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Abstract: Nitrite is a common color and flavor enhancer in fermented meat products, but its sec-
ondary amines may transfer to the carcinogen N-nitrosamines. This review focuses on the sources,
degradation, limitations, and alteration techniques of nitrite. The transition among NO3

− and NO2
−,

NH4
+, and N2 constitutes the balance of nitrogen. Exogenous addition is the most common source of

nitrite in fermented meat products, but it can also be produced by contamination and endogenous
microbial synthesis. While nitrite is degraded by acids, enzymes, and other metabolites produced by
lactic acid bacteria (LAB), four nitrite reductase enzymes play a leading role. At a deeper level, nitrite
metabolism is primarily regulated by the genes found in these bacteria. By incorporating antioxidants,
chromogenic agents, bacteriostats, LAB, or non-thermal plasma sterilization, the amount of nitrite
supplied can be decreased, or even eliminated. Finally, the aim of producing low-nitrite fermented
meat products is expected to be achieved.

Keywords: nitrogen synthesis; nitrogen degradation; lactic acid bacteria; nitrite reductase; antioxi-
dant; nitrite degradation

1. Introduction

Fermented meat products were developed in response to a demand for meat storage.
During the fermentation process, a series of biochemical and physical changes caused by
microbial fermentation or enzymes provide the meat products with a unique flavor, color,
texture, and antioxidant properties, so as to improve the edible quality of the meat [1].
Subsequently, nitrite, comprising salty white or light yellow particles [2], which primarily
contain sodium or potassium nitrite, is commonly used in meat curing [3] as a color
protectant, antioxidant, and preservative, inhibiting the growth of spoilage and pathogenic
bacteria, such as Clostridium botulinum and Listeria monocytogenes [4]. In long-term studies,
nitrite was investigated as a mammalian vasodilator, which released a protective substance
that can save a mammal's life during hypoxia [5]. Nitrite has antibacterial, antioxidant,
color development, and flavor production properties, making it almost irreplaceable [3].
Therefore, nitrite is commonly utilized in the processing of meat products.

Regulation No.1333/2008, which applies to sausages, pig hoofs, and other products in
the European Union (EU), previously regulated the use of nitrite to a maximum dosage
of 150 mg/kg [6]. Excessive nitrite might pose a threat to food safety. Firstly, once nitrite
enters the body, it causes hypoxic poisoning by binding to hemoglobin in the blood.
Secondly, after ingestion of animal products, nitrite reacts with secondary amines to form
nitrosamine [7]. Increasing awareness of health care advances meant that people gradually
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realized the harm of excessive nitrite to the body, causing concerns regarding fermented
meat product ingredients such as nitrite, which has had a massive effect on cured meat
product sales. Therefore, preferences for the consumption of safe, low-salt, and low-fat meat
products without chemical additives have increased considerably [8]. Several investigations
have been undertaken to determine whether antioxidants, chromogenic compounds, and
bacteriostatic agents can substitute for nitrite in the curing process [9]. However, cured
meat products are complex products, in which each ingredient plays a special role, making
reformulation difficult. Challenges arise as a result of the reduction of salt and chemicals in
cured meat products, which alter their sensory qualities and might have an impact on the
microbial ecosystem, resulting in uncharacteristic and unsafe products [8].

Recent research reviewed the role of nitrite in fermented meat products, and numerous
nitrite metabolic pathways have been documented and collated. The LAB in fermented
meat products are the key factors affecting nitrite metabolism, and the acids, enzymes,
and other compounds produced by LAB contribute to nitrite synthesis and degradation.
Consequently, this review summarizes research from the previous years, the majority of
which were published within the last five years, and discusses nitrite’s source, degradation
pathway, and conversion regulation from the four perspectives of nitrogen synthesis and
degradation, nitrite metabolism, nitrite safety, and methods and application of fermented
meat products. This review mainly describes the role of LAB in the degradation of nitrite in
fermented meat products to provide a theoretical foundation for future research into nitrite
and its applications.

2. Microorganisms Related to Nitrite Metabolism

Nitrite is one of the nitrogen cycle intermediates on Earth [10]. Nitrogen in nature
is mainly present as NH4

+, as the inert N2, the lowest oxidized state, and as NO3
−, the

highest oxidized state. The transition between NO3
− and NO2

−, NH4
+, and N2 in the

biogeochemical cycle constitutes the balance of nitrogen synthesis and degradation through
nitrate and denitrification bacteria (Figure 1).

Foods 2023, 12, x FOR PEER REVIEW  3  of  18 
 

 

5CH3COOH + 8NO3− → 6H2O + 10CO2 + 4N2 + 8OH− + Energy    (4)

Bacteria  with  degradation  effects  mainly  include  Lactiplantibacillus  plantarum, 

Levilactobacillus  brevis,  Leumesenteroides,  Pediococcus  cerevisiae,  Streptococcus  faecalis,  and 

others. Paik et al. found that Lactiplantibacillus plantarum KGR5105, Levilactobacillus brevis 

KGR3111, Latilactobacillus curvatus KGR2103, and Lactobacillus serans KGR4108 also pro-

duce NiR. LAB showed significant degradation ability in fermented meat products under 

optimal conditions [13]. 

 

Figure 1. Biochemical cycling of nitrogen. 

Fermented meat products, which typically contain nitrite, a nitrogen-containing die-

tary additive, follow the same natural rhythm of nitrogen synthesis and breakdown. In 

general, the pH of meat products ranges between 5.5 and 6.2, while the pH of dry fer-

mented sausage ranges between 4.5 and 5.5 [14], both of which are optimum conditions 

(pH 4.5–5.5) that allow LAB to grow. However, N-nitrosamine formation may be more 

easily achieved in dry fermented sausages as the pH of the product approaches the opti-

mum pH (pH 3.5) of the nitrosation reaction [14,15]. Nitrite is synthesized and degraded 

by bacteria in the endogenous system of fermented meat products, completing the nitrite 

metabolism cycle in these items [10]. 

   

Figure 1. Biochemical cycling of nitrogen.



Foods 2023, 12, 1485 3 of 17

Nitrifying bacteria are a class of aerobic bacteria with two physiological subgroups,
Nitrobacter and Nitrosomonas. Nitrobacter (also known as nitrite-oxidizing bacteria), contain-
ing nitrite oxidase, oxidize nitrite to nitrate (reaction (1)) and reproduce for a generation in
18 h. Nitrosomonas (nitrite bacteria, also known as ammonia-oxidizing bacteria), oxidize
NH4

+ to nitrite (reaction (2)) and reproduce for a generation in 18 min [11]. The growth
and propagation rates of Nitrobacter are significantly lower than those of Nitrosomonas. The
conversion rate of ammonium nitrogen to nitroso nitrogen is significantly slower than that
of nitrate-nitrogen to nitrite-nitrogen, leading to the accumulation of nitrite-nitrogen.

2NO2
− + O2 → 2NO3

− + Energy (1)

2NH4
+ + 3O2 → 2NO2

− + 4H+ + 2H2O + Energy (2)

Denitrifying bacteria are a group of bacteria that reduce nitrate-nitrogen to N2 and
NH4

+. Mostly heterotrophic, facultative anaerobic bacteria, such as Bacillus stephensi and
Trichomonas aeruginosa, contain a variety of nitrite reductase (NiR) enzymes to degrade
nitrite. Copper-type nitrite reductases (CuNiRs) and cytochrome cd1 nitrite reductases
(cd1NiRs) convert NO3

− to N2 (reactions (3) and (4)) by denitrification, and polyheme c
nitrite reductases (ccNiRs) convert NO3

− to NH4
+ by amination. Denitrifying bacteria

maintain the nitrogenous nitrogen content at a steady low-concentration level and the
nitrogen cycle remains in dynamic equilibrium [12].

C6H12O6 + 12NO3
− → 6H2O + 6CO2 + 12NO2

− + Energy (3)

5CH3COOH + 8NO3
− → 6H2O + 10CO2 + 4N2 + 8OH− + Energy (4)

Bacteria with degradation effects mainly include Lactiplantibacillus plantarum, Levilacto-
bacillus brevis, Leumesenteroides, Pediococcus cerevisiae, Streptococcus faecalis, and others. Paik
et al. found that Lactiplantibacillus plantarum KGR5105, Levilactobacillus brevis KGR3111,
Latilactobacillus curvatus KGR2103, and Lactobacillus serans KGR4108 also produce NiR.
LAB showed significant degradation ability in fermented meat products under optimal
conditions [13].

Fermented meat products, which typically contain nitrite, a nitrogen-containing di-
etary additive, follow the same natural rhythm of nitrogen synthesis and breakdown. In
general, the pH of meat products ranges between 5.5 and 6.2, while the pH of dry fermented
sausage ranges between 4.5 and 5.5 [14], both of which are optimum conditions (pH 4.5–5.5)
that allow LAB to grow. However, N-nitrosamine formation may be more easily achieved
in dry fermented sausages as the pH of the product approaches the optimum pH (pH 3.5)
of the nitrosation reaction [14,15]. Nitrite is synthesized and degraded by bacteria in the
endogenous system of fermented meat products, completing the nitrite metabolism cycle
in these items [10].

3. The Role of Nitrite in Fermented Meat Products
3.1. Color Formation Effect

NO reacts with myoglobin (Fe2+) and methemoglobin (Fe3+) in fermented meat prod-
ucts to form cured pink, which serves as a coloring and antioxidant. Both free and heme-
bound iron is the principal pro-oxidant in meat products [16]. NO binds to myoglobin
(Fe2+) to form unstable NO-myoglobin, which is converted to a stable pink pigment, nitroso-
heme, upon heating and prevents iron-induced oxidation [17]. Myoglobin can also react
with nitrite and be oxidized to methemoglobin (Fe3+), which in turn reacts with NO to
form NO-methemoglobin, and reducing agents restore NO-methemoglobin to form NO-
myoglobin and finally form cured pink under heating [18]. Postmortem, active cytochrome
enzymes possess the ability to utilize oxygen, which is responsible for the red color on
the surface of meat caused by the presence of oxymyoglobin [19]. Similarly, nitric oxide
promotes the lipid peroxidation cycle due to its lipophilic nature by reacting with alkyl-,
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alkoxyl-, and peroxyl radicals [20]. Consequently, nitrite can inhibit both primary and
secondary oxidation.

3.2. Flavor Improvement

The exact mechanism of the effect of nitrite on flavor is still unclear, but the antioxidant
activity of nitrite is an important factor affecting its flavor, although other antioxidants
added to meat products cannot show the unique flavor of fermented meat products. Nitrite
will not directly produce a specific flavor substance in fermented meat products. However,
nitrite can inhibit lipid oxidation, which inhibits the production of aldehydes, such as
hexanal and pentanal, which masks the sulfur-containing compounds that make meat
products produce a pickled flavor [21]. On the other hand, nitrite can induce the formation
of Strecker aldehyde, which is formed via the degradation of amino acids by dicarbonyls
that are produced from the Maillard reaction, due to the pro-oxidant effect of nitrite, and is
related to food flavor [22].

3.3. Antioxidant Properties

Nitrite can also be used as an antioxidant by receiving oxygen from sensitive molecules
or producing active nitrogen. Villaverde et al. reported that the formation of carbon-based
compounds in fermented sausage increased with the increase in nitrite content [21]. Vossen
and De Smet studied the effect of sodium nitrite on protein oxidation in isolated myofibrillar
protein and porcine patties [23]. It was found that the TBARS value of sodium nitrite was
significantly lower than that of the control group (without sodium nitrite) but had no effect
on the content of carbon-based compounds as an indicator of protein oxidation. In addition,
when sodium nitrite and sodium ascorbate are used together, the yield of carbon-based
compounds will increase, but it will not increase when used alone, which is the result
of nitrite as an oxidant of ascorbate. Dehydroascorbate is produced by the oxidation of
ascorbate by nitrite, which is similar to the carbon group of reducing sugar. It produces
non-protein carbon-based compounds via non-enzymatic glycosylation [24].

3.4. Antimicrobial Effect

Nitrite is the substance of interest in microbial inhibition, but it is not the nitrite
itself that produces the inhibition, which is closely related to its ability to trigger the
formation of NO. In vitro, NO can directly react with microbial proteins that contain
an iron–sulfur enzyme cluster (Fe-S-NO) and form protein-bound dinitrosyl dithiolato
iron complexes [25]. Ferredoxin in Clostridium spp. is involved in ATP synthesis by
the microorganisms in this Fe-S broad group. Therefore, this Fe-S-NO mechanism is
considered to be the main factor inhibiting the growth of Clostridium spp. vegetative
cells, and it can also be observed in aerobic and facultative pathogens associated with
cured meat products [26]. The dinitric iron complex formed by NO binding to proteins is
present in prokaryotic and eukaryotic cells, and iron–sulfur proteins are the major source of
protein-bound dinitrosyl iron complexes formed in Escherichia coli cells under nitric oxide
stress [27]. At the same time, peroxynitrite, a highly oxidized and unstable compound, may
be involved in the inhibition mechanism of NO, and the formation of peroxynitrite is related
to the changes in the oxidation state of intermediate compounds during the reduction of
myoglobin and nitrate. Due to its oxidation and nitrification ability, it will damage proteins,
DNA, and lipids, and ultimately inhibit the growth of microorganisms [28].

4. Metabolic Pathways of Nitrite in Fermented Meat Products

Exogenous manufacture, contamination during processing, and endogenous microbial
synthesis are the main sources of nitrite in fermented meat products. In addition, a small
amount of nitrite is produced by contamination during rearing and endogenous microbial
production. Acids, enzymes, and non-acid and non-enzyme compounds in bacteria can
degrade nitrite in fermented meat products (Figure 2).
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4.1. Source of Nitrite in Fermented Meat Products
4.1.1. Exogenous Manufacture during Processing

The addition of nitrite to meat products during processing improves their appearance,
color, flavor, and safety. It is also the main source of nitrite in fermented meat products. In
meat products, nitrite serves four purposes. The first is the reaction of nitric oxide (NO) with
hemoglobin and myoglobin to form nitrohemoglobin and nitrosymyoglobin, which main-
tain the bright color of meat products [29]. Jarulertwattana found that 4 × 10−6 g/g nitrite
was suitable for curing chicken when used with ginger sauce, but more than 4 × 10−6 g/g
nitrite will cause pink defects in chicken legs [30]. Second, nitrite can inhibit the growth
of Clostridium botulinum and Staphylococcus aureus. The minimum concentration of nitrite
that inhibits the outgrowth of Clostridium botulinum is from 4 × 10−5 to 8 × 10−5 g/g [1].
Third, nitrite has an antioxidant effect and can suppress lipid peroxidation, lowering the
production of foul odors. Ji found that sodium nitrite can effectively inhibit lipid oxidation
at 1 × 10−4 g/g during the curing process of mutton [31]. Finally, nitrite can aid some
fermentation bacteria in the production of fermented flavor components in cured meat
products through metabolism or the hydrolysis of protease and lipase. [4,32].

Some vegetable extracts are added to fermented meat products as nitrite substitutes
because they contain a large amount of nitrite: celery, watercress, lettuce, spinach, and rape
(<2500 mg/100 g); Chinese cabbage, leek, and parsley (1000 to <2500 mg/100 g); radish
and cabbage (500 to <1000 mg/100 g); carrots, cucumbers, pumpkins, and broccoli (200 to
<500 mg/100 g); and potatoes, tomatoes, onions, eggplants, mushrooms, and asparagus
(<200 mg/100 g) [33,34]. Meat products cured with vegetable extracts showed similar
quality and sensory properties to nitrite-cured products [35]. Natural nitrite sources have
a higher consumer preference than synthetic nitrite because they contain a variety of an-
tioxidants and antibacterial compounds. Phenolic compounds in vegetable extracts may
hinder the conversion of nitrite into N-nitrosamines, making the probability of nitrosamines
production lower than that of synthetic nitrite. However, there is no relevant research to
prove its conversion relationship. Nevertheless, these plant extracts have many application
limitations. Firstly, only vegetables that contain enough nitrate can be used. Furthermore,
the taste and color of vegetables will also affect the sensory quality of fermented meat prod-
ucts. Furthermore, the transformation of nitrate to nitrite in plant extracts is uncontrollable,
and the content of nitrite finally transformed may not reach the desired level [36].
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4.1.2. Contamination during Rearing

During animal rearing, domestic animals will ingest nitrite in the environment. Ni-
trogen compounds are widely used as fertilizers in agriculture. Crops produce plant
chlorophyll in response to nitrogen fertilizer, which increases crop yield [37]. The use of
nitrogen fertilizer has risen substantially in recent years, particularly in Southeast Asia [38].
Despite having a positive and significant impact on global food production, nitrogen fertil-
izer has a significant negative impact on the larger ecosystem. Under natural conditions,
nitrifying microorganisms in the environment influence the nitrogen cycle of water, ensur-
ing that nitrogen metabolism remains balanced. However, a large amount of high-nitrogen
metabolites are added to aquaculture water, which outperforms the metabolism of natural
bacteria in the reservoir, alters the dynamic balance of the nitrogen cycle, causes nitrite to
deposit in the water, and eventually accumulates nitrite in animals [39].

