIFIED), we evaluated
iUmami-DRLF in comparison to state-of-the-art methods.
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2. Materials and Methods
2.1. Benchmark Dataset

In this work, the model was developed using the updated benchmark dataset from
iUmami-SCM [9], which also facilitates future comparisons. The BIOPEP-UWM [4] database
and experimentally verified umami peptides were included in the positive dataset, while
bitter non-umami peptides were included in the negative dataset. The UMP442 benchmark
dataset, which contains 304 non-umami peptides and 140 umami peptides, is acquired after
data cleaning. To avoid the prediction model becoming overfit, the dataset was arbitrarily
split into a training subset UMP-TR, and an independent test peptide subset denoted as
UMP-IND. The UMP-TR dataset comprised 112 umami and 241 non-umami peptides,
while the UMP-IND dataset comprised 28 umami and 61 non-umami peptides. The URL
for both datasets is http://public.aibiochem.net/peptides/iUmami-DRLF/ (accessed on
1 April 2023). To validate the accuracy and robustness of our model, we also collected
91 wet-experiment verified umami peptide sequences from the latest research (please see
Supplementary Table S2). The 91 wet-experiment verified umami peptides dataset was
named UMP-VERIFIED.

2.2. Feature Extraction

For UniRep [40], a total of 24 million core amino acid sequences from UniRef50 were
used for training the UniRep model. By identifying the subsequent amino acid by reducing
cross-entropy losses, the model learns how to accurately express proteins after training.
Using the trained model, the input sequence was represented as a single fixed-length vector
(hidden state) with a multiplicative long short-term memory (mLSTM) encoder. The ideal
ML model was trained using the output vector representation. Supervised learning is
achieved in various bioinformatics tasks by using the input sequence as a personality.

First, a matrix containing the sequences of S amino acid residues was integrated using
the single thermal code RS×10. The matrix was then put through into the mLSTM encoder to
generate an output hidden state of R1900×S as an embedding matrix. The 1900-dimensional
(D) UniRep feature vector was finally derived using an average pooling operation.

The equations used by the mLSTM encoder for performing the calculations are pro-
vided hereafter (Equations (1)–(7)). Where mt represents the current intermediate multi-
plication state, ĥt is the input before the hidden state, ft represents the forgotten gate, it
represents the input gate, ot stands the output gate, ht stands the hidden state for output,
and Ct is the current unit state.

mt = (XtWxm)
⊗

(Whmht−1) (1)

ĥt = (Wmhmt + WxhXt)× tanh (2)

ft = σ
(

XtWx f + mtWm f

)
(3)

it = σ(XtWxi + mtWmi) (4)

ot = σ(XtWxo + mtWmo) (5)

Ct = ft
⊗

Ct−1 + it
⊗

ĥt (6)

ht = ot
⊗

tanh(Ct) (7)

http://public.aibiochem.net/peptides/iUmami-DRLF/
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In this example,
⊗

stands for element-by-element multiplication, Xt represents the
current input, ht−1 remains for the previous hidden state, Ct−1 represents the previous unit
state, σ stands for a sigmoid function, and tanh represents a tangent function.

2.3. Balancing Strategy

Classifiers were built from unbalanced datasets using the synthetic minority over-
sampling technique (SMOTE) [33] methodology. SMOTE is an improved method based
on the random oversampling algorithm [42], and primarily combines the analysis of
minority class samples, the location of nearby samples, and the creation of artificially
created new samples in accordance with the minority class samples. SMOTE first identifies
the neighboring samples for all minority class samples using the k-nearest neighbors (KNN)
algorithm, and then uses linear random interpolation for realizing sample synthesis. A
random interpolation position is selected among the samples, and an equal number of
interpolations are considered for each sample point. Such a balancing strategy for achieving
data balance not only increases the sample size but also improves sample quality. Classifiers
can learn more distinct features after processing with SMOTE, which significantly improves
the performance of classifiers.

2.4. Feature Selection Strategy

We used three feature selection techniques, namely, analysis of variance (ANOVA) [43,44],
light gradient boosting machine (LGBM) [6,45], and mutual information (MI) [46], for select-
ing the retrieved features. These techniques were employed in this study for determining
the best feature space, and ranking the features based on their relevant ratings. The features
with importance values larger than a crucial threshold (average feature importance value)
were selected after sorting the features from the “largest” to the “smallest” based on the
importance values.

