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Abstract: Anthocyanins are bioactive compounds belonging to the flavonoid class which are com-
monly applied in foods due to their attractive color and health-promoting benefits. However, the
instability of anthocyanins leads to their easy degradation, reduction in bioactivity, and color fading
in food processing, which limits their application and causes economic losses. Therefore, the objective
of this review is to provide a systematic evaluation of the published research on modified methods of
anthocyanin use. Modification technology of anthocyanins mainly includes chemical modification
(chemical acylation, enzymatic acylation, and formation of pyran anthocyanidin), co-pigmentation,
and physical modification (microencapsulation and preparation of pickering emulsion). Modification
technology of anthocyanins can not only increase bioavailability and stability of anthocyanin but also
can improve effects of anthocyanin on disease prevention and treatment. We also propose potential
challenges and perspectives for diversification of anthocyanin-rich products for food application.
Overall, integrated strategies are warranted for improving anthocyanin stabilization and promoting
their further application in the food industry, medicine, and other fields.

Keywords: anthocyanins; molecular modification; physical modification; application progress

1. Introduction

Anthocyanins, a category of phenolic compounds, are one of the most important
water-soluble pigments in nature [1]. They are widely found in the cell sap of plant
flowers, fruits, stems, leaves, and root organs, and they are responsible for the red, purple,
or blue coloration of fruits and flowers [2–4]. In the food industry, anthocyanins are
used as pigments for pastry, candies, coloring of drinks, jellies and jelly-type desserts,
etc. Commission regulation (EU) No 231/2012 of 9 March 2012 set specifications for
food additives, including anthocyanin, with the E-163 code [5]. Anthocyanins have been
recognized as food colorants by several countries, such as Australia, New Zealand, and
some EU countries, with the code E-163 [4,6].

Anthocyanins are flavonoid derivatives formed by glycosidic bonds between antho-
cyanidins with a core structure of 3, 5, 7-tri-hydroxyl-2-phenylbenzo-pyran cation and
aglycones at the C3 site [7–9]. The different chemical structures of anthocyanins arise from
the position and number of hydroxyl groups on the molecule, the degree of methylation,
the nature and number of sugar moieties attached to the aglycone, and the position of the
attachment [10,11]. More than 700 kinds of anthocyanins with 30 different core structures
have been identified [12]; anthocyanins, delphiniums, pelargonidin, peonidin, petunidin,
and malvidin are the six typical types of anthocyanins [13]. Their structure and proportion
in nature are shown in Figure 1.
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Figure 1. The structure and composition of natural anthocyanins. 

Anthocyanins have various potential therapeutic effects on diabetes [14], colon can-
cer [15,16], cardiovascular disease [17], atherosclerosis [18], etc. According to the latest 
research, anthocyanins could be a potential dietary supplement to prevent neurodegener-
ative diseases [19]. 

In addition, recent research has reported that anthocyanins have important antioxi-
dant and antimicrobial properties [20–22]. Moreover, physiological functions of anthocy-
anins are widely used in the field of food packaging. Anthocyanins are pH-sensitive sub-
stances, and their molecular structures and colors change with pH variation [23]. In addi-
tion, intelligent colorimetric packaging films can be prepared through loading anthocya-
nins to polysaccharides, proteins, and other biopolymers, and these show diverse colors 
in different acid–base environments. In this way, it is possible to indicate and monitor the 
freshness of packaged products in real time [24]. Meanwhile, anthocyanins are active com-
ponents with antioxidant and antimicrobial abilities, which can prolong food shelf-life 
[3,23] and can be used as antibacterial agents in the field of food packaging [8,25,26]. An-
thocyanins are highly reactive towards reactive oxygen species [18,27]. 

The low stability of anthocyanins is the primary obstacle to their commercial appli-
cation as colorants in the food industry [1,13,28,29]. Indeed, numerous environmental fac-
tors, including pH, temperature, light, pressure, oxygen, enzymes, and metallic ions can 
damage anthocyanins [30,31]. However, adverse conditions for anthocyanin maintenance 
are inevitable through complex food processing such as thermal processing and fermen-
tation [29,30,32]. Therefore, improvement of the stability of anthocyanins is an urgent 
problem to be solved. 

Additionally, despite the beneficial properties of anthocyanins, their effectiveness at 
preventing or treating diseases is limited by their low bio-accessibility and bioavailability 
[7]. The Food and Drug Administration (FDA) defines the term bioavailability as “the rate 
and extent to which the active ingredient or moiety is absorbed and becomes available at 
the site of action”. An analysis of anthocyanins’ bio-accessibility and bioavailability was 
performed by analyzing blood and urine anthocyanin concentrations following ingestion 
of foods containing large amounts of anthocyanins [33]. The bioavailability of anthocya-
nins is one of the lowest among flavonoids; it is estimated at less than 1–2% [34]. After 
anthocyanins are released from plant cell vacuoles, the contraction and interactions with 
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Anthocyanins have various potential therapeutic effects on diabetes [14], colon can-
cer [15,16], cardiovascular disease [17], atherosclerosis [18], etc. According to the latest
research, anthocyanins could be a potential dietary supplement to prevent neurodegenera-
tive diseases [19].

In addition, recent research has reported that anthocyanins have important antioxidant
and antimicrobial properties [20–22]. Moreover, physiological functions of anthocyanins
are widely used in the field of food packaging. Anthocyanins are pH-sensitive substances,
and their molecular structures and colors change with pH variation [23]. In addition,
intelligent colorimetric packaging films can be prepared through loading anthocyanins to
polysaccharides, proteins, and other biopolymers, and these show diverse colors in different
acid–base environments. In this way, it is possible to indicate and monitor the freshness
of packaged products in real time [24]. Meanwhile, anthocyanins are active components
with antioxidant and antimicrobial abilities, which can prolong food shelf-life [3,23] and
can be used as antibacterial agents in the field of food packaging [8,25,26]. Anthocyanins
are highly reactive towards reactive oxygen species [18,27].

The low stability of anthocyanins is the primary obstacle to their commercial appli-
cation as colorants in the food industry [1,13,28,29]. Indeed, numerous environmental
factors, including pH, temperature, light, pressure, oxygen, enzymes, and metallic ions can
damage anthocyanins [30,31]. However, adverse conditions for anthocyanin maintenance
are inevitable through complex food processing such as thermal processing and fermen-
tation [29,30,32]. Therefore, improvement of the stability of anthocyanins is an urgent
problem to be solved.

Additionally, despite the beneficial properties of anthocyanins, their effectiveness at
preventing or treating diseases is limited by their low bio-accessibility and bioavailability [7].
The Food and Drug Administration (FDA) defines the term bioavailability as “the rate and
extent to which the active ingredient or moiety is absorbed and becomes available at the site
of action”. An analysis of anthocyanins’ bio-accessibility and bioavailability was performed
by analyzing blood and urine anthocyanin concentrations following ingestion of foods
containing large amounts of anthocyanins [33]. The bioavailability of anthocyanins is one
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of the lowest among flavonoids; it is estimated at less than 1–2% [34]. After anthocyanins
are released from plant cell vacuoles, the contraction and interactions with other food
and biological components, such as carbohydrates, fiber, proteins, enzymes, or other
polyphenols, may affect their bio-accessibility. Meanwhile, the low bioavailability of
anthocyanins may also stem from the instability caused by pH changes as well as microbial
and enzyme degradation during gastrointestinal passage [35–37].

The degradation and absorption pathways of anthocyanins in the human body are
shown in Figure 2. First, the oral cavity contains many salivary amylases at pH 7.4, which
might result in some early anthocyanin degradation [38]. Under the acidic conditions
prevailing in the gastric compartment, anthocyanins are in the positively charged flavylium
form, where anthocyanins are quickly absorbed (approximately 25%) [39]. The pepsin,
lipase, and amylase in the stomach may interact with anthocyanins to produce stable
complexes [7,34]. Therefore, the rapid absorption of anthocyanins in the stomach and the
formation of complexes affect their metabolism and reduce their bioavailability. Moreover,
anthocyanins are extensively metabolized in the gut [40]. In the small intestine, where the
pH is close to 7, anthocyanins may be present in a mixture of structural forms (flavylium,
quinoidal bases, hemiketal, and chalcone), and quinoidal and/or hemiketal forms could
predominate [41]. Hemiketal forms are more susceptible to oxidative degradation than
flavylium cations, which may lead to their breakdown to yield smaller phenolic products
such as phenolic acids [40]. The human colon is home to a diverse and large number of
microorganisms, with counts reaching 1012–1014 CFU/mL [34]. These microbial groups can
extensively catabolize anthocyanins, thereby contributing to the increase in bioavailability.
The bioavailability of anthocyanins is closely related to human health, and promoting the
slow release of anthocyanins in the intestines and making them metabolized and absorbed
by microorganisms can improve their bioavailability.
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Figure 2. Schematic representation of anthocyanin degradation and absorption in different regions of
the human gastrointestinal tract [7].

Therefore, this review will focus on innovative and advanced strategies in terms of
the mechanisms and recent advances for enhancing anthocyanin stabilization. In addition,
we comprehensively evaluated the properties of modified anthocyanins and their role in
disease prevention and treatment as well as proposed potential challenges and perspectives
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for application of anthocyanin-rich products. In conclusion, this review aims to provide
guidance for improving the potential and application scope of anthocyanins as value-
adding pigments and raw materials in the food industry.

2. Chemical Modification of Anthocyanins
2.1. Modification of Acyl
2.1.1. Chemical Acylation

Chemically, anthocyanins are glycosylated, polyhydroxy, or polymethyl derivatives of
a 2-phenyl-1-benzopyrylium moiety [42]. In fact, the majority of all known anthocyanins are
acylated [43,44]. Acylated anthocyanins impart desirable color and stability to vegetables
and fruits, such as radishes, red potatoes, red cabbage, black carrots, and purple sweet
potatoes [45].

In nature, the hydroxyl groups (AOHs) of the substituted glycosyls (i.e., the sugar
moieties) of anthocyanins are typically acylated with organic acids via ester bonds, which
is referred to as anthocyanin glycosyl acylation, to yield acylated anthocyanins [44]. Lauric
acid reacts with the primary hydroxyl group of glucoside and removes a molecule of water
to obtain acylated derivatives [46]. Anthocyanin glycosyl acylation is performed mainly
through hydrophobic and “π-π” interactions between the acyl donor and anthocyanin
molecule [13]. Acyl substituents are commonly bound to the C3 sugar or esterified to the
6-OH (or less frequently to the 4-OH) group of the sugars [46]. π-stacking interactions
between phenolic nuclei are promoted by anthocyanins acylated by hydroxycinnamic acid
(HCA) residues. The diacylated anthocyanins maintain a higher percentage of cationic and
neutral-colored forms at equilibrium under mildly acidic conditions. Therefore, acylation
can protect the anthocyanin chromophore from water attack (result of π stacking of acyl-
anthocyanins) [47]. The protective effect of acylation on anthocyanin increases with the
number of acyl groups [48]. Organic acids are the source of acyl donors for acylated antho-
cyanins. The organic acids acylating the sugar moieties of anthocyanins include aliphatic
and aromatic (phenolic) acids. Table 1 shows the acylation modification of anthocyanins by
different organic acids.

Chemical acylation is unable to carry out the reaction at a specific position of the
hydroxyl group, and it is easy to bind or shield some of the main active phenolic hydroxyl
groups of anthocyanins, thereby affecting the acylation. Cruz et al. [49] have reported that
the chemical acylation of a pure malvidin-3-O-glucoside (Mv3glc) using stearoyl chloride
in anhydrous acetonitrile yielded the stearic acid derivative, which was not regioselective
and produced a complex mixture of mono-, di-, and tri-ester derivatives.

Table 1. Acylation modification of anthocyanins by organic acids.

Organic Acid
Type Acyl Donor Type Acyl Donor Structure References

aliphatic

acetic acid
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Table 1. Cont.

Organic Acid
Type Acyl Donor Type Acyl Donor Structure References

saturated fatty acids of
different chain lengths — [53]

aromatic (phenolic)
acids

caffeic acid
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2.1.2. Enzymatic Acylation

The enzymatic acylation reaction usually occurs in a specific position of the antho-
cyanin structure through hydrophobic and “π-π” interactions [13,51,57]. Enzymatic acyla-
tion mainly includes the following two types: direct acylation and transesterification. In the
directly acylated reaction, fatty acids or phenolic acids are used as acyl donors in organic
solvents at low water activity, and the water byproduct is removed by molecular sieving.
In the transesterification reaction, fatty acids or aromatic carboxylic acid vinyl esters are
used as acyl donors, but acyl donors need to be synthesized for the reaction in advance.

Acylation is the primary way to increase the polarity, molecular size, and to change
the spatial structure of anthocyanins. Therefore, active site of acylation, acyl types, and
numbers can interfere with the effects of acylation. Since enzymes are enzymatic acylation
catalysts, the degree of acylation is influenced by enzyme acylation reaction conditions
such as acyl donor types, enzymes, and reaction media (Table 2).
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Table 2. Enzymatic acylation conditions and acylation rate of anthocyanins.

Products Acyl
Donor Enzyme Acylation Rate Reaction

Medium Reference

laurylmonoesters of
cyanidin-3,5-O-diglucoside lauric acid

lipase Fermase
CALB™ 10,000

Only acetone showed synthesis of
anthocyanin fatty acid esters and
the conversion rate reached 63%

acetone
[2]t-butanol

t-amyl alcohol

cyanidin 3-(6′ ′-benzoyl)-glucoside;
cyaniding-3-(6′ ′-salicyloyl)- glucoside and

cyanidin 3-(6′ ′-cinnamoyl)-glucoside

aromatic
acid

methyl
esters

Candida antarctica
lipase B 90.92% pyridine [13]

anthocyanins (Co-An)
p-

coumaric
acid

Lipase:
Novozym 435

Acylation degrees 5.38% tetrahydrofuran (THF) [43]

anthocyanins (Ca-An) caffffeic
acid Acylation degrees 5.68%

- caprylic
acid

Candida antarctica
lipase B 40% anhydrous

2-methyl-2-butanol [51]

cyanidin-3-O-(6′ ′-dodecanoyl) galactoside lauric acid Novezym 435 The conversion rate of tert-butanol
reach by 73%

acetone

[52]acetonitrile
tert-butanol

tert-amyl alcohol

delphinidin-3-glucoside-6′ ′-O-octanoate and
cyanidin-3-glucoside-6′ ′-O-octanoate

octanoic
acid

Candida antarctica
lipase B

- dry acetonitrile:DMSO
10:1 (v/v) [57]-

cyanidin-3,5-diglycoside cinnamic acid vinyl
ester acylate

vinyl
cinnamate

Candida antarctica
lipase B 85.7%

dry pyridine
[57]tert-butanol

2-methyl-2-butanol

lauric acid
Candida antarctica

lipase B

Ethanol with a
volume fraction

of 10%

Ethanol with
a volume
fraction of

20% anhydrous
2-methyl-2-butanol [59]

Delphidin-3-O-glucoside lauric acid acylate

77 85
Delphidin-3-O-rutinoside lauric acid acylate

72 74
Cyanidin-3-O-glucoside lauric acid acylate

66 88
Cyanidin-3-O-rutinoside lauric acid acylate

62 63

cyanidin-3-glucoside-fatty acid conjugate octanoic
acid

Candida antarctica
lipase B - 2-methyl-2-butanol [59]

octadecenoic
acid

Candida antarctica
lipase B 21.2% anhydrous

2-methyl-2-butanol [60]

cyanidin-3-(6′ ′-n-octanoyl)-glucoside,
cyanidin-3-(6′ ′-lauroyl)-glucoside, and

cyanidin-3-(6′ ′-myristoyl)-glucoside

fatty acid
methyl
esters

Lipozyme 435 94% tertamyl alcohol [61]

cyanidin-3-glucoside-octanoic acid acylate octanoic
acid Novozymes 435 47.1% tertiary butanol [62]

First of all, common acyl donors mainly include aliphatic, aromatic (phenolic) acids
and fatty acid esters. The acylation rates of fatty acids with different chain lengths as acyl
donors showed different acylation rates, ranging from 21% to 40%. Among them, caprylic
acid showed the best acylation effect and the highest acylation rate [51]. The study by
Liu et al. [43] showed that the acylation degrees of blueberry anthocyanins with coumaric
acid and caffeic acid were 5.38% and 5.68%, separately. It is precisely due to the different
structures of the acyl donors, especially the distribution of the hydroxyl groups on the
aromatic ring, that the acylation rate of the reactions of methyl benzoate, methyl salicylate,
and methyl cinnamate are different [61]. When methyl salicylate and methyl benzoate are
used as acyl donors, the conversion rates can reach 84.26% and 91%, respectively [13,63].

Acting as a catalyst, acylase contributes to high specificity and catalytic efficiency
for targets on the particular groups in the structure to carry out acylation at a mild con-
dition [64]. Moreover, the conversion rate of acylated products is affected by enzyme
concentration [50,57,65]. Free lipase from Candida antarctica and immobilized lipase
Novozymes 435 are two commonly used enzymes to catalyze the acylation of antho-
cyanins. For esterification of primary alcohols, Candida antarctica lipase B (CAL-B), which
can be used to prepare pure products, has great regioselectivity [59]. For instance, the
malvidin-3-glucoside-oleic acid ester and Delphinidin 3-O-sambubioside-lipophilic acid es-
ter were regioselectively synthesized by CAL-B, and the acylation rates exceeded 20% [60].
Novozymes 435 is an immobilized preparation of heat-stabilized lipase. It has broad sub-
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strate specificity and can promote the esterification reaction between primary alcohols [46],
secondary alcohols, and carboxylic acids in a wide range [43]. Compared with CAL-B-
catalyzed anthocyanin acylation, Novozymes 435-catalyzed anthocyanin acylation had a
higher conversion rate when fatty acids were used as acyl donors [52,53]. Novozymes 435
can also catalyze the transesterification of anthocyanins. In addition, the steps of chemical
acylation are complex and cumbersome, so activated acyl donors are often prepared and
used for acylation [63].

The nature of the reaction medium can affect the acylation product conversion rate and
the catalytic power of enzymes [56]. Generally, the higher the solubility of anthocyanins
in the solvents, the higher the conversion rate of acylated products. In the acylation of
anthocyanin, tert-butanol, tert-amyl alcohol, acetone, acetonitrile, pyridine, and 2-methyl-
2-butanol are commonly used as solvents [53,57]. Cyanidin-3-glucoside (C3G) has greater
zero-time solubility in pyridine and a higher acylation conversion rate (70.3%) compared
to 2M2B (59.5%). Although the zero-time solubility of Cyanidin-3-glucoside (C3G) in
tert-butanol is less than 40%, as the stirring time increases, the solubility increases, and the
conversion rate reaches 85.7% [61]. Therefore, it is extremely critical to select appropriate
enzymatic acylation conditions to obtain ideal anthocyanin acylation products.

Generally, chemical acylation of anthocyanin is feasible to perform. The progress
of chemical acylation is usually limited by external environmental factors. Compared
with enzymatic acylation, chemical acylation is not region-selective, which may lead to
undesirable functionalization of hydroxyl groups. Enzymatic acylation of anthocyanins
with high yield can prepare special acylated anthocyanins with high stability under special
conditions. Taken together, enzymatic acylation is considered as a more effective method
than chemical acylation with regards to enhancing anthocyanin stabilization in applica-
tion [64]. Purification and removal of unexpected byproducts from acylated anthocyanin is
a problem that needs to be overcome for the production of acylated anthocyanin on a food
industry scale.

2.2. Pyran Anthocyanin

The history of pyran anthocyanins dates back to the 1990s, when a new class of
pigments was detected in red wine filtrates [66]. At present, many pyran anthocyanins
have been separated and identified in fermented fruit wine or fruit juice beverages. The
main types of pyran anthocyanins include the following five: hydroxyphenyl-pyran an-
thocyanins, vitisins pyran anthocyanins, vinylflflavanole-pyranoanthocyanins, portisins,
and rosacyanin B [67]. Its basic structure is based on the proanthocyanin structure, and
the fourth D-ring is formed by a cycloaddition reaction between the C4 and C5 hydroxyl
groups of anthocyanins [67].

Pyrananthin and anthocyanins differ in physiochemical properties, such as color
and stability [68,69]. The new compounds named pyrananthin, first discovered in port
wine, present a charming and rare turquoise blue color under acidic conditions. The new
pyran ring protects anthocyanin against the nucleophilic attack of water, which hinders
the formation of the carbinol base, resists the affinity attack of acid sulfite, and enhances
stability. In addition, pyran anthocyanin-flavanol derivatives exhibit complete resistance to
sulfur dioxide bleaching and enhanced stability during storage [69]. In the process of wine
brewing, a small amount of oxygen is added to micro-oxidize anthocyanins, forming pyran
anthocyanins, which stabilize and enhance the color of the wine [70,71].

However, the application of pyran anthocyanin in food industry is limited by the
time-consuming nature of the process and low conversion rates.

3. Physical Modification of Anthocyanins
3.1. Microencapsulation

Microencapsulation is a new and rapidly developing technology that can be utilized
for the incorporation and immobilization of biologically active compounds within or on
solid particles (microspheres) or liquid vesicles. Microencapsulation can protect and sta-
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bilize the biologically active compounds susceptible to environmental factors, such as
curcumin, quercetin, and anthocyanin [72]. Figure 3 shows several common types of
microencapsulation. Anthocyanins, a sensitive biologically active substance, are encap-
sulated in microcapsules to maintain their stability and prolong their shelf life [73]. The
type of wall material and microencapsulation methods have the greatest influence on the
stability and embedding efficiency of anthocyanin microencapsulation [74]. Core material
release properties and microcapsule stability are two key factors in selecting wall materi-
als [75,76]. The method of microencapsulation chosen minimizes environmental factors
that harm anthocyanins.
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3.1.1. Wall Material Type

The stability and embedding efficiency of microencapsulation mainly depend on the
types of wall materials [74]. The basic characteristics of the main wall require emulsifying,
film-forming, water-solubility, and high stability, and it must not react with the core
material [77]. Anthocyanins are hydrophilic colorants that are particularly compatible with
water-based gel formulations. Therefore, maltodextrin [77,78], gum Arabic [54], starch, and
its derivative gums [79] are commonly used water-based gel formulations for encapsulating
anthocyanins [76].

Single-wall materials do not meet all the requirements needed to improve encapsula-
tion properties [64]. Therefore, the microencapsulation of anthocyanins usually involves
composite wall materials to achieve a better encapsulation effect. The encapsulation effi-
cacy of anthocyanins encapsulated with maltodextrin/modified maize starch in different
ratios of wall material was between 93.1% and 97.4% [79]. Akhavan et al. [77] prepared
microcapsules containing anthocyanins with maltodextrin and gum Arabic as the wall
materials, and the microencapsulation efficiency (ME) of anthocyanins was as high as
92.83%, which is due to the cross-linking interaction between the carboxymethyl starch
(CMS)/xanthine gum (XG) combination and anthocyanins; the encapsulation efficiency of
CMS/XG-encapsulated anthocyanin is above 96% [58].

In addition to polysaccharide-based wall materials, proteins, especially whey pro-
tein isolate and soy protein isolate, are widely used as wall materials for encapsulating
anthocyanins. The research of Michael et al. [28] showed that thermally induced whey-
protein-based microcapsules suitable for encapsulating anthocyanin-rich bilberry extract
can be generated from whey protein solutions. Whey protein was used to prepare cherry
peel anthocyanin microcapsules. The encapsulation efficiency reached 70.30 ± 2.20%,
which contained 31.95 ± 0.65 mg CGE/100 g DW anthocyanins [80]. Mansour et al. [81]
successfully encapsulated red raspberry anthocyanins using a combination of soy protein
isolate and gum Arabic.

3.1.2. Microencapsulation Method

The preparation methods of microcapsules mainly include spray drying, freeze dry-
ing, vacuum drying, and drum drying (Table 3). Microcapsule technology also includes
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vibrating nozzles, centrifugal extrusion, and crystallization. Among these, spray drying
and freeze drying are commonly used for preparing anthocyanin microcapsules.

The spray-drying method can produce a powdery anthocyanin particle with im-
proved storage stability, easier handling, and minimized transportation [82]. Anthocyanin
microcapsules with maltodextrin as the wall material were prepared by spray drying
technology, and the encapsulation efficiency reached 96.7%. Furthermore, the anthocyanin
microcapsules prepared by spray-drying technology showed good storage stability of
anthocyanin [83–85].

Freeze drying facilitates dehydration of the frozen mixtures of anthocyanins and wall
materials by sublimation under vacuum and low temperatures, which maintains its chemi-
cal structure and reduces the risk of undesirable changes [7]. The retention of anthocyanin
prepared by freeze-drying technology was higher than 76% after 90 days of storage under
UV light [86]. When compared to other methods of anthocyanin encapsulation, freeze-dried
double emulsion (FDE) microcapsules had higher total anthocyanin and total phenolic
contents [21].

Furthermore, studies have shown that encapsulation of anthocyanins prepared by the
combination of freeze drying and spray drying also show great properties. For example,
Fredes et al. [87] combined spray-drying with freeze-drying technology to prepare antho-
cyanin microcapsules, resulting in improved anthocyanin retention and bio-accessibility of
yogurt before consumption.

Because it takes a long time and because the manufacturing mode is discontinuous,
we do not recommend freeze drying production encapsulation of anthocyanins on a food
industrial scale. For spray drying, high temperature adversely affects encapsulated an-
thocyanins. Taken together, anthocyanin encapsulations have not been well applied in
industrial production.

Table 3. Study on the microencapsulation of anthocyanins.

Source Wall Materials Proportion Encapsulation
Efficiency Encapsulation References

grape seed
maltodextrin

(MD), mesquite gum
(MG), and zein (Z)

44% MG-56% Z
wall: core material is 2:1 in a 2% (w/v) total solids

dispersion
85% spray drying [26]

34% MD-66% Z
wall: core material is 2:1 in a 2% (w/v) total solids

dispersion
82%

juçara fruits maltodextrin and
gum Arabic

maltodextrin and gum Arabic in a 1:1 proportion;
wall material: core material 2:3 83.69% freeze drying [54]

blueberry

carboxymethyl
starch

(CMS)/xanthan gum
(XG)

CMS/XG: 30/1, 60/1, 90/1, 120/1, 150/1, w/w% over 96% freeze drying [58]

purple rice
bran

modified glutinous
rice starch

anthocyanin extract 40 mg cyanidin-3-glucoside/L
and 6.01% modified starch 94.22% spray drying [74]

blueberries
inulin, gum Arabic,
and maltodextrin

DE20

maltodextrin DE20, hi-maize gum Arabic, and
inulin 6.66%/5%

ranged from
96.80 to 98.83% spray drying [76]

barberry maltodextrin and
gelatin

wall material content and anthocyanin load of
24.54% and 13.82%, respectively 92.83% spray drying [77]

Iranian borage
maltodextrin (MD)

and modified maize
starch (MMS)

MD/MMS: 1/0, 1/0.25, 1/0.5, 1/1, w/w%; wall
material: core material 1:4 93.1 and 97.4% spray drying [79]

sour cherries
skins

whey protein isolate
and gum Arabic 5% whey proteins isolate and 2% gum Arabic 70.30 ± 2.20% freeze drying [80]

red raspberry
soy protein isolate

(SPI) and gum Arabic
(AG)

different concentrations of anthocyanin (0.025%,
0.05%, and 0.075%); the concentration of SPI or AG
was 5%, w/v, while for a combination of SPI + AG,

2.5% w/v for each was used

ranged from
93.05% to

98.87%
freeze drying [81]
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Table 3. Cont.

Source Wall Materials Proportion Encapsulation
Efficiency Encapsulation References

red cabbage

maltodextrin
dextrose equivalent
20 and Arabic gum

(AG)

MD20:AG 20:80
ranged from

93.65 ± 1.80 to
98.85 ± 0.32%

drum drying [84]

Cornelian
cherry

whey protein isolates,
inulin, and chitosan WPI, chitosan, and inulin in a ratio of 2:1:1 (w:w:w) 89.16 ± 1.23% freeze drying [88]

grape skins

soy
phosphatidylcholine

vesicles with the
addition of pectin,
acacia gum, and

whey protein isolates

soy lecithin (100 mg mL−1), pectin (1 mg mL−1),
acacia gum (1 mg mL−1), and whey protein

isolates (1 mg mL−1)

ranged from 81
to 96% freeze drying [89]

mulberry alginate/chitosan
beads

freeze-dried beads (100 mg) loaded with
mulberry-extracted

solution containing anthocyanin (40 mL)
/ freeze drying [90]

red cabbage maltodextrin and
Arabic gum

maltodextrin (25, 35, and 50 g), Arabic gum (25, 15,
and 0 g), and critic acid (1 g) were dispersed in 100

mL solution
67% spray drying [91]

saffron
ß-glucan and

ß-cyclodextrin
ß-glucan 45% spray drying [92]ß-cyclodextrin 63.25%

grape skin sodium alginate sodium alginate: anthocyanin extract of grape skin
1:15 75% spray drying [93]

blueberry
chitosan and

cellulose nanocrystal
(CNC)

chitosan (0.1% w/v) pH 2.6 and 20 mL of
0.025–2.5% (w/v) CNC 94% ionic gelation [94]

3.2. Pickering Emulsion

In recent years, pickering emulsions and their applications have attracted much
attention due to their ease of preparation and enhanced stability [95]. Emulsions are
conventionally stabilized by a combination of electrostatic stabilization, reduced interfacial
tension, and steric stabilization by means of surfactants or soluble macromolecules [95].
The particles adsorbed at the oil–water interface form a physical barrier, which can block
the interface interaction and droplet contact through volume exclusion [96].

Pickering emulsion is primarily used as a delivery system for nutraceuticals such
as curcumin and resveratrol [97–101]. In the field of food science, the application of
food-grade particles endows the pickering emulsions with a broader prospect [96]. Food-
grade particles for pickering emulsion applications are mainly divided into six categories:
polysaccharide particles, protein-based particles, complex particles, flavonoid particles,
food-grade wax, and fat crystals [99,102]. Pickering emulsion can avoid the damage of
anthocyanins by external environmental factors and is also an effective carrier for protecting
and transporting anthocyanins. Different food-grade particles loaded with anthocyanins
and the characteristics of pickering emulsion stabilized by composite nanoparticles are
summarized in Table 4.

The formation of anthocyanin nanoparticles is based on the interaction between
anthocyanins and the encapsulating material, which helps to prepare a stable pickering
emulsion. Electrostatic interactions, covalent interactions, hydrogen bonding, and van der
Waals interactions are all common interactions between anthocyanins and wall materials.
Anthocyanins loaded by polysaccharide-based nanoparticles doped anthocyanins within
the complex nanocarriers, and the encapsulation rate of anthocyanins reached 66.68% [103].
The covalent interaction between anthocyanins and protein, which allows protein peptide
chains to be unfolded, could significantly promote the formation of emulsion network
structures [104–106]. The particle size of anthocyanin microcapsules is smaller than that
of unloaded nanoliposomes, which might be due to the interaction of anthocyanin with
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lipid acyl chains and alteration of acyl chain order [20]. Furthermore, the self-assembly
method is also used to prepare stable nanoparticles. Stable vesicles that encapsulated
anthocyanins were formulated based on the self-assembling of L-α-phosphatidylcholine
(PC) and mannosylerythritol lipid-A (MEL-A) in a manner of weak or non-cooperative
interactions [22]. Pectin with net negative charge and lysozyme with net positive charge
were also used to prepare composite nanoparticles through the self-assembly method [107].

Double-layer pickering emulsion, which is used to load and transport anthocyanins,
showed a high encapsulation rate and a slow-release effect of anthocyanin [108–110].
Double emulsion usually has either water-in-oil-in-water (W/O/W) or oil-in-water-in-oil
(O/W/O) form, whereby the dispersed droplets contain smaller droplets of a different
phase, essentially an emulsion in an emulsion. The presence of two interfaces means that
two emulsifiers are required to stabilize the inner primary and outer secondary emul-
sions [92]. Double emulsions could retain the structural integrity and high encapsulation
stability of anthocyanins (95%), which provides a potential route for anthocyanin deliv-
ery [111].

Pickering emulsion can overcome damage of anthocyanins during processing, storage,
and human digestion, and it can be performed on an industrial scale. With the continuous
development of pickering emulsion technology, we can soon expect more common use of
this technology for anthocyanin applications, even in the industry.

Table 4. Different food-grade particles loaded with anthocyanins and the characteristics of pickering
emulsion stabilized by composite nanoparticles.

Particle Type Material Source Particle Size Encapsulation
Efficiency

In Vitro Digestion Experiment Results and
Other Functional Characteristics Reference

Liposome
particles

mainly composed
of lecithin,

cholesterol, and
Tween 80

cranberry
Average particle size

of nanoparticles
(53.8 ± 1.8 nm)

91.1% ± 1.7%

Retention rate from the anthocyanin-loaded
nanoliposomes and unencapsulated

anthocyanins were 88.19% and 73.20%,
respectively.

[20]

the
self-assembling of

L-α-
phosphatidylcholine
(PC) and manno-

sylerythritol
lipid-A (MEL-A)

cyanidin
3-O-

glucoside

Anthocyanins are
encapsulated in
vesicles with an

average diameter
between 200 and

700 nm, and the core
size is less than

500 nm

54.9% ± 1.6%

During the gastric digestion, the release rate of
anthocyanins was kept below 20%; in the

intestinal tract, the release contents of
anthocyanins were increased to 53.3 ± 3.3%

within 30 min.

[22]

Composite
particles

gelatin(GEL)and
chitosan (CS)

red
raspberry
pomace

When the ratio of GEL
to CS is 6:4, the

smallest nanoparticles
are formed

83.81%
Anthocyanins have suitable long-term storage
capacity at room temperature, with a retention

rate of ~50% after 15 d.
[36]

chitosan and
pectin bilberry

When the mass ratio
of chi-

tosan/pectin/anthocyanin
is 1:1:3, the

nanocarrier is a
well-dispersed sphere

with a diameter of
about 150 nm

66.68%

After 12 h digestion, the release rate of
anthocyanins from complex nanocarriers in

gastric juice was 26%, and that the release rate
in intestine juice was 56%.

[103]

chitosan
hydrochloride

(CHC),
carboxymethyl
chitosan (CMC)

cyanidin-3-
O-

glucoside

Under the best
conditions, the
nanocomposite

particles have a better
particle size
(178.1 nm)

44.0%

These ACN-loaded CHC/CMC nanocomplexes
protected the anthocyanins from degradation by

storage at different conventional temperature,
various ascorbic acid (AA) concentrations,
varying pH, and white fluorescent light.

[102]

chitosan
hydrochloride

(CHC),
carboxymethyl
chitosan (CMC)

and whey protein
isolate (WPI)

Lycium
ruthenicum

murray

The nanocomposite
loaded with

anthocyanin has a
good particle size

(332.20 nm)

60.70%

The ACN-CHC/CMC-WPI nanocomplexes
showed a slow-release of anthocyanins,
releasing only 53.5% of the ACNs. The

cumulative ACN release from
ACN-CHC/CMC-WPI nanocomplexes (9.4%)

was significantly lower than from the
unencapsulated form (20.8%).

[14]
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Table 4. Cont.

Particle Type Material Source Particle Size Encapsulation
Efficiency

In Vitro Digestion Experiment Results and
Other Functional Characteristics Reference

pectin and
lysozyme blackberry

The particle size of the
nanocomposite is

198.5 nm
73%

The particles were stable in different pH ranges
according to the size and zeta potential

measurements. In the simulated gastrointestinal
fluid, the ACN in ACN-CHC/CMC-WPI is

more stable over time, and the release rate is
slower.

[107]

Protein
particles

isolated soy
protein (SPI) black rice

With the increase of
anthocyanins
concentration

(0–0.2%), the particle
size gradually

decreased
(186–675 nm)

94.1%

The pickering emulsion exhibited significantly
lowered LH and MDA contents by up to 85.9%
and 81.1%, respectively, indicating its superior

oxidative stability.

[104]

Polysaccharides
particles

octenylsuccinate
quinoa starch

(OSQS)
bilberry 130 µm to 25 µm, 95%

The encapsulation stability of anthocyanins in
double emulsions decreased from 92.9% to

86.2% and 93.4% to 86.6% for the volume ratio
of (W1/O): W2 = 6:4 and 5:5 during gastric

digestion, respectively. The anthocyanin
retention in the double emulsions decreased

significantly to 42.1% and 37.6% during small
intestine digestion for the volume ratio of

(W1/O): W2 = 6:4 and 5:5, respectively.

[109]

amylopectin commercial
products About 100 nm 84% After 2 h simulated intestinal digestion, 29.21%

of the anthocyanins were retained. [112]

4. Small Molecule Co-Pigmentation Agent

In food science, the interaction of co-pigmentation is very important to improve
product color and acceptance [113]. Sari et al. (2012) described co-pigmentation as a
phenomenon in which anthocyanins and other colorless organic compounds, or metallic
ions, form molecular or complex associations, generating a change or an increment in the
color intensity [114]. Molecular co-color is a unique property of anthocyanins that does not
exist in other polyphenols.

The interaction with the co-pigment constructs a tangible mask for the anthocyanin,
which not only shades the functional moieties of anthocyanin molecules and reduces their
accessibility and activity to adverse reactions but also constitutes a great steric hindrance to
the attack of destroyers of anthocyanins [115]. Polyphenols, flavonoids, peptides, amino
acids, and organic acids are often applied to co-pigments, which interact with antho-
cyanin molecules by van der Waals forces, hydrogen bonds, hydrophobic forces, and ionic
interactions [116].

4.1. Co-Pigmentation Effect of Polyphenols and Flavonoids on Anthocyanins

Polyphenolics show a good co-pigmentation effect due to their extended π-π con-
jugated system [117]. Organic acids, aromatic acyl groups, or flavonoids (or some com-
bination thereof) and the chromophore of anthocyanins are covalently linked to achieve
co-color through loose intermolecular interactions. Colorless flavonoids or other pheno-
lic compounds interact with anthocyanins through weak hydrophobic forces [118]. The
co-pigments with more methoxyl groups or hydroxyl groups interact with anthocyanins
to form more stable complexes [117]. Hydroxycinnamic acids generally had better co-
pigmentation performances than hydroxybenzoic acids [119]. Since phenolic acids are
weaker cofactors than flavonoids with an extensive—conjugated system, flavanols such as
quercetin-3-rutinoside (ruin) are the most efficient co-pigments [117,120].

Different phenolic substances have different co-pigmentation effects on anthocyanins.
The studies of co-pigmentation of black chokeberry anthocyanins with 10 kinds of phenolic
co-pigments showed different co-pigmentation effects, which manifested as high color and
color shifts. Compared with vanillin, epigallocatechin gallate, and protocatechualdehyde,
the half-life for anthocyanin color fading in the model beverage increased from 2.9 to 6.7
days with green tea extract [121].
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4.2. Co-Pigmentation Effect of Peptides and Amino Acids on Anthocyanins

Amino acids and peptides also have co-pigmenting effects with anthocyanins through
hydrogen bonds, hydrophobic interactions, and van der Waals forces. Chung et al. [122]
found that the hydrogen bonding interaction between L-tryptophan and anthocyanin
increased the average half-life of anthocyanin from two days to six days. Li et al. [123] found
that the physicochemical stabilities of cyanidin-3-O-glucoside (C3G) in alkali conditions,
Cu2+ ions, and at a high temperature were significantly enhanced after combination with
silk fibroin peptide (SFP). Van der Waals and hydrogen bonding were found between
anthocyanins and lactoferrin (LF) and LF-derived peptides, which enhanced the color
stability of anthocyanins [124]. Based on the hydrophobic force and hydrogen bonding
interactions between anthocyanins and whey protein (WP), adding natural WP (10 mg/mL)
can prolong anthocyanin half-life by about 1–2 times [125].

4.3. Co-Pigmentation Effect of Organic Acids on Anthocyanins

Organic acid is a small molecule substance that can also show co-pigmentation effects
with anthocyanins through covalent connection or loose intermolecular interactions. Co-
pigmentation leads to the hyperchromic effect arising from the absorbance enhancement in
the visible range and a positive shift in maximum absorbance wavelength (bathochromic
shift), which indicates an increase in color intensity [114,126]. The reactions of anthocyanins
and cofactors are spontaneously exothermic. Compared with gallic acid, ellagic acid
has a higher negative Gibbs free energy, which leads to a greater co-pigmentation effect
on anthocyanins.

4.4. Co-Pigmentation Effect of Metal Ions on Anthocyanins

Color and stability of anthocyanins were enhanced by the addition of multivalent ions,
such as Mg2+, Fe2+, Fe3+, and Al3+. Hydroxyl groups on the B-ring of anthocyanins bind
with metal cations to form a stable metal–anthocyanin complex [127]. The complexation
process transforms red flavylium cations into purple–blue quinoidal base anions. This
transformed group can then stack with other flavylium cation molecules to form stable
metal-coordinated complexes [128]. This phenomenon can improve the stability of the an-
thocyanin while intensifying its color. Anthocyanins, flavones, and metal cations can form
complicated supermolecules. Shiono et al. found that blue colors of corn flower pigments
are complicated supermolecules composed of anthocyanins, flavones, and metal cations.

Co-pigmentation is easy to perform to protect anthocyanin during the practical pro-
cessing of food. The addition of co-pigments increases the stability and can even change
the bioactivity of anthocyanins. Co-pigmentation techniques are commonly practiced in
the food industry to adjust food color to retain or reconstitute natural color intensity or to
create new hues.

5. Improved Performances of Modified Anthocyanins

Instability of anthocyanins leads to their easy degradation, reduced bioactivity, and
color fading in food processing, which limits their application and causes economic losses.
Therefore, it is urgent and necessary to investigate suitable methods to maintain and
improve anthocyanin stability for development, production, and storage anthocyanin-
rich products [64]. According to the different principles of the method and technology
used to modify anthocyanins, they can be roughly divided into two categories: chemical
modification and physical modification. The approach of chemical modification focuses
on the improvement of anthocyanin structure [129,130], while the physical modification is
to encapsulate the anthocyanin molecules to better resist degradation caused by external
environmental factors [131,132]. In addition, the co-pigmentation reaction of anthocyanins
with small molecules can enhance and stabilize the color of anthocyanins [118,133]. No
matter which modification method is selected, the purpose is to improve the stability
(storage stability and gastrointestinal digestion stability), lipophilicity, and antioxidant
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effects of anthocyanins to thereby improve their bioavailability and promote their further
application in the food industry.

5.1. Stability Performances of Modified Anthocyanins
5.1.1. Storage Stability Performances

Storage stability is a crucial standard for using anthocyanins as food colorants [63].
However, anthocyanins are very unstable during processing and storage. In particular, the
degradation caused by high temperature, light, and ascorbic acid limits their potential ap-
plications in the food industry [134,135]. Thus, preventive measures must be implemented
for anthocyanins to increase their stability during storage.

First, anthocyanins are extremely susceptible to environmental temperature during
the storage process [136]. In particular, an increase in temperature conferred an active
equilibrium shift of anthocyanins tending to colorless chalcone and pseudo base forma-
tion [64]. Acylation plays a significant role in improvement of anthocyanin thermostability
through “π-π” interactions between the acyl residues and the anthocyanin nucleus. Acy-
lation protects the anthocyanin molecules from nucleophilic attack [13,53]. Anthocyanin
complexation with co-pigments via stacking, dipole–dipole interactions, and hydrogen-
bonding intermolecular interactions protects anthocyanins from thermal degradation
(Table 5) [118,120,134]. The nanocomplex formation through interactions between the
encapsulation material and the anthocyanin molecules would maintain the more sta-
ble flavylium cation or quinoidal base structures instead of allowing them to hydrate
into carbinol or chalcone structures, which also play a role in improving thermal stabil-
ity [79,137]. For instance, nanocomplex formation through ionic interactions between
chitosan derivatives and anthocyanin flavylium cations could prevent the hydration of
anthocyanins [102]. Another report also indicated that water-soluble carbohydrates signifi-
cantly improved the thermal stability of anthocyanins by the reduction of water activity
around anthocyanins [138].

On the other hand, anthocyanins are inevitably degraded by light during the process
of transportation and storage [103]. The light degradation mechanism of anthocyanin is
derived largely from the excitation of the flavylium cation [139]. Therefore, a prominent
method of protecting anthocyanins against photodegradation is that they are acylated,
which, through intramolecular stacking of the organic acid to the anthocyanidin nucleus,
protects the flavylium cation from excitation [55]. Moreover, diacylated anthocyanins
are more stable than monoarylated anthocyanins [8]. Another study suggested that due
to the conjugated systems between co-pigments and the benzene rings of anthocyanin,
new anthocyanins were formed, which increased the light-energy-absorbing and potential
electron-donating abilities of the anthocyanin. This also enhanced the photostability of
anthocyanins [44]. Additionally, different from the principle of chemical modification to
improve photostability, the physical encapsulate system, due to the protective effect of the
wall material on anthocyanins, also improves the light resistance of anthocyanins [35,61].
Sodium alginate used as a wall material in anthocyanin microcapsules can greatly improve
anthocyanin light stability [93]. Multifunctional films based on chitosan/gum Arabic have
excellent photostability and UV barrier properties [140]. For anthocyanins loaded into
chitosan hydrochloride/carboxymethyl chitosan nanocomplexes, compared with natural
anthocyanin, the color seemed unchanged after storage for six days [108].

The common addition of ascorbic acid could enhance the nutritional quality of com-
mercial beverage products. However, the heat sterilization process in the presence of
ascorbic acid would degrade anthocyanins [141]. The reduced stability of anthocyanins by
L-ascorbic acid is mainly attributed to the condensation reaction between anthocyanins and
L-ascorbic acid [142]. Previous studies reported molecular binding between anthocyanins
and co-pigments such as phenolic and water-soluble polysaccharides through hydrogen
bonding or hydrophobic interactions, which prevents the condensation reaction between
anthocyanin and ascorbic acid, thus significantly improving anthocyanin stability in the
presence of ascorbic acid [116,141,143]. For instance, since both whey protein and ascorbic
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acid compete to interact with anthocyanins, the addition of whey protein would form a
whey protein–anthocyanin interaction, thereby decreasing ascorbic-acid-mediated antho-
cyanin degradation [125]. The formation of anthocyanin–rosmarinic acid–xanthan gum
ternary complexes through shielding the highly electrophilic C2 position of the flavylium
cation, which is easily attacked by water and subsequently causes chemical degradation,
thereby enables chemical protection of anthocyanin chromophores [125].

Table 5. Stability performances of modified anthocyanins.

Anthocyanins Modified Method Improvement Effect Reference

red raspberry pomace
anthocyanin extracts microencapsulation

Anthocyanin-loaded β-Lg nanoparticles were more stable in mouth (pH
6.8), simulated gastric (simulated gastric, pH 2), and simulated intestine

(simulated intestinal, pH 6.9) by showing higher retention rate (%) than that
of unencapsulated anthocyanins.

[36]

blackcurrant (Ribes
nigrum) anthocyanins enzymatic acylation The half-life of the acylated derivatives was higher than that of the

corresponding anthocyanins at each selected temperature. [52]

cyanidin-3-O-galactoside enzymatic acylation Compared with C3G, the Ea value of the C3G lauric acid conjugate
decreased from 46.6 to 45.8 kJ mol−1. [53]

anthocyanin extracts enzymatic acylation The kinetic rate constant (k) and half-life parameter indicated that the
thermostability of acylated cyanidin glycosides was higher than C3G. [57]

blueberry anthocyanins microencapsulation The stability of anthocyanins was increased to 76.11% after 30-day storage
(37 ◦C) through carboxymethyl starch/xanthan gum [58]

raspberry anthocyanin enzymatic acylation The half-life of cyanidin-3-(6-salicyloyl) glucoside in the same environment
was two times higher than that of cyanindin-3-O-glucoside. [63]

vitisin A vitisin B pyran anthocyanins
Vitisin A (consists of malvidin 3-glucoside) was entirely protected from

bleaching by sulfur dioxide, and vitisin B (which is decarboxyvitisin A or
malvidin 3-glucoside) showed greater resistance than malvidin 3-glucoside.

[66]

anthocyanin extracts microencapsulation The anthocyanins were chiefly retained inside the microparticles in the
stomach and were released in the intestine. [79]

red raspberry
anthocyanin microencapsulation

All microcapsules enhanced the thermal stability of anthocyanins in the
temperature range 80–114 ◦C. Furthermore, anthocyanins were retained (up

to 48%) during storage at 37 ◦C for 60 days.
[81]

blueberry anthocyanins nanoparticle
encapsulation

After 70 days of storage, the preservation rate of free anthocyanins was 85%,
while the preservation rate of anthocyanins encapsulated with chitosan and

pectin under dark conditions was higher than 96%.
[103]

spinarum fruit
anthocyanins extract emulsions After thermal processing at 90 ◦C for 3 min, the retention of anthocyanins

was at a maximum (72.24%) for emulsions. [105]

anthocyanin extract co-pigmentation
The addition of whey protein (WP) decreased anthocyanin color

degradation significantly during the five day storage study at 25 ◦C in the
dark and improved anthocyanins’ half-life significantly.

[109]

anthocyanin extracts pickering emulsion
When digested in simulated gastric fluid, the starch-based double

emulsions could retain the structural integrity and high encapsulation
stability of anthocyanin.

[109]

sour cherry anthocyanins co-pigmentation Tannic acid, caffeic acid, 4-hydroxybenzoic acid, gallic acid, and malic acid
could enhance the color intensity of sour cherry anthocyanins at pH 3.5. [118]

purple carrot
anthocyanins co-pigmentation After the addition of L-tryptophan, the average half-life of anthocyanins

increased from two days to six days. [122]

cyanidin-3-O-galactoside
chloride, cyanidin-3-O-

arabinoside
co-pigmentation The hyperchromic effect of ofrosmarinus acid, syringic acid, and catechin

were 51.02%, 43.24%, and 39.73%, respectively. [133]

cyanidin-3-glucoside chemical acylation
Retention rates of acylated C3G after heating for 10 h at 80, 100, and 120 ◦C
were 83.24, 74.17, and 62.17%, respectively, which is obviously than higher

than unacylated C3G.
[141]

cyanidin-3-O-glucoside
(C3G) co-pigmentation

∆E in anthocyanins was reduced by 35.8% and 79.0%, total anthocyanin
degradation dropped by 11.1% and 48.2%, and the average t1/2 increased

0.15 and 2.25 times, respectively.
[144]
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5.1.2. Gastrointestinal Digestion Stability Performances

Considering that dietary anthocyanins positively contribute to human health, it is
particularly necessary to promote the digestion and absorption of dietary anthocyanins
in the human body [40]. However, the instability of anthocyanins in gastrointestinal
digestion, such as the loss of anthocyanins during gastrointestinal digestion, is not con-
ducive to their physiological functions [145,146]. Additionally, the beneficial properties
of anthocyanins are mainly dependent on their intestinal absorption and colonic mi-
crobial fermentation [145,147,148]. Therefore, not only is there a need to reduce the re-
lease ratio, thus minimizing the loss of anthocyanins during gastrointestinal digestion,
but there is also a need to promote their targeted release in the intestine and colonic
microbiota fermentation.

Physical encapsulation has been widely adopted as an effective technique to im-
prove the stability of anthocyanins in gastrointestinal digestion and colonic fermenta-
tion [94,147,149]. For instance, gum Arabic used for black rice anthocyanin encapsulation
aided in delaying the release of anthocyanins during microstimulated gastrointestinal
digestion [111]. Modified starch provides targeting properties to double emulsions, pro-
tects anthocyanins from gastric digestion, and controls release with starch hydrolysis in
intestinal digestion [109]. Anthocyanins encapsulated with cyclodextrins degraded more
slowly during intracolonic fermentation than anthocyanins without encapsulation [150].
Moreover, soy protein isolate can interact with anthocyanins, increasing colonic accessibility
and delaying anthocyanin release [94].

The stability of digestion and absorption stability in the gastrointestinal tract of antho-
cyanins are also related to their bioavailability in the human body [151]. Thus, in future
research, the molecular mechanisms of anthocyanin absorption need to be fully clarified
to improve in vivo digestion, absorption, bioavailability, and bioactivities of anthocyanins
through suitable modification methods.

5.2. Antioxidant Activity of Modified Anthocyanins
5.2.1. Chemical Oxidation Resistance

The antioxidant properties of anthocyanins are significant for potential new food and
nutraceutical applications [61]. The antioxidant capacity of anthocyanins depends on its
structure [152]. Previous studies have found that the antioxidant activity of ACNs is mainly
determined by the number of phenolic hydroxyl groups in the B-ring of the parent nucleus,
C6-C3-C6 framework [153]. Therefