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Abstract: This study was carried out to identify the behaviour of Escherichia coli O157:H7 and of
Listeria monocytogenes inoculated in Maronesa breed beef with different ultimate pH (pHu) (Normal
and DFD), and stored at two different temperatures (4 and 9 ◦C), during 28 days post mortem (pm).
The main objective was to illustrate the problematic feature of dealing with beef showing high pHu
and stored at mild abusive temperatures (9 ◦C). Beef steaks (ms. longissimus dorsi) were inoculated
with low levels (2–3 log CFU/g) of those both pathogens and packed in air, vacuum and three
gaseous mixtures with decreasing O2 and increasing CO2 concentrations (MAP70/20, MAP50/40
and MAP30/60). At 4 ◦C, the growth of E. coli O157:H7 presented the same pattern on Normal and
DFD meat. On the contrary, the growth of L. monocytogenes was higher in DFD meat, revealing the
effect of the pHu and its psychotropic character. At abusive temperatures, both pathogens grew,
achieving high levels in DFD meat. In these cases, the MAP with the highest CO2 concentration (60%)
was revealed to be more effective against the development of E. coli O157:H7, therefore, not exceeding
levels of 5 log CFU/g at the end of storage, while in L. monocytogenes, it reaches 8 log CFU/g under
the same conditions.

Keywords: autochthonous breed; beef; DFD meat; Listeria monocytogenes; Escherichia coli O157:H7;
ultimate pH

1. Introduction

Beef from the Maronesa cattle has high commercial value due to its autochthonous
breed, environmentally sustainable production system, and it has Protected Designation of
Origin (PDO) [1,2]. However, in order to exploit the full potential of meat products, it is
important to ensure that products reach the consumer in the best condition [3]. The quality
of the meat can be affected by intrinsic and extrinsic parameters, such as age, sex, breed [4],
feeding [5], enzyme activity [6], meat-modified atmosphere packaging (MAP) [7], or meat
contamination [8]. The hygienic quality, which is a result of beef processing and handling,
is particularly important because it has direct implications for consumer confidence [9].
Contamination of beef occurs throughout slaughtering, deboning, cutting, packaging, and
storage, during which time temperature and hygiene are important parameters affecting
the shelf-life of fresh meat for industrial use or retail [10,11].

Microbial pathogens are usually associated with the most serious meat safety issues
in product recalls and foodborne diseases [12–14]. Nowadays, besides the considerable
knowledge about the microbiota responsible for foodborne diseases, a high number of
outbreaks and incidents keep occurring, many of them associated with meat and meat
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products which in 2021 represented 11.9% of positive units reported by the MS of EU [15].
Beef, in particular, has been associated with foodborne diseases, causing tragic outcomes
involving death in some cases. An aiding fact of foodborne infections due to beef con-
sumption may be related to its preparation methods, in which these meats are many times
only subjected to mild heat treatments, commonly referred to as undercooked or rare [16].
Enterohemorrhagic E. coli O157:H7 is a highly pathogenic subset of Shiga toxin-producing
E. coli [17]. E. coli belongs to the enteric microflora of many healthy animals, with cattle
being the main reservoirs of E. coli O157:H7 [18,19]. E. coli O157:H7 has emerged as an
important foodborne pathogen that causes diarrhoea, hemorrhagic colitis, and hemolytic-
uremic syndrome in humans [17] and, in severe cases, can cause death [20]. On the other
hand, L. monocytogenes has a ubiquitous distribution and a great ability to grow in a wide
range of conditions, such as refrigeration [21,22] and has been regarded as the pathogen of
concern in ready-to-eat (RTE) meat [23]. L. monocytogenes is also one of the most serious
agents of foodborne diseases under EU surveillance, and infection in humans is still high,
some of them with death [15]. Unsafe practices, including long storage duration and abu-
sive temperatures, have a potential impact on human listeriosis risk [24]. The temperature
of domestic refrigerators was shown to be very variable through a review of survey studies
from 1991 to 2016. It was observed that mean temperatures ranged from <5 to 8.1 ◦C, the
minimum temperatures from −7.9 to 3.8 ◦C and the maximum from 11.4 to 20.7 ◦C [24].

The gaseous composition of the packaging and pHu values are parameters that can
affect the growth of microorganisms in meat [25,26]. In red meat products, one of the most
common methods of packaging is the use of MAP, usually through mixtures of CO2, O2 and
N2, each one with a specific function. The MAP generally inhibits microbial spoilage of fresh
meat, minimising the loss of products and maintaining a higher quality in perishable food
during its normal shelf-life or extending it [27]. Nevertheless, MAP should be associated
with strict temperature control to achieve maximum microbial inhibition [11,28]. The pHu
of meat higher than the normal values (pHu: 5.5–5.8), as in dark, firm and dry (DFD) (pHu:
>6.1) or moderate DFD (pHu: 5.9–6.1) meat, can be responsible for the meat spoilage [29,30].
The production system of Maronesa beef is known for the occurrence of DFD conditions [31].
Consequently to the DFD condition, a reducing of the product’s shelf-life can occur and it
is also less acceptable to the consumer [31,32]. According to Silva et al. [31], during two
years of measurements of pHu, it was noticed that in longissimus dorsi, about 25% of the
cases had a final pH equal or superior to 6.2 and were classified as DFD. Thus, the results
revealed that the occurrence of high-pH meat is dependent on the muscle. Other muscles,
such as gracillis (8%) and psoas major (≤2%) muscles, presented with a lower percentage
of DFD condition. DFD meat is related to animal stress and transport with multifactorial
origins. It has been reported in many countries, with variable occurrence rates of 1.3% in
Canada, 3.2% in the USA, 4.5% in Brazil and 13.45% in Mexico [29,33–35]. The incidence of
DFD cases was also dependent on the sex of the animal, with a higher occurrence of DFD
cases observed in males [31].

Considering the lack of studies related to the quality of autochthonous breeds meat
associated with the occurrence of DFD beef in the Maronesa breed, the aim of this study was
to evaluate the influence of pHu (Normal and High) and meat packaging (air, vacuum and
three MAP with gas) on the behaviour of E. coli O157:H7 and L. monocytogenes inoculated on
beef of Maronesa breed and stored at 4 ± 0.5 ◦C and 9 ± 0.5 ◦C, during 28 days of storage.

2. Materials and Methods
2.1. Experimental Design
2.1.1. Sampling

Beef longissimus dorsi muscle was obtained from eight Portuguese autochthonous
Maronesa, 9 to 11-month-old bulls whose carcasses weighed from 90 to 150 kg. Longissimus
dorsi was excised from the carcasses between the sixth thoracic and the second lumbar
vertebra at 24 h post-mortem (pm). Based on pHu measured at 24 h pm directly in the
muscle using a combined glass electrode with a pH meter Crison 2002, muscles were
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divided into two pH groups: Normal (pH ≤ 5.8, n = 4) and DFD (pH ≥ 6.2, n = 4). After
that, muscles were cut into pieces of approximately 200 g, packed in a vacuum and stored at
−80 ◦C until the beginning of the experiment. On day 1 of the experiment, cuts of muscles
were kept at 2 ◦C for 2 h. After this time, approximately 1 cm of the external surface of
the meat was aseptically removed, and cuts were sliced. At the end of this process, pieces
of meat (0.5 cm thick, surface 2 × 2.5 cm, ≈5 g) were obtained. Immediately after this
preparation, meat samples were analysed (24 h pm) for meat characterisation and discarded
L. monocytogenes and E. coli O157:H7 contamination prior to inoculation. Experiments were
performed using four animals in each experimental unit per each pH group, and a control
sample was prepared in all conditions of the experimental design.

2.1.2. Microorganisms and Growth Conditions

Pieces of meat were inoculated with 20 µL of a suspension of E. coli O157:H7 (NCTC
12900) and L. monocytogenes (ATCC 7973) for an inoculation level of 2–3 log (CFU/g) per
strain and package.

Inoculates used in this study were prepared at growth suspension of L. monocytogenes
(30 ◦C, 24 h) and E. coli O157:H7 (37 ◦C, 24 h) in brain heart infusion broth (Oxoid CM225).
Cells were centrifugated (5000× g, 15 min, 4 ◦C) and washed three times in 0.85% sterile
physiologic saline and compared to a 0.5 McFarland turbidity standard. Serial (10-fold)
dilutions were performed to yield approximately 1 × 103 cells/cm2. To verify the number
of viable L. monocytogenes and E. coli O157:H7 in the suspension, dilutions were spread on
Compass L. monocytogenes Agar (Biokar BM06508) and CT-SMAC (Biokar BK147 + BS037),
respectively.

2.1.3. Packaging

Inoculated and control samples were packed in five different types of packaging,
namely: air; vacuum; 70%O2/20%CO2/10%N2 (MAP70/20); 50%O2/40%CO2/10%N2
(MAP50/40); and 30%O2/60%CO2/10%N2 (MAP30/60).

In air packaging, meat pieces were tray-packaged in air overwrapped with polyethy-
lene film and in a vacuum: they were individually vacuum packaged in COMBITHERM
bags (WIPAK Walsrode, HAFRI) which have an oxygen transmission rate (OTR) of
63 cm3 m−2d−1atm−1 at 23 ◦C, 0% RH and water vapour transmission (WVT) of
1 g m−2d−1 at 23 ◦C, 85% RH. For MAP, pieces of meat were individually placed in COM-
BITHERM XX bags (WIPAK Walsrode, HAFRI) 0.115 mm thick and OTR of
1 cm3 m−2d−1atm−1 at 23 ◦C, 0% RH and WVT of 1 g m−2d−1 at 23 ◦C, 85% RH. The
atmosphere in the MAP was first removed and then flushed with the appropriate gas
mixture (Praxair, Portugal) using a SAMMIC V-420 SGA. The final ratio between gas and
meat was approximately 3:1.

Samples were stored at 4 ± 0.5 ◦C and 9 ± 0.5 ◦C and examined for microbiological
counts on days 1 (2 h after packaging), 3, 7, 10, and 14 pm. For air packaging, microbio-
logical counts were not carried out at 14 days pm. On the contrary, on vacuum packaging,
microbiological counts were also carried out at 21 and 28 days pm.

2.2. Microbial Analysis

Meat pieces were aseptically collected at each interval. Samples were homogenized
with sterile buffered peptone water for 90 s in a Stomacher (IUL, Barcelona, Spain). Serial
decimal dilutions were prepared in the same solution and were plated on CT-SMAC (Biokar
BK147 + BS037) for E. coli O157:H7 counts (37 ◦C for 24 h) and Compass L. mono agar
(Biokar BM06508) in case of L. monocytogenes (37 ◦C for 24–48 h). After incubation, typical
colonies were counted, and results were expressed in log CFU/g.

2.3. Data Analysis

One-way analysis of variance (ANOVA) was conducted to test the effect of pHu
(Normal and DFD) and of the temperature of storage (4 ± 0.5 ◦C and 9 ± 0.5 ◦C), for each
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day of microbiological counts (1, 3, 7, 10, 14, 21, 28 days pm) using the SPSS 22.0 software
(SPSS, IBM, Armonk, NY, USA) at 5% level of probability.

3. Results
3.1. Behaviour of Escherichia coli O157:H7

The results of counts of E. coli O157:H7 in inoculated beef samples, according to
pHu (Normal and DFD) and the type of packaging for each storage temperature, are
presented in Table 1. Two hours after inoculation, the Normal and DFD samples had a
similar count for E. coli O157:H7. These counts were slightly greater than the programmed
level of inoculation, though this was a very slight excess and never attained a logarithmic
unit. The final pH of the meat was not decisive on the growth of E. coli O157:H7 in beef
stored at 4 ± 0.5 ◦C. The highest E. coli O157:H7 counts for DFD meat and temperature of
9 ◦C were observed in vacuum packaging for all storage times (4.39 ± 0.65 log CFU/g at
3 days pm; 6.57 ± 0.26 log CFU/g at 7 days pm; 7.77 ± 0.32 log CFU/g at 10 days pm and
8.35 ± 0.21 log CFU/g at 21 days pm). However, no significant differences were observed
between Normal and DFD pHu at 3 days pm. At 10 days pm, the largest difference between
the DFD and Normal meat was observed in the vacuum atmosphere (4.05 log CFU/g;
p < 0.001) followed by the air atmosphere (3.61 log CFU/g; p < 0.01). In the MAP70/20,
differences between the DFD and Normal meat reached 3.04 log CFU/g (p < 0.001). The
MAP packaging with more concentration of CO2, namely MAP30/60, showed the lowest
counts with no significant differences between pH groups at 10 and 14 days pm.

The counts of E. coli O157:H7 on Normal and DFD beef were similar at a temperature
of 4 ◦C during the storage period, maintaining the initial levels. However, at 9 ◦C, growth
levels were achieved for DFD meat of ~8 log CFU/g in vacuum from day 10 pm, reaching
the highest value of 8.76 ± 0.64 log CFU/g at day 28 pm. In the MAP with the high CO2
concentration (MAP30/60), counts were not higher than 5 log CFU/g, which appears to
reveal the inhibitory effect of CO2 in the development of E. coli O157:H7 (Figure 1). The
pathogen E. coli O157:H7 packed in MAP70/40 and MAP30/60 and stored at mild abusive
temperature (9 ◦C) followed the same pattern and showed similar counts over time.

3.2. Behaviour of Listeria Monocytogenes

The results of counts of L. monocytogenes in inoculated beef samples, according to pHu
(Normal and DFD) and the type of packaging for each storage temperature, are presented
in Table 2. At 1 day pm, in the five packagings, DFD and Normal samples had a similar
count for L. monocytogenes with a score closer to that desired in all packaging. Two more
days after storage, the consequences of temperature started to show that L. monocytogenes
increased considerably in DFD compared to Normal meat, and these differences were more
pronounced, particularly in MAP70/20 compared to the other two MAP. L. monocytogenes
achieved at 3 days pm and 7 days pm average counts of 3.41 ± 0.92 log CFU/g and
6.49 ± 0.83 log CFU/g in DFD meat and 2.61 ± 0.65 log CFU/g and 1.74 ± 0.76 log CFU/g
in Normal meat, which generally maintained the same pattern during the remaining
storage time.

In Normal pH, the effect of abusive storage temperature was not noticed in the
development of L. monocytogenes, contrarily to DFD meat which presented very significant
differences in most situations in which the meat was in abusive temperatures.

The MAP30/60, with the higher content of CO2, seems to inhibit this microorganism a
little more, showing inferior counts for all storage times when compared with MAP70/20
and MAP50/40.

At a temperature of storage of 4 ◦C, the growth of L. monocytogenes was not observed
for Normal meat. On DFD meat, the counts achieved levels of 6 log CFU/g, 7 log CFU/g
and 8 log CFU/g in vacuum at day 14 pm, 21 pm and 28 pm, respectively. The lowest
counts were obtained on meat packaged in the MAP30/60 for a long time.

At abusive temperature (9 ◦C) and Normal pHu, L. monocytogenes presented similar
counts during the storage period. On the contrary, for DFD meat, L. monocytogenes devel-
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oped very quickly after day 3 pm, achieving values higher than 8 log CFU/g in air and
vacuum at day 10 pm. These levels were attained in MAPs later at day 14 pm.
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Figure 1. Evolution of E. coli O157:H7 levels (log UFC/g) on DFD (left) and Normal (right) beef
stored at 4 ◦C and at 9 ◦C, packed in air, vacuum and MAPs -O2/CO2/N2- 70/20/10 (MAP70/20),
50/40/10 (MAP50/40), 30/60/10 (MAP30/60), during the time of storage.
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Table 1. Counts of E. coli O157:H7 (log CFU/g) in inoculated beef samples according to pH groups (Normal and DFD) in five different packagings and stored at two
temperatures (4 ± 0.5 ◦C and 9 ± 0.5 ◦C) at day 1, 3, 7, 10, 14, 21 and 28 pm.

Days
pm

Temp.
(◦C)

Air Vacuum MAP70/20 MAP50/40 MAP30/60

N ** DFD Sig. N DFD Sig. N DFD Sig. N DFD Sig. N DFD Sig.

1 A.I. * 3.35 ± 0.26 3.41 ± 0.32 ns 3.15 ± 0.52 3.31 ± 0.37 ns 3.30 ± 0.20 3.32 ± 0.25 ns 3.36 ± 0.37 3.33 ± 0.37 ns 3.33 ± 0.29 3.37 ± 0.33 ns

3
4 ± 0.5 3.23 ± 0.78 3.20 ± 0.42 ns 3.48 ± 0.27 3.30 ± 0.33 ns 3.60 ± 0.18 3.23 ± 0.27 ns 3.39 ± 0.46 3.25 ± 0.27 ns 3.34 ± 0.26 3.33 ± 0.26 ns
9 ± 0.5 3.55 ± 0.45 4.16 ± 1.15 ns 3.51 ± 0.48 4.39 ± 0.65 ns 3.35 ± 0.43 3.84 ± 0.29 ns 3.58 ± 0.27 3.88 ± 0.56 ns 3.36 ± 0.27 3.56 ± 0.30 ns

Sig. ns ns ns * ns * ns ns ns ns

7
4 ± 0.5 3.33 ± 0.21 3.68 ± 0.76 ns 3.28 ± 0.29 3.04 ± 0.30 ns 3.51 ± 0.26 3.18 ± 0.21 ns 3.28 ± 0.19 2.99 ± 0.37 ns 3.28 ± 0.16 2.84 ± 0.23 *
9 ± 0.5 3.43 ± 0.73 6.31 ± 1.26 ** 3.36 ± 0.42 6.57 ± 0.26 *** 3.24 ± 0.30 5.61 ± 0.12 *** 3.27 ± 0.35 5.30 ± 0.49 *** 3.20 ± 0.35 4.52 ± 0.78 *

Sig. ns * ns *** ns *** ns *** ns **

10
4 ± 0.5 3.36 ± 0.25 3.09 ± 0.60 ns 3.28 ± 0.36 2.95 ± 0.43 ns 3.27 ± 0.24 3.17 ± 0.42 ns 3.23 ± 0.19 2.98 ± 0.51 ns 3.19 ± 0.26 2.97 ± 0.34 ns
9 ± 0.5 3.44 ± 0.92 7.05 ± 1.42 ** 3.72 ± 0.76 7.77 ± 0.32 *** 3.26 ± 0.39 6.30 ± 0.52 *** 3.24 ± 0.36 6.25 ± 0.37 *** 3.39 ± 0.42 4.65 ± 1.22 ns

Sig. ns ** ns *** ns *** ns *** ns *

14
4 ± 0.5 - - - 3.65 ± 0.12 2.66 ± 0.54 * 3.27 ± 0.40 3.50 ± 0.62 ns 2.97 ± 0.42 3.04 ± 0.37 ns 3.12 ± 0.40 3.19 ± 0.39 ns
9 ± 0.5 - - - 3.67 ± 0.56 7.84 ± 0.15 *** 3.24 ± 0.54 6.59 ± 0.77 *** 3.31 ± 0.33 6.65 ± 0.38 *** 3.28 ± 0.33 4.90 ± 1.48 ns

Sig. - - - ns *** ns *** ns *** ns ns

21
4 ± 0.5 - - - 3.17 ± 0.16 2.60 ± 0.60 ns - - - - - - - - -
9 ± 0.5 - - - 3.74 ± 0.68 8.35 ± 0.21 *** - - - - - - - - -

Sig. - - - ns *** - - - - - - - - -

28
4 ± 0.5 - - - 2.91 ± 0.22 2.81 ± 0.28 ns - - - - - - - - -
9 ± 0.5 - - - 3.61 ± 0.59 8.76 ± 0.64 *** - - - - - - - - -

Sig. - - - ns *** - - - - - - - - -

* A.I.—after inoculation; ** N—Normal (pH); Sig.—Significance: ns—not significant; * p < 0.05, ** p < 0.01 and *** p < 0.001.
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Table 2. Counts of L. monocytogenes (log CFU/g) in inoculated beef samples according to pH groups (Normal and DFD) in five different packagings and stored at
two temperatures (4 ± 0.5 ◦C and 9 ± 0.5 ◦C) at day 1, 3, 7, 10, 14, 21 and 28 pm.

Days
pm

Temp
(◦C)

Air Vacuum MAP70/20 MAP50/40 MAP30/60

N ** DFD Sig. N DFD Sig. N DFD Sig. N DFD Sig. N DFD Sig.

1 A.I.* 3.10 ± 0.88 3.02 ± 1.12 ns 2.90 ± 0.64 3.13 ± 0.81 ns 2.96 ± 0.94 3.02 ± 0.75 ns 2.91 ± 0.96 3.06 ± 0.82 ns 2..46 ± 1.07 2.97 ± 0.99 ns

3
4 ± 0.5 2.78 ± 1.19 2.91 ± 1.15 ns 2.80 ± 1.21 3.20 ± 0.86 ns 2.64 ± 0.96 2.64 ± 0.89 ns 2.56 ± 0.89 2.60 ± 0.98 ns 2.34 ± 1.29 2.55 ± 1.21 ns
9 ± 0.5 2.81 ± 0.93 3.39 ± 1.05 ns 2.95 ± 1.04 3.74 ± 1.17 ns 2.61 ± 0.65 3.41 ± 0.92 ns 2.61 ± 0.79 3.17 ± 1.00 ns 2.74 ± 0.66 3.19 ± 0.92 ns

Sig. ns ns ns ns ns ns ns ns ns ns

7
4 ± 0.5 2.51 ± 0.90 3.76 ± 0.90 ns 2.71 ± 0.92 3.86 ± 0.92 ns 2.21 ± 0.93 3.06 ± 0.69 ns 2.08 ± 0.87 2.92 ± 0.81 ns 2.25 ± 0.66 2.64 ± 0.99 ns
9 ± 0.5 1.83 ± 0.67 7.25 ± 0.68 *** 2.68 ± 0.83 7.11 ± 0.61 *** 1.74 ± 0.76 6.49 ± 0.83 *** 1.79 ± 0.91 6.17 ± 0.91 *** 1.99 ± 0.77 5.55 ± 0.62 ***

Sig. ns *** ns ** ns *** ns ** ns **

10
4 ± 0.5 2.48 ± 0.62 4.47 ± 0.91 * 2.55 ± 1.10 4.55 ± 0.90 * 1.59 ± 0.88 3.89 ± 0.90 * 1.63 ± 1.08 3.21 ± 0.79 ns 1.49 ± 0.85 2.63 ± 0.98 ns
9 ± 0.5 2.07 ± 0.75 8.25 ± 0.45 *** 2.54 ± 0.81 8.24 ± 0.20 *** 1.69 ± 1.01 7.91 ± 0.57 *** 1.37 ± 0.74 7.79 ± 0.20 *** 1.42 ± 0.72 7.01 ± 0.37 ***

Sig. ns *** ns *** ns *** ns *** ns ***

14
4 ± 0.5 - - - 2.04 ± 1.04 5.71 ± 0.81 ** 1.35 ± 0.79 4.82 ± 1.05 ** 1.32 ± 0.72 4.07 ± 1.29 ** 1.68 ± 1.15 3.33 ± 1.27 ns
9 ± 0.5 - - - 2.66 ± 0.53 8.33 ± 0.13 *** 2.50 ± 0.78 8.55 ± 0.32 *** 2.54 ± 0.74 8.53 ± 0.30 *** 2.45 ± 0.75 7.91 ± 1.09 ***

Sig. - - - ns *** ns *** ns *** ns **

21
4 ± 0.5 - - - 2.08 ± 0.64 6.78 ± 0.69 *** - - - - - - - - -
9 ± 0.5 - - - 2.23 ± 0.72 8.29 ± 0.28 *** - - - - - - - - -

Sig. - - - ns ** - - - - - - - -

28
4 ± 0.5 - - - 1.71 ± 1.20 7.57 ± 0.41 *** - - - - - - - -
9 ± 0.5 - - - 1.86 ± 0.69 8.14 ± 0.41 *** - - - - - - - -

Sig. - - - ns ns - - - - - - - -

* A.I.—after inoculation; ** N—Normal (pH); Sig.—Significance: ns—not significant; * p < 0.05, ** p < 0.01 and *** p < 0.001.
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4. Discussion

The pHu and storage temperature significantly influenced the growth of both E. coli
O157:H7 and L. monocytogenes.

At 4 ◦C of storage, the counts of L. monocytogenes for all packages in DFD beef were
below 5 log CFU/g (10 days pm), with the higher counts observed in the air (4.47 log CFU/g;
p < 0.05) and vacuum (4.55 log CFU/g; p < 0.05) packages (Table 2). On the contrary, at
4 ◦C the counts of E. coli H157:H7 were about 3 log CFU/g during all times of storage (3,
7, 10, 14, 21 and 28 days pm) in all types of packaging, showing no significant differences
(Table 1). Thus, the low storage temperature (4 ◦C) associated with the DFD condition was
not enough to produce an extensive inhibition of L. monocytogenes as observed in E. coli
O157:H7. These results can be justified by the fact that L. monocytogenes is a psychrotrophic
bacterium, capable of surviving and multiplying at low temperatures, both under aerobic
and anaerobic conditions and adhering to various surfaces [36]. Moreover, L. monocytogenes
has the ability to grow at a pH of 6 or higher, as observed in DFD meat [37] and has a high
tolerance to low pH and high salt concentration [38]. According to Nissen et al. [39], at 4 ◦C,
L. monocytogenes and Y. enterocolitica are considered the most serious pathogens in meat.
Low temperatures induce enzymes such as RNA helicase, which improves the activity
of L. monocytogenes, as well as replication at low temperatures. Moreover, the capacity to
produce biofilms enhances L. monocytogenes’ ability to survive harsh environments and also
use flagella at lower temperatures which enables the ability to propel itself [40]. Elevated
CO2 and reduced O2 levels are commonly used to extend the shelf-life of food products
through the inhibition of microbial growth and oxidative changes [41]. The use of O2-free
atmospheres in packages has been suggested for different meat products [42]. In the present
study, MAPs inhibited, compared to the air and vacuum atmospheres, the development of
L. monocytogenes mainly in the MAP with the highest concentration of CO2. The lower OTR
(1.0 cm3m−2day−1) of the packaging film used in this experiment for MAP, in comparison
to films of greater O2 permeability (OTR = 4.5 cm3m2day−1) used in the study conducted
by Tsigarida et al. [43] can justify these results. Saraiva et al. [41], using the same packaging
film as the present study, found that L. monocytogenes in beef may be reduced by ~1.0 log in
vacuum packaging and by ~1.5 log on average in the MAPs. Generally, under an anaerobic-
modified atmosphere, the LAB compete with the support microflora and have shown to be
effective in inhibiting the growth of pathogenic bacteria such as L. monocytogenes in meat
products [44]. The combination of selected LAB strains with antimicrobial compounds, for
instance, acid and sodium lactate or the use of active packaging, could be the next step
strategy for eliminating the risk of L. monocytogenes in meat and dairy-ripened products [45].
Many food-spoiling LABs are facultative aerobic and quite resistant to CO2. This contributes
to the fact that LABs can be found as the main spoilers on high-oxygen packaged meat [41].
Therefore, L. monocytogenes can represent a risk when stored at temperatures higher than
0 ◦C, and the efficacy of thermal treatments is limited by the ability to survive and actively
replicate at temperatures between −0.4 and 45 ◦C [46]. Air and vacuum atmospheres had
similar counts for this pathogen (Figure 2), which could be related to the O2 permeability
rate of the packaging film used for the vacuum atmosphere (OTR = 63 cm3m−2day−1), not
so efficient in inhibiting the L. monocytogenes [41].

A higher proportion of CO2 in MAP50/40 and even more in MAP30/60 have led to
lower growth of L. monocytogenes compared to other types of packaging. This result is
consistent with other research whose results confirmed that the growth of L. monocytogenes
was inhibited with increasing concentrations of CO2 [39,47]. According to Saraiva et al., [41]
L. monocytogenes requires CO2 levels of 40% v/v or higher for effective inhibition. In view of
maintaining the cytoplasmic pH within a range that is consistent with growth and survival,
the decarboxylation reaction needs to occur to help maintain the cytoplasmic pH, though
a high concentration of CO2 can inhibit the decarboxylation reaction by which CO2 is
released through feedback mechanisms [41,48].
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Figure 2. Evolution of L. monocytogenes levels (log UFC/g) on DFD (left) and Normal (right) beef
stored at 4 ◦C and at 9 ◦C, packed in air, vacuum and MAPs -O2/CO2/N2- 70/20/10 (MAP70/20),
50/40/10 (MAP50/40), 30/60/10 (MAP30/60), during time of storage.

At a temperature of storage of 4 ◦C, the counts of E. coli O157:H7 on Normal and
DFD, as well as for abusive temperature on Normal beef, were similar during the storage
period, maintaining the initial levels (Figure 1). Regarding DFD meat and temperature
of storage of 9 ◦C, the E. coli O157:H7 achieved the highest growth levels in a vacuum
atmosphere (~8 log CFU/g), showing statist differences from Normal meat (p < 0.001) and
from a temperature of storage of 4 ◦C (p < 0.001) at 7, 10, 14, 21 and 28 days pm.

The pathogen E. coli O157:H7 in air packaging multiplied rapidly; however, MAP30/60
showed lower growth levels during the storage period. In this study, this was the atmo-
sphere with high CO2 content (60%), and E. coli O157:H7 counts did not attain 5 log CFU/g
at 14 days pm. These results can be due to the inhibitory effect of CO2. In previous
experiments, E. coli O157:H7 in atmospheres with high concentrations of CO2 (ratio of
30%CO2:70%O2 or 0.4%CO:60%CO2:39.6%N2) have been reported as being inhibitory to
the multiplication of E. coli O157:H7 at an abusive storage temperature of 10 ◦C [38]. As
mentioned above, for L. monocytogenes, E. coli uses the same mechanism of decarboxylation
systems to protect the cell from a precipitous drop in pH. These systems depend on the ac-
tivity of cytoplasmic pyridoxal-5′-phosphate (PLP)-containing amino acid decarboxylases,
which consume one proton and release one CO2 for every molecule of substrate amino
acid, thus helping maintain the cytoplasmic pH [49]. At refrigeration temperatures from 0
to 2 ◦C, high concentrations of CO2 (ratio of 20%CO2:80%O2 or 0.4%CO:30%CO2:69.6%N2)
can lead to a reduction of one logarithmic unit in the levels from E. coli O157:H7 [50]. In
accordance with the present study, Nissen et al. [39] reported that E. coli O157:H7 could
be inhibited at 10 ◦C at high CO2 concentration and pHu inferior to 6. Moreover, even in
MAP with a high CO2 and low CO mixture, meat acquires a stable colour, and the shelf-life
can be extended.

The behaviour of L. monocytogenes in abusive temperatures differed between DFD and
Normal pHu meats for all types of packaging after 7 days pm. For instance, at 10 day pm,
Normal and DFD meat showed, respectively, counts of 2.07 log CFU/g and 8.25 log CFU/g
in the air (p < 0.001); 2.54 log CFU/g and 8.24 log CFU/g (p < 0.001) on Vacuum; 1.69 log
CFU/g and 7.91 log CFU/g in MAP70/20 (p < 0.001); 1.37 log CFU/g and 7.79 log CFU/g
in MAP50/40 (p < 0.001); and 1.42 log CFU/g and 7.01 log CFU/g in MAP30/60 (p < 0.001).
However, regarding the stored temperatures, for instance, at 14 day pm, count obtained
at 4 ◦C and 9 ◦C of storage for DFD meat were respectively 5.71 log CFU/g and 8.33 log
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CFU/g (p < 0.001) in Vacuum; 4.82 log CFU/g and 8.55 log CFU/g in MAP70/20 (p < 0.001);
and 4.07 log CFU/g and 8.53 log CFU/g in MAP50/40 (p < 0.001). Thus, even with meat
stored at temperatures within recommended limits, the development of L. monocytogenes
occurred markedly in meat with a high pHu, though when comparing both temperatures,
the effect was not as intense as was the effect of pHu. However, unlike E. coli O157:H7,
the effect of pH was not felt when storage was carried out at the appropriate temperature.
Also, in this pathogen, at 9 ± 0.5 ◦C of storage, significantly greater growth was noted in
the DFD meat samples.

5. Conclusions

The present study highlights the importance of maintaining the cold chain under
strict surveillance conditions is confirmed to avoid abuses, which can have even more
serious consequences in the case of DFD meat. As referred to above, the occurrence of
DFD condition was more frequently observed in the L. dorsi muscle of the Maronesa
breed, mainly in males. The results revealed that this condition associated with abusive
storage temperatures allowed the growth of E. coli O157:H7 at higher levels, which is
especially more evident in air and vacuum packages. For L. monocytogenes, the low storage
temperature (4 ◦C) associated with the DFD condition was not enough to inhibit the
growth of L. monocytogenes, as observed in E. coli O157:H7. This is due to the characteristic
psychotropic of L. monocytogenes.

The use of special packing conditions, such as vacuum or MAP, in order to increase
the shelf-life of meat or for technological and sensorial reasons can have consequences in
terms of the development of some of the pathogens present in meat. Overall, the MAP were
the most effective in controlling the development of E. coli O157:H7 and L. monocytogenes.
In MAP, the effect of the CO2 level was observed, being even more noticeable in pH that
better supported microbial growth.
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