2.4.1. Analysis of Variance (ANOVA)

In this study, the features were sorted in order of importance using the ANOVA score.
The mean difference between groups can be efficiently evaluated using ANOVA, which
computes the ratio of variance within groups to the variance between groups for each
feature [47]. The following formula was used for determining the ANOVA score:

S(t) =
S2

θ(t)
S2

ω(t)
(8)

where S(t) represents the score of the feature t, S2
θ(t) stands for the variance between

groups, and S2
ω(t) is the variance within groups. The formulae used for calculating S2

θ(t)
and S2

ω(t) are as follows:

S2
θ(t) =

1
K−1

K
∑

i=1
mi

(
∑

mi
j=1 ft(i, j)

mi
− ∑K

i=1 ∑
mi
j=1 ft(i, j)

∑K
i=1 mi

)2
(9)

S2
ω(t) =

1
N − K

K

∑
i=1

mi

∑
j=1

(
ft(i, j)−

∑mi
j=1 ft(i, j)

mi

)2

(10)

where K denotes the quantity of groups, N denotes the entire quantity of instances, and
ft(i, j) denotes the value of the j-th sample in the i-th group of the feature t.

2.4.2. Lighting Gradient Boosting Machine (LGBM)

LGBM [33] is a quick, dispersed, strong gradient boosting framework based on a
decision tree technique that is employed in numerous ML applications, including classifi-
cation and ranking. The gradient boosting decision tree (GBDT), which has the ability to
learn the performances of learners, is continuously improving with several computational



Foods 2023, 12, 1498 6 of 17

iterations. Here, we define hc(x) as an estimated function in Equation (11) and evaluate the
loss function in Equation (12):

hc(x) = argmin
h∈H

∑ L(y, Fc−1(x) + h(x)) (11)

rti = −
∂L(y, Ft−1(xi))

∂Ft−1(xi)
(12)

where c means the current iteration, and Fc−n(x) means the last n iterations’ model achieve-
ment. The following formula is used to select the most potential features in the current
iteration, and the importance of each feature is obtained by ranking.

Fc+n(x) = h2n(x) + Fc−n(x) (13)

2.4.3. Mutual Information (MI)

MI has been widely used for feature selection since its development [48]. The advan-
tage of MI in feature selection lies in its ability to equivalently define multidimensional
variables and detect nonlinear relationships between variables. Owing to these advantages,
the MI method can fully consider the joint correlation and redundancy of features during
feature selection [49].

The entropy estimate for the peptide sequence S is provided in Equation (14):

H(S) = − ∑
i∈∑ U

P(εi) log P(εi) (14)

Using this entropy equation, the equation for the MI peptide sequence was deduced
as:

MI = ∑
i∈∑ U

∑
j∈∑ U

P
(
εi, ε j

)
log

P
(
εi, ε j

)
P(εi)P

(
ε j
) (15)

where ∑ U is the alphabet of amino acid residues and P(εi) is the marginal probability of
residue i.

2.5. Machine Learning Methods

Five widely used high-performance ML methods were used in this study, namely,
KNN, linear regression (LR), support vector machine (SVM), random forest (RF), and
LGBM [50].

KNN is one of the most straightforward machine learning algorithms that is better
suited for automatic class categorization in studies with high sample sizes. Data are said to
belong to a class if the minority of the K most comparable data in the feature space, or the
feature space’s closest neighbors, also do. This approach only selects the class of the data to
be based mainly on the classification of the data or the data nearest to it.

LR is categorized as a supervised learning method in ML. The concept of LR is that if
data obey a certain distribution, then the parameters are estimated by maximum likelihood
estimation. This method is actually a classification model and is often used for binary and
multi-class classification problems. It is widely used owing to its simplicity, parallelizability,
and strong interpretability.

SVM is applied for solving binary classification problems in bioinformatics.
RF is a bagging-based technique that uses random feature selection during node

splitting in addition to sampling at random.
LGBM is a gradient boosting framework that employs methods for learning from trees.
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2.6. Evaluation Metrics and Methods

Five widely used measures were used for evaluating the performance of the models,
and were calculated using Equations (16)–(20):

ACC =
TP + TN

FP + FN + TP + TN
(16)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(17)

Sn =
TP

TP + FN
(18)

Sp =
TN

TN + FP
(19)

BACC =
Sn + Sp

2
(20)

where TP denotes the amount of umami peptides successfully identified as umami, and
TN denotes the quantity of non-peptides successfully identified as non-umami. FP denotes
the amount of non-umami peptides falsely identified as umami, while FN denotes the
quantity of umami peptides incorrectly identified as non-umami. The developed models
were also contrasted with one another and with previously stated models based on the
receiver operating characteristic curve (ROC). The area under the ROC curve (auROC) was
also used for evaluating the predictive performance, where the values of auROC ranging
between 0.5 and 1 stand for random and perfect models, respectively. The BACC approach
is used for describing data imbalances, and the values of ACC and BACC are equal in a
balanced sample.

K-fold cross-validation and independent testing methods are commonly used to
evaluate ML models [51]. The raw data are separated into k-folds in K-fold cross-validation.
The remaining K −1 subsets are utilized as training sets, while one subset is used for
model validation. In the validation set, K models are evaluated separately, and the final
values of the evaluation measures are averaged to obtain the cross-validated values. In this
investigation, we employed the 10-fold (K = 10) cross-validation approach. The samples
used in stand-alone testing were fresh for the trained model, and the test dataset used was
completely different from the training set.

2.7. Cross-Entropy Loss

When performing a binary classification task, there are only positive and negative
examples, and their probabilities add up to 1. Therefore, we simply need to predict a
probability rather than a vector.

The loss function is defined simply as follows:

Loss = −(y·log(ŷ) + (1− y)·log(1− ŷ)) (21)

where y is the sample label, which takes the value of 1 if the sample is a positive case and
0 otherwise, and ŷ is the probability that the model predicts that the sample is a positive
case. In general, the lower the value of the cross-entropy loss function, the higher the
classification effect [52–55].

3. Results and Discussion
3.1. Effect of SMOTE

We first extracted a 1900-dimensional feature vector using UniRep. The model was
developed and initially trained using five different ML techniques, namely, KNN, LR, SVM,
LGBM, and RF, for investigating the effect of SMOTE on the automatic identification of
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umami peptides. The outcomes of independent testing and 10-fold cross-validation of the
five ML models optimized with SMOTE and five ML models optimized without SMOTE
were obtained based on the aforementioned hypotheses, and are depicted in Figure 2 and
Supplementary Table S1. The values in the tables and figures indicate model performance
measures following the optimization of model parameters.

Figure 2. Results of 10-fold cross-validation (A) and independent testing (B) of the five ML models
balanced with SMOTE and the five ML models balanced without SMOTE.As illustrated in Figure 2
and Supplementary Table S1, the features of models following optimization with SMOTE were clearly
superior to the features of models developed without SMOTE optimization. Using the LR-based
prediction model as an example, the LR-SMOTE model outperformed or equaled the LR model
without SMOTE optimization in 66.7% of the metrics in 10-fold cross-validation and independent
tests. Of the SVM-based models, the SVM-SMOTE model outperformed the SVM model developed
without SMOTE optimization in 83.3% of the indicators.

In some models, the Sp values were high while the Sn and other indicators were
very poor owing to the bias of the unbalanced dataset bias towards the negative class,
which negatively affected the recognition ability of the positive class. These findings also
emphasize the value and significance of optimizing imbalanced datasets using SMOTE.
However, it can be inferred from the UMAP display in Figure 3 that the improvement in
the datasets using SMOTE improved the predictive ability of the models in identifying
umami peptides.
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top 121 features selected from the SMOTE-balanced UniRep feature set.

3.2. Effects of Different ML Models

The results of Section 3.1 revealed that the SMOTE algorithm optimized the unbalanced
data to a certain extent. The consequents of 10-fold cross-validation and independent tests
of the models created using SMOTE-balanced features with the five ML algorithms are
depicted in Table 1.

Table 1. Results of 10-fold cross-validation and independent testing based on the five ML algorithms
developed using SMOTE-balanced features.

Model
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp auROC BACC ACC MCC Sn Sp auROC BACC

LR c 0.921 a 0.847 0.954 0.888 0.956 0.921 0.853 0.653 0.721 0.913 0.928 0.817
KNN c 0.861 b 0.727 0.917 0.805 0.924 0.861 0.807 0.589 0.818 0.802 0.875 0.810
SVM c 0.865 0.756 0.738 0.992 0.981 0.865 0.716 0.258 0.100 0.998 0.789 0.549

RFc 0.917 0.837 0.942 0.892 0.967 0.917 0.836 0.617 0.725 0.887 0.893 0.806
LGBM c 0.919 0.841 0.946 0.892 0.972 0.919 0.845 0.636 0.729 0.898 0.907 0.813

a The best performance values are indicated in bold and underlined. b Blue indicates equal values of ACC and
BACC. c LR: logistic regression; KNN: k-nearest neighbors; SVM: support vector machine; LGBM: light gradient
boosting machine; RF: random forest.

As depicted in Table 1, the recognition of umami peptides by the LR model outper-
formed that of the other ML models in 66.7% of the metrics. The consequents of 10-fold
cross-validation revealed that the LR model, iUmami-DRLF, exceeded all other ML models
in four metrics. The ACC and BACC of iUmami-DRLF were 0.22–6.97% superior to that
of the other models, while the MCC and Sn increased by 0.71–16.51% and 0.85–29.27%,
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respectively. The results of the independent tests revealed that the LR model, iUmami-
DRLF, outscored the other ML models in four metrics. The ACC, MCC, auROC, and
BACC efficiency levels of iUmami-DRLF were superior to those of the other models by
0.95–19.13%, 2.67–153.10%, 2.32–17.62%, and 0.49–48.82%, respectively. Although the SVM
model achieved the best indicators for the identification of umami peptides in certain
aspects, the results of the independent tests revealed that the SVM model will show more
unbalanced data (MCC = 0.258, Sn = 0.100, and BACC = 0.549). We, therefore, selected
the LR model for developing the umami peptide predictor. Additionally, the results of the
10-fold cross-validation of the five models revealed that the values of ACC and BACC were
equal, indicating that the dataset was balanced following optimization with SMOTE. The
equal values of ACC and BACC have been indicated in blue in Table 1.

3.3. Effects of Different Feature Selection Methods

As described in Section 3.1, the balanced SMOTE-optimized data encoding method
significantly outperformed the unprocessed data encoding approach in the tests. The
feature vector that was recovered using UniRep had 1900 dimensions as opposed to
the 353 dimensions of the sequence vector that was used in the training set. The use
of high-dimensional feature vectors frequently leads to over-fitting or redundancy of
feature information. In order to solve this issue, we used three feature selection methods,
namely, ANOVA, LGBM, and MI, for selecting the high-dimensional feature vectors. An
incremental feature strategy and a hyperparameter grid search approach were employed in
this study, and the GridSearchCV module in the scikit-learn library was used for searching
the hyperparameters for each model. Table 2 summarizes the outcomes of 10-fold cross-
validation and independent testing of the five ML models developed based on the UniRep
features selected using the three feature selection methods. The results of independent
testing of the aforementioned models with selected features and the models without
selected features are compared in Figure 4.

Table 2. Results of 10-fold cross-validation and independent testing of the five ML models developed
using UniRep features selected with the three feature selection methods (LGBM, ANOVA, and MI).

Model
Feature

Selection
Method

Dim
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp auROC BACC ACC MCC Sn Sp auROC BACC

LR c
LGBM d 177 0.925 b 0.853 0.959 0.892 0.957 0.925 0.921 a 0.815 0.821 0.967 0.956 0.894

ANOVA d 102 0.882 0.764 0.896 0.867 0.938 0.882 0.899 0.768 0.857 0.918 0.930 0.888
MI d 136 0.888 0.777 0.913 0.863 0.942 0.888 0.888 0.733 0.750 0.951 0.864 0.850

KNN c
LGBM d 33 0.892 0.788 0.938 0.846 0.955 0.892 0.899 0.782 0.929 0.885 0.911 0.907

ANOVA d 15 0.873 0.748 0.896 0.851 0.934 0.873 0.865 0.703 0.857 0.869 0.907 0.863
MI d 58 0.888 0.783 0.954 0.822 0.927 0.888 0.888 0.773 0.964 0.852 0.931 0.908

SVM c
LGBM d 121 0.944 0.889 0.971 0.917 0.980 0.944 0.888 0.739 0.821 0.918 0.913 0.870

ANOVA d 48 0.925 0.854 0.967 0.884 0.977 0.925 0.865 0.678 0.679 0.951 0.906 0.815
MId 16 0.919 0.841 0.959 0.880 0.968 0.919 0.888 0.735 0.786 0.934 0.921 0.860

RF c
LGBM d 88 0.915 0.830 0.934 0.896 0.975 0.915 0.876 0.716 0.821 0.902 0.920 0.862

ANOVA d 118 0.898 0.797 0.913 0.884 0.961 0.898 0.865 0.694 0.821 0.885 0.911 0.853
MI d 8 0.902 0.806 0.921 0.884 0.952 0.902 0.888 0.753 0.893 0.885 0.923 0.889

LGBM c
LGBM d 35 0.938 0.877 0.971 0.905 0.988 0.938 0.888 0.739 0.821 0.918 0.912 0.870

ANOVA d 19 0.902 0.807 0.942 0.863 0.945 0.902 0.876 0.706 0.714 0.951 0.929 0.833
MI d 18 0.888 0.777 0.917 0.859 0.953 0.888 0.865 0.682 0.750 0.918 0.916 0.834

a The best performance values are indicated in bold and underlined. b Blue indicates equal values of ACC and
BACC. c LR: logistic regression; KNN: k-nearest neighbors; SVM: support vector machine; LGBM: light gradient
boosting machine; RF: random forest. d LGBM: light gradient boosting machine; ANOVA: analysis of variance;
MI: mutual information.
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Figure 4. Comparison of the results of independent testing of the models with selected features and
the models without selected features.

The outcomes of the independent testing are shown in Figure 4, which amply demon-
strates that the chosen fusion feature sets outperformed the unselected fusion features. In
the independent tests, the Sp of the 1900D models without feature selection was lower
than all the models with feature selection, with the exception of the SVM-based model
(5.00–8.75% higher). These results clearly demonstrated that the selection of feature de-
scriptors effectively resolves information redundancy, and helps optimize the prediction
performance of the umami peptide prediction model. Figure 4 and Table 2 clearly depict
that of the three feature selection methods, and the overall performance of LGBM was
superior to that of the other feature selection methods used for the identification of umami
peptides. Considering the LR model as an example, the LGBM feature selection method
outperformed the other methods (ANOVA and MI) in all six metrics in the 10-fold cross-
validation studies. The performance of ACC, MCC, Sn, Sp, auROC, and BACC efficiency
improved by 4.17–4.88%, 9.78–11.65%, 5.04–7.03%, 2.88–3.36%, 1.59–2.03%, and 4.17–4.88%,
respectively, when the LGBM method was used. The LGBM feature selection method
outperformed ANOVA and MI in the independent tests in five metrics. The performance
of ACC, MCC, Sp, auROC, and BACC synergy improved by 2.45–3.72%, 6.12–11.19%,
1.68–5.34%, 2.80–10.65%, and 0.68–5.18%, respectively, when the LGBM method was used.

Based on the aforementioned results (Sections 3.1–3.3), we believe that the LR model
developed based on the first 177 dimensions of UniRep using SMOTE-optimized data was
superior in predicting umami peptides, and corroborates with the results of visual analysis
discussed hereafter in Section 3.4. Based on the aforementioned analyses, the first 177D
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features of UniRep were selected for constructing the iUmami-DRLF predictor based on
the LGBM model for subsequent studies.

3.4. Comparison with Existing Methods

In order to evaluate the efficacy and application of our technique in comparison to
other predictors, we assessed and compared the predictive performance of iUmami-DRLF
with that of other methods, including iUmami-SCM and UMPred-FRL. Table 3 compares
the results of 10-fold cross-validation and independent testing of iUmami-DRLF with those
of other existing methods.

Table 3. Results of 10-fold cross-validation and independent testing of iUmami-DRLF and other
existing methods.

Classifier
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp auROC BACC ACC MCC Sn Sp auROC BACC

iUmami-DRLF(LR) 0.925 b 0.853 0.959 0.892 0.957 0.925 0.921 a 0.815 0.821 0.967 0.956 0.894
iUmami-DRLF(SVM) 0.944 0.889 0.971 0.917 0.980 0.944 0.888 0.739 0.821 0.918 0.913 0.870

iUP-BERT 0.940 0.881 0.963 0.917 0.971 0.940 0.899 0.774 0.893 0.902 0.933 0.897
UMPred-FRL 0.921 0.814 0.847 0.955 0.938 0.901 0.888 0.735 0.786 0.934 0.919 0.860
iUmami-SCM 0.935 0.864 0.947 0.930 0.945 0.939 0.865 0.679 0.714 0.934 0.898 0.824

a The best performance values are indicated in bold and underlined. b Blue indicates equal values of ACC
and BACC.

Table 3 clearly demonstrates that iUmami-DRLF(SVM) outperformed the other clas-
sifiers in all metrics except Sp in the 10-fold cross-validation test. The ACC, MCC, Sn,
auROC, and BACC of iUmami-DRLF(SVM) were superior to those of the other methods
by 2.02–2.50%, 4.31–9.25%, 1.30–14.63%, 2.37–4.43%, and 2.02–4.77%, respectively. More
significantly, the results of independent testing revealed that iUmami-DRLF(LR) performed
better than the current predictors in every aspect. The ACC, MCC, Sp, auROC, and BACC
were superior to those of the other methods by 3.76–6.51%, 10.86–20.00%, 4.51–15.05%,
4.04–6.47%, and 3.99–8.53%, respectively.

Comparison of the two iUmami-DRLF predictors revealed that the results of the
10-fold validation of iUmami-DRLF(LR) were slightly worse than the results for the SVM
model (ACC and BACC, MCC, Sn, Sp, and auROC were 2.02%, 4.31%, 1.30%, 2.79%, and
2.37% lower, respectively). However, the results of independent testing were superior for
iUmami-DRLF(LR) (ACC, MCC, Sp, auROC, and BACC were 3.66%, 9.25%, 5.08%, 4.53%,
and 2.75% higher, respectively). This revealed that the generalization ability of LR was
stronger. The results of comparative analyses demonstrated the superiority of iUmami-
DRLF in umami peptide prediction. The umami prediction ability of iUmami-DRLF was
more reliable than the existing methods.

3.5. Feature Visualization

Feature visualization can intuitively convey feature information through images to
clearly represent the dataset. UMAP is a popular uniform approximation projection algo-
rithm for dimensionality reduction, and was used in this study for visual analyses of the
features in the umami peptide dataset. The differences in feature representation are clearly
highlighted in UMAP visualization. The results of dimensionality reduction for feature
visualization with UMAP are depicted in Figure 3.

Figure 3 demonstrates that compared with the UniRep feature vector without SMOTE
optimization (Figure 3A), the SMOTE-optimized 1900D UniRep feature vector (Figure 3B)
was better at distinguishing umami peptides from non-umami peptides. Compared with
the SMOTE-optimized UniRep features (Figure 3B), the top 177D features (Figure 3C) and
top 121D features of UniRep (Figure 3D) were further optimized after feature selection.
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3.6. Web Server Development

For other researchers to anticipate umami peptides, we created the user-friendly
iUmami-DRLF web server, which is freely accessible online at https://www.aibiochem.
net/servers/iUmami-DRLF/ (accessed on 1 April 2023). The web server is easy to use. The
user only needs to enter the peptide sequence in the text box, click the run button, and wait
for a few minutes, then the user can identify and judge whether the input peptide sequence
is an umami peptide, and the result will be displayed on the web page. The output results
include the input sequence, whether it is an umami peptide, and the confidence level. See
the web server interface on the website or Supplementary Figures S1–S3. Additionally,
please contact the corresponding authors if users need to predict a significant number
of sequences.

3.7. Methods’ Robustness

To further verify the effectiveness and robustness of the model, we collected 91 wet-
experiment verified umami peptide sequences reported in the latest literature [56–70]. These
empirical umami peptide sequences constituted the dataset UMP-VERIFIED, which was
then used to test state-of-the-art methods, including UMPred-FRL [11] and iUP-BERT [12]
for comparison to iUmami-DRLF. Here, the accuracy of models under different prediction
probability threshold conditions was adopted to make comparisons. The probability
threshold T referred to the fact that, for a peptide sequence, if the probability threshold
predicted by the machine learning model was greater than T, the model would determine
that the sequence was an umami peptide; otherwise, it was a non-umami peptide.

Figure 5A shows the relationship between the accuracy of the three models and the
probability threshold. It can be seen from the figure that our model iUmami-DRLF has
the best accuracy under any probability threshold. It was particularly noteworthy that the
accuracy rate of iUP-BERT is 0 at 95% threshold probability, indicating that the model has
failed. While the value of iUmami-DRLF is 52.7%, which is nearly six times the UMPred-
FRL accuracy (8.8%), when the probability threshold was set to 99%, the prediction accuracy
of iUP-BERT and UMPred-FRL is 0. It meant that both methods were invalid. In sharp
contrast, iUmami-DRLF can still maintain the prediction accuracy of 40.7%, and the model
still worked. These results proved that iUmami-DRLF is with better robustness and better
model generalization performance than other methods.

Figure 5. Under varying probability thresholds, the prediction results of iUmami-DRLF (this work),
UMPred-FRL, and iUP-BERT are shown using the UMP-VERIFIED dataset. (A) is the relationship
between prediction accuracy and probability threshold. (B) is the cross-entropy loss of the predicted
outcome about the probability threshold. The smaller the cross-entropy loss, the better the robustness
and accuracy of the model. Note that at the probability thresholds of 95% and 99%, the prediction
accuracy of iUP-BERT and UMPred-FRL is 0, and their corresponding cross-entropy losses can be
calculated, but they are not meaningful.

https://www.aibiochem.net/servers/iUmami-DRLF/
https://www.aibiochem.net/servers/iUmami-DRLF/
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The robustness and effectiveness of iUmami-DRLF come from the fact that it was
an optimized model with minimum cross-entropy loss. For binary classification machine
learning models, the closer the prediction output is to the real sample label, the smaller the
cross-entropy loss is, resulting in better accuracy [71].

It could be proven by the data shown in Figure 5B. Figure 5B displays models’ cross-
entropy loss under different probability thresholds. Obviously, iUmami-DRLF has the
minimum cross entropy loss of the three models under the probability threshold of 50%,
70%, and 85%. At the probability threshold of 95%, the cross-entropy loss of iUmami-DRLF
is significantly smaller than that of UMPred-FRL. For 95% and 99% probability thresholds,
UMPred-FRL and iUP-BERT models have failed, and the calculated cross-entropy is mean-
ingless. For example, the cross-entropy loss of iUP-BERT remains unchanged in probability
thresholds of 95% and 99% of cases.

4. Conclusions and Future Work

In this research, we proposed a predictor, iUmami-DRLF, for the successful prediction
of umami peptides solely based on sequence information. The imbalanced dataset was
processed with SMOTE, and the latent umami peptide information was obtained using
the UniRep deep representation learning feature embedding approach. Our predictor was
strengthened by the use of three feature selection techniques, namely, LGBM, ANOVA, and
MI, and the combination of five ML algorithms (KNN, LR, SVM, RF, and LGBM) for model
development. Following testing and optimization, the top 177D features of UniRep were
selected as the optimal feature set, and then integrated with the LR model for developing
the final predictor. The results of 10-fold cross-validation and independent testing revealed
that iUmami-DRLF markedly outperformed the existing methods in the independent tests.
The latest umami peptide sequences verified by wet experiment were used to validate
the method, and the results show that iUmami-DRLF could more reliably, robustly and
accurately predict (independent tests: ACC = 0.921, MCC = 0.815, Sn = 0.821, Sp = 0.967,
auROC = 0.956) umami peptides than the reported state-of-the-art methods. It hopes that
the user-friendly webserver could be useful for researchers in the area. The following areas
can still be improved, despite the fact that iUmami-DRLF has significantly increased the
accuracy of umami peptide prediction: First, as our feature extraction model requires lots of
computation, webservers without GPU configuration will take a long time to complete this
task. Users can contact the corresponding authors if they need to predict a large number of
sequences. Furthermore, using the most recent empirical data when training the model
might produce better outcomes. Ultimately, using the method of model distillation can
simplify the feature extraction model and lessen its computational complexity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12071498/s1, Figures S1–S3: iUmami-DRLF web server
interface; Table S1: Results of 10-fold cross-validation and independent testing about SMOTE;
Table S2: Prediction- probability results of the three models and 91 wet-experiment validated umami
peptide sequences [5,6,11,56,59,60,62–70].
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