Unintentionally added nitrate and nitrite in livestock products have been reported.
Iammarino et al. reported a maximum endogenous nitrate content of 30 mg/kg in horse
meat and beef, and up to 40 mg/kg in fresh pork meat [40]. Iacumin et al. also determined
that the thresholds for nitrite and nitrate concentrations in raw meat were less than 4 mg/kg
and 22 mg/kg, respectively, which are below the threshold; the authors believed that nitrite
and nitrate in raw meat were not intentionally added [41].

4.1.3. Endogenous Microbial Production

In addition to the nitrite accumulated by exogenous addition and contamination of
raw materials, a tiny quantity of nitrite is produced during meat product fermentation by
endogenous microbial action. In ammonia-oxidizing bacteria, monoamine oxidase converts
NH4

+ to hydroxylamines, which are then converted to nitrite by hydroxylamine oxidase
(reaction (2)). Denitrifying bacteria can also convert nitrate-nitrogen to N2 and NH4

+, with
nitrite as an intermediary product. Iacumin et al. investigated dry pickled ham from San
Daniele without adding nitrite for 14–19 months and found that nitrite in the ham was
present at less than 4 mg/kg [42]. When products have a long curing process, adding
nitrate instead of nitrite to meat products, the nitrate is reduced to nitrite by microbial
nitrate reductases [43].

4.2. The Degradation Pathway of Nitrite in Fermented Meat Products

LAB and denitrifying bacteria degrade nitrite in fermented meat products, mostly
through acid and enzyme degradation, while other non-acid and non-enzyme compounds
can also degrade nitrite. LAB can also limit the metabolism of nitrate reduction bacteria,
reducing the generation of nitrite, and inhibiting the growth of Escherichia coli, Klebsiella pneu-
moniae, Pseudomonas fluorescens, Pseudomonas alkalogenes, and other bacteria [44]. Some bac-
teria, such as Latilactobacillus sakei, Latilactobacillus curvatus, and Levilactobacillus brevis, have
a strong ability to reduce nitrite by inhibiting the formation of N-nitro-sodimethylamine
precursors [45]. Wu et al. used a co-culture of Lactiplantibacillus plantarum Shanghai brewing
1.08 and Zygosaccharomyces rouxii CGMCC 3791 to minimize nitrite and biogenic amine
concentrations and increase the flavor components in Chinese sauerkraut [46].

The degradation by LAB is separated into two stages according to Zeng et al. [47]. In
the early stage of fermentation, when the pH > 4.5, nitrite is mostly degraded enzymatically.
Second, because LAB create acid, the breakdown of nitrite in late fermentation is primarily
acid degradation after pH < 4.5.

In the curing process, LAB mostly focused in the processing step degrade nitrite rather
than store it. According to Huang, Limosilactobacillus fermentum RC4 and Lactiplantibacillus
plantarum B6 were added to cured meat. The content of nitrite was significantly reduced
(0.75 mg/kg) during processing, which was significantly lower than that of regular cured
meat (4.67 mg/kg); during 0–20 days of storage, the moisture content of bacon decreased
significantly, the pH increased continuously, but the content of nitrite did not change
significantly [48].
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According to reports, nitrite is degraded in the following percentages in meat products:
reactions with heme proteins (5–15%), non-heme proteins (20–30%), nitrous acid with free-
amino acids via the Van Slyke reaction to generate nitrogen gas (1–5%), sulfhydryl groups
(5–15%), lipids (1–5%), oxidation back to nitrate (1–10%), and free nitrite (5–20%) [49].

4.2.1. Acid Degradation

The acid degradation of nitrite demonstrates that nitrite serves as a colorant, antioxi-
dant, unique flavoring agent, oxidant, and bacteriostatic agent in fermented meat products.
Nitrite also can produce N-nitrosamines with a carcinogenic teratogenic effect.

Fermented meat products contain large amounts of H+ after microbial fermentation,
and nitrite and H+ are decomposed into NO and H2O (reactions (5)~(7)) [4].

NO2
− + H+ ↔ HNO2 (5)

2HNO2 ↔ N2O3 + H2O (6)

N2O3 ↔ NO + NO2 (7)

Nitrite (NO2
−) forms nitrite acid (HNO2) when it combines with hydrogen ions (H+).

Nitric acid then gradually decomposes into nitrous trioxide (N2O3) and water molecules
(H2O) (reactions (6) and (7)). N2O3 further dissociates into NO and NO2 (reaction (8)).
NO can further form N-nitrosamines with carcinogenic and teratogenic effects [3]. In the
endogenous environment, the intermediate between nitrite and NO, NO2, establishes a
dynamic balance.

4.2.2. Enzyme Degradation

Nitrite is degraded by NiR and reduced to NO or NH3. NiR, which is a critical
enzyme in the nitrogen cycle, catalyzes nitrite reduction and mainly comes from LAB and
denitrifying bacteria. The majority of NiRs are intracellular enzymes that are mostly found
in the periplasmic region or cell membrane, and some are free in the cytoplasm. Liu et al.
reported that NiR produced by Lacticaseibacillus rhamnosus LCR6013 might, via the nitrate
respiration pathway (NO2→NO→N2O→N2), produce nitrous oxide (N2O) and degrade
nitrite [50].

Depending on the reactants and cofactors, NiRs can be classified into CuNiRs, cd1NiRs,
ccNiRs, and ferredoxin-dependent nitrite reductases (FdNiRs) [51]. The genotypes of NiR
mainly include nirK, nirS, nrf A, and nirB, etc., of which nirK and nirS are key genes in the
denitrification process, encoding a CuNiR and cd1NiR, respectively [52]. nrf A and nirB are
the key genes of nitrate ammonification, which reduce nitrite by transferring six electrons.
Genes nrf A and nrf H encode the double-subunit complex ccNiR protein composed of two
subunits, NrfA and NrfH, respectively.

CuNiRs are involved in the denitrification of nitrogen during metabolism. The reduc-
tion of NO2

− by CuNiRs can be divided into five steps: the combination of NO2
− with the

enzyme, the reduction reaction, dehydration of bound intermediate products, NO release,
and enzyme regeneration. NO2

− combines with the T2Cu center in the oxidized form to
replace a soluble molecule and forms a hydrogen bond between the Asp98 residue and an
oxygen atom of NO2

−. When the electron is transferred from T1Cu to T2Cu, the proton
of the hydrogen bond is transferred from the Asp98 residue to the oxygen atom of the
substrate to form an intermediate product O=N-O-H. The N-O bond of the oxygen atom is
then broken and the product NO is released into the active center [53].

Similar to ccNiRs, the NiRB large and NiRD small subunits are encoded by the
genes nirB and nirD, respectively, and are used to degrade nitrite by forming the NiRBD
complex [54]. NiRB encoded by the nirB gene, catalyzes NO2

− to NH4
+, and is a soluble

NADH-dependent NiR catalytic subunit-containing sirol heme. NiRB, under anaerobic
conditions, uses NADH as an electron donor to reduce nitrite in the cytoplasm, while
oxygen suppresses its activity [55]. Wang et al. used anaerobic chemostat culture technology,
in which NiRB-lacZ was used to report fusion steady-state gene expression, revealing the
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differential expression pattern of gene nir in E. coli [56]. It was found that NiRB is an
inducible enzyme, and its expression is induced by high nitrate and nitrite conditions.
The synthesis of nirB-encoded NiRB is high only when the content of NiRB exceeds the
consumption capacity of the cells.

Microorganisms can spontaneously regulate the content of nitrite in fermented meat
products, which is mainly related to the genes in the microorganisms. The exogenous
environment, the normal expression of genes, the deletion of gene fragments, and the
interaction between multiple genes will affect the regulation of nitrite metabolism in mi-
croorganisms [57]. Zeng et al. used proteomic and bioinformatic analyses to identify
31, 87, and 190 differentially expressed genes in the process of nitrite degradation in
Limosilactobacillus fermentum RC4, including adhE and lpdA which are involved in carbohy-
drate metabolism, cysK related to amino acid metabolism, nirB corresponding to nitrogen
metabolism, fabI and accD associated with lipid metabolism, and gsk involved in nucleotide
metabolism [47]. These genes are involved in the metabolism of Limosilactobacillus fermen-
tum RC4 during nitrite reduction. Chu et al. studied the effects of carbon sources (acetate
and glucose) on the endogenous denitrification and ammoniation of Candida [58]. After
adjusting the oxygen–phosphorus ratio, it was found that acetate (54.2%) had a higher
efficiency of converting nitric acid into nitrite (90.2%), whereas glucose (51.3%) made the
accumulation of nitrite more stable (85.3%). The total nitrogen removal efficiencies of
acetate (88.8%) and glucose (91.3%) were similar (87.8% and 89.8%). Iino et al. studied the
genes ro06366 and ro00862 of Rhodococcus rHA1 [59]. The single mutant with deletion of the
above gene showed growth retardation in the environment when using nitrate or nitrite
as the only nitrogen source. Iino allowed the double mutant to grow in the environment
with a nitrate and nitrite nitrogen source. It was found that nitrate and nitrite were not the
only nitrogen sources used and both ro06366 and ro00862 are involved in the regulation of
nitrite and nitrate. Khlebodarova et al. studied the process of nitrite utilization by NiR in
E. coli cells [60]. NO2

− is reduced to NH4
+ outside the cell via NrfA reductase, flows into

the cell through the NirC transporter, participates in the degradation of proteins and their
complexes, and is converted to NH3 through NirB reductase, and then flows out of the cell
through the NirC transporter.

4.2.3. Other Substances for Degradation

In addition to the aforementioned degradation pathways, several non-acid and non-
enzyme substances, such as flavonoids, polyphenols, and ascorbate, also have effects in
nitrite scavenging. Guo et al. measured the nitrite scavenging ability of flavonoids using the
diazotization-coupling reaction in vitro, and found that the nitrite scavenging activity was
closely related to phenolics (r2 = 0.990, p < 0.01) and flavonoids (r2 = 0.923, p < 0.05) [61].
Ben et al. found that polyphenols in sea buckthorn had a higher nitrite-degrading capacity
than other compounds, with a nitrite-degrading rate of 75.9% [62]. Skibsted found that
antioxidants such as ascorbate and polyphenols can induce the reduction of N2O3, promote
the production of NO, and destroy the balance between nitrite, NO, and NO2, ultimately
reducing the content of nitrite [20]. Feng et al. reported the effect of nitrite on protein
oxidation and nitrification of cooked sausage, in which the antioxidant effect of nitrite
on protein oxidation was manifested as a significantly reduced base content, higher free
amines, and lower surface hydrophobicity [63].

4.3. Factors Affecting Nitrite Degradation
4.3.1. Effects of the Food Matrix on the Degradation of Nitrite

Polysaccharides and inorganic salts in the food matrix mainly affect the degradation
of nitrite. The food matrix influences the activity of catalase in vitro of LAB and produces
hydrogen peroxide, altering the ability of autolysis in vitro of LAB and influencing the
activity of nitrate reductase in vitro [64]. Seo et al. studied the extracellular polysaccharides
produced by Lactiplantibacillus plantarum YML009 [65]. The nitrite clearance rate was
43.93%, which proved the extracellular polysaccharides have a strong ability to degrade
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nitrite, and the higher the sugar content, the higher the nitrite-free radical clearance rate.
Inorganic salt can reduce the water content of fermented meat products and inhibit the
growth of microorganisms. When excessive sodium chloride (NaCl) is used to pickle
fermented meat products, bacteria will dehydrate and die, and the nitrite degradation
effect will be significantly reduced. Delgado-Pando et al. evaluated bacon with different
salt contents and found that the color of bacon with a high salt content was redder than
that with a low salt content [66].

4.3.2. Effects of Fermentation Conditions on the Degradation of Nitrite

The lower the pH, the more appropriate the fermentation temperature, and the longer
the fermentation duration, which leads to less nitrite production. Kilic et al. investigated
the influence of pH on residual nitrite in cured meat products and discovered that lowering
the pH greatly reduced residual nitrite, whereas increasing the pH increased residual
nitrite [67]. Under an acidic environment, the microbial system in fermented meat products
is regulated spontaneously, and Lactobacillus acidophilic has competitive advantages to
inhibit other bacteria and possible pathogens [68]. Furthermore, the longer the fermentation
time is, the more dominant the LAB will be.

5. Safety of Nitrite in Food
5.1. Toxicity of Nitrite

NO is a crucial compound generated from nitrite, which combines with myoglobin
and methemoglobin, proteins in cells, and with amines to lower NO levels in the dynamic
balance, resulting in nitrite degradation. In meat fermentation, NO has coloring, antioxi-
dant, cured flavor, and antibacterial benefits; however, it can also be carcinogenic. At low
concentrations (nm), NO acts as a signaling molecule for intercellular communication in
neurons and the cardiovascular system [69]. At high concentrations (µM), NO can kill
pathogens and cancer cells [70].

Through a nucleophilic substitution reaction, NO can combine with non-protonated sec-
ondary amines to form N-nitrosamines, which are carcinogenic and teratogenic [3]. The most com-
mon volatile N-nitrosamines in meat products are N-nitrosodimethylamine, N-nitrosodiethylamine,
N-nitrosopiperidine, N-nitrosopyrrolidine, and N-nitrobenzylmorpholine. Among them, in terms
of oncogenicity and genotoxicity, N-nitrosodimethylamine and N-nitrosodiethylamine
are regarded as the most volatile N-nitrosamines [71]. The amount of N-nitrosamines
production mainly depends on the intake of nitrite and the processing conditions in meat
products, which also increases in concentration under conditions of pH 2.5~3.5, longer
storage time, and high-temperature and high-acid conditions [72]. The presence of amines
is one of the primary prerequisites for the creation of N-nitrosamines. There are not many
N-nitrosamines in raw meat since amino acids are only decarboxylated to produce amine.
Nevertheless, procedures including maturation, fermentation, and curing may increase
their synthesis of N-nitrosamines. It was discovered during processing that the quantity of
precursors was directly correlated with the amount of N-nitrosamines in meat products,
but even if precursors were present, low water activity and an unfavorable pH would
prevent the production of nitrosamines in meat products [73]. Additionally, several cooking
techniques that reach temperatures greater than 130 ◦C, such as frying or barbecuing, may
make it more likely that N-nitrosamines will occur [3]. To prevent nitrosation, chemicals
such as ascorbate and tocopherol are added during processing. The presence of sulfhydryl
compounds, some phenols, and tannins in meat products might also inhibit the formation
of N-nitrosamines [15].

5.2. Addition Limit of Nitrite in Fermented Meat Products in Different Countries

According to current knowledge, the use of nitrite mainly considers two risks—the
final formation of N-nitrosamines and the final growth of serious pathogens. Nitrite has
potential carcinogenicity in the human body, and its intake should be limited [7]. In
addition to the processing steps of curing meat products, consumers’ cooking methods



Foods 2023, 12, 1485 10 of 17

with temperatures higher than 130 ◦C, such as frying or grilling meat products, will also
increase the possibility of N-nitrosamines formation [3]. By contrast, other studies have
shown that nitrite, as a vasodilator in mammals, is a life-saving medication that releases
a protective substance during hypoxic events [5]. The European Food Safety Authority
(EFSA) assessed the acceptable daily intake (ADI) in 2017, excluding infants under 3 months
of age, and determined that the ADI of nitrate is 3.7 mg/kg body weight (bw)/d and that
of nitrite is 0.07 mg/kg bw/d. Most countries’ management regulations allow for the use
of nitrite (Table 1).

Table 1. Application requirements of nitrite in different countries (only fermented meat products).

Country Institution Application Requirements of Nitrite Reference

America Code of Federal
Regulations The maximum permitted amount of nitrite use ≤ 200 mg/kg [74]

Japan Ministry of Health, Labor and Welfare of Japan The maximum residue ≤ 70 mg/kg [75]

Korea Ministry of Food and Drug Safety The maximum residue ≤ 70 mg/kg [76]

Europe European Commission The maximum residue ≤ 50 mg/kg [6]

China State Health and Family Planning Commission The maximum permitted amount ≤ 150 mg/kg
(The maximum residue of sodium nitrite ≤ 30 mg/kg) [77]

5.3. Clean Label Movement

In some countries, there are plant extracts such as pre-converted nitrites added to
fermented meat products, and these products are labeled “natural”, “organic”, and “un-
cured” [78], which may lead to confusion or even mislead consumers. In addition, the
vegetable extract’s precise chemical makeup need not be disclosed, which also encourages
some businesses to use it in place of some chemical additions [8]. On the other hand, the use
of plant extracts rich in nitrite does not avoid the production of N-nitrosamines because the
residual nitrite in the product probably reacts under high-temperature conditions and may
produce N-nitrosamines [79]. According to the Standing Committee on Plants, Animals,
Food, and Feed (ScoPAFF), the use of vegetable extracts with a high nitrite content is
regarded as an addition in the food processing process, and regulation N◦1333/2008 also
ensures the use of vegetable extracts in food processing [80]. Therefore, adding vegetable
extracts to fermented meat products as nitrite to label items green is a false tactic used
by food producers and operators [81]. Rivera et al. thought that the elimination of the
“uncured” labeling policy for meats processed with pre-converted nitrites from vegetable
sources would improve transparency for consumers [1].

6. Methods and Applications of Substituting Nitrite in Fermented Meat Products

Nitrite can inhibit the growth of bacteria due to its oxidation and nitrification ability.
The survival or multiplication of microorganisms under reduced or in the absence of nitrite
concentrations is increased substantially and represents a challenge for the meat industry to
guarantee the safety of fermented meat products. Commercially speaking, it may provide
value to draw customers if nitrite is not listed on the label of fermented meat products.

Researchers continue to find safe substitutes for nitrite, including plant substitutes,
microbial substitutes, and organic acid substitutes. However, at present, no substitute
can currently match the entire action of nitrite and completely replace it. Therefore, the
most successful option is to use low-dose nitrite in the curing process of meat products in
combination with other substances or technologies to provide anti-corrosion, bacteriostasis,
color, and taste, while also preserving the quality of meat products as much as possible.

Recently, many studies have been conducted on the inhibition nitrite synthesis (Table 2).
It is required to prevent the synthesis of nitrite in order to lower the level of nitrite in
fermented products, such as by adding antioxidants and LAB, and replacing the role of
nitrite with chromogenic agents and antibacterial agents.
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Table 2. Studies on reducing the nitrite content in fermented meat products.

Methods Products Effects Reference

Antioxidants substances

Sodium ascorbate
(500 ppm)

and
α-Tocopherol acetate

(10 ppm)

Fermented meat products

Reduced the content of nitrite,
prevented the conversion of nitrite to

nitrosamine, produced unique
flavors, and improved the sensory

quality.

[82]

Ascorbic acid (0.0075%)
and other curing additives Beef sausage Increased the antilisterial activity of

Enterococcus mundtii to 2 log cfu/g. [83]

Phenolic Fermented meat products
Phenolic compounds in bovine

essential oils had antioxidant and
antibacterial properties.

[84]

Lactic acid bacteria and its
enzymes

Limosilactobacillus
fermentum RC4 (1.06%)

and
Lactiplantibacillus

plantarum
B6 (0.53%)

No-nitrite-added cured
meat

Limosilactobacillus fermentum RC4 had
an effective nitrite degradation

ability and Lactiplantibacillus
plantarum B6 inhibited bacteria

(0.53%).

[48]

Enzymes Pickle Reduced nitrosamines. [44]

Chromogenic agent

Beetroot and berries
extracts Fermented dry sausages

Imparted the red color of nitrite-free
meat products to develop and

stabilize color.
[85]

Plasma-activated water Beef jerky Promoted the formation and fixation
of color. [86]

Chili red and lycopene Meat batters

Partially replaced nitrite from
150 mg/kg to 100 mg/kg, and

improved the texture characteristics
of the product.

[87]

Bacteriostat
Radish powder (0.5%)
and chitosan (0.25%)

Fermented cooked
sausages

Had good effects on physical,
chemical and microbial stability of

fermented cooked sausage.
[88]

Garlic essential oil
(125 mg/kg),

allyl isothiocyanate
(62.5 µL/kg),

and nisin (20 mg/kg)

Fresh sausages
Effectively reduced E. coli O157H7

and LAB, and maintained the
physical and chemical properties.

[89]

6.1. Antioxidant Substitutes

As an antioxidant, nitrite can largely influence flavor to prevent lipid oxidation and the
formation of undesirable lipid oxidation byproducts such as hexanal and 2,4-decadienal [21].
Its antioxidant substitutes can be divided into synthetic antioxidants and natural antioxi-
dants. Synthetic antioxidants include propyl gallate, tert butyl hydroquinone, and butyl
hydroxyanisole. Natural antioxidants include phytic acid, vitamin E mixed concentra-
tion, guaiac resin, flavonoids, amino acids, and others [90]. Some natural ingredients not
only have an antioxidant effect, but also have a potential inhibitory effect on controlling
microbiological hazards, such as cloves, essential oils of aromatic and medicinal plants,
plant extracts with high polyphenols concentration, acidified whey, honey, and other bee
products [34].

6.2. LAB and Its Enzymes

LAB are the ideal bacteria in food processing. The vast majority of LAB have a status
generally recognized as safe and they have good salt resistance. In addition, the European
Food Safety Authority has granted the status of qualified presumption of safety to many
LAB, included in the genera Carnobacterium, Lactococcus, Leuconostoc, Oenococcus, Pediococcus,
Streptococcus, and the former Lactobacillus genus, recently reclassified into twenty-five new
genera [91,92]. In the environment of pickled food, LAB can ferment food and increase
flavor, and also produce acetic acid, bacterial peptides, and hydrogen peroxide to inhibit
harmful bacteria [93,94]. LAB contain special enzymes that can reduce nitrosamine, and
the lactate can also reduce nitrite content [44]. When LAB and other substitutes are used
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at the same time, it is very important to select the most appropriate combination, so as to
produce favorable results and even synergy.

6.3. Chromogenic Agent Substitutes

Nitrite has a chromogenic effect in the pickling process. The natural pigments that
can replace nitrite include monascus red, nitrosohemoglobin pigment, chili red, beet red,
sorghum red, carboxyhemoglobin, and tomato red. The replacement synthetic pigments
include carmine, erythritol, sunset yellow, lemon yellow, and amaranth. Some plant
extracts, such as beetroot and berries extracts, can be used to impart the red color of nitrite-
free meat products to develop and stabilize color [85]. However, the color produced by
chromogenic agent substitutes is frequently different from that produced by traditional
meat products. Patarata et al. reduced the nitrite content of cured loins made from wine-
and water-based marinade, and studied the consumer’s evaluation of product color [95].
Consumers prefer nitrite-free products even though the color of fermented meat products
created with color additive alternatives is subpar if the label says “additive-free”.

6.4. Bacteriostat Substitutes

Nitrite can effectively prevent food spoilage and inhibit the growth of Clostridium
botulinum and other biological hazards, including Listeria monocytogenes, bacillus cereus, and
Staphylococcus aureus [96,97]. The antipathogenic properties of nitrite are mainly attributed
to three aspects. The first aspect is perturbing oxygen uptake and oxidative phospho-
rylation; the second is inhibiting critical enzymes, including aldolase, glyceraldehyde-3-
phosphate, and nitrogenases; and the third is forming bactericidal nitrite derivatives [98].
Substitute bacteriostatic agents for nitrite include organic acids, tea polyphenols, spice ex-
tract, and bacteriocin [99]. On the other hand, some physical methods of food preservation
can be mobilized to control microbial hazards, namely, the use of high isostatic pressures,
activated plasma, pulse-field UV light, and active packaging [100–102].

However, these bacteriostat substitutes show several limitations. Firstly, their ability
to inhibit microbial growth may be lower than nitrite. Secondly, some of these natural
antimicrobials and plasma-treated water have a selective effect on Gram-positive or Gram-
negative pathogens, vegetative cells, or spores. Thirdly, the components of some vegetable
extracts will greatly change the aroma and color of products, which affects their application
in the production and processing process [1].

6.5. Non-Thermal Plasma Sterilization

Some emerging food sterilization methods, such as non-thermal plasma sterilization,
can be used for the preparation of fermented meat products without nitrite [30]. The
interaction of plasma with water can result in the generation of nitrate and nitrite, as well
as reactive oxygen species. Reactive oxygen and nitrogen compounds react with cellular
macromolecules, such as proteins, lipids, enzymes, and DNA, to change the functional
features of biofilms, affecting normal physiological functions, and ultimately leading to
microbial cell death [96]. However, during non-thermal plasma sterilization, oxygen atoms
react with vibration-excited nitrogen molecules to produce nitric oxide (NO) (reaction (8)).

O + N2→NO + N (8)

When NO combines with plasma, it forms nitrogen oxide (NO2) and additional
nitrogen oxides (NO3, N2O, N2O3, and N2O5) [103]. Nitrogen oxides diffuse and dissolve
in liquids, where they react with water molecules to create nitrite, nitric acid, and nitrate
acid, followed by nitrite acid degradation [36].

After non-thermal plasma sterilization, Yong et al. marinated tenderloin in brine
without sodium nitrite and observed that the color was similar to that of sodium nitrite-
treated tenderloin, with an increased red a* and no significant difference in yellow b*
or brightness L* [104]. Lee et al. used plasma for 30 min to produce pork batter with
42.42 mg/kg of nitrite, with no significant differences in physicochemical or sensory
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performance when compared with pork batter prepared using sodium nitrite or celery
powder [105].

7. Summary

Nitrite is a multifunctional food additive that is widely used in the fermentation of
meat products. However, high levels of nitrite residues have become a significant con-
cern that impacts the safety of fermented meat products and restricts the growth of the
traditional fermented meat product industry. Exogenous addition, contamination during
processing, generation by endogenous microorganisms, and non-thermal plasma steril-
ization technology accumulate nitrite in fermented meat products, which is degraded by
acids, enzymes, and other non-acid and non-enzyme substances. Nitrite levels are primar-
ily affected by the matrix, fermentation conditions, and antioxidants in fermented meat
products. The content of nitrite in fermented meat products can be reduced by inhibiting
nitrite formation and substituting nitrite’s role in the fermentation process during meat
processing. Future researchers should consider the following points: (i) The association be-
tween nitrite in plant extracts and nitrosamines based on their phenolic compounds has to
be investigated using fermented meat products as the medium. (ii) More research is needed
to evaluate the sensory acceptability of nitrite substitute products to the reformulated cured
meat, taking into account consumer needs and concerns. (iii) Nitrite can be degraded by
a variety of non-acid and non-enzyme compounds. Its composition and content, as well
as the degradation effects of each component, and the synergistic degradation effects of
each component and acid, should be analyzed further. (iv) Only CuNiRs have ever been
explored in terms of their catalytic mechanism. Regarding the other three types of nitrite
reductase (cd1NiRs, ccNiRs, and FdNiRs), their catalytic mechanisms have not been fully
investigated. Excessive nitrite levels in cured meat products have become the principal
issue influencing fermented meat product production. Further understanding of the nitrite
metabolism in fermented meat products would support the appropriate application of
nitrite in meat products and the production of more high-quality, low-nitrite fermented
meat to meet consumer demand.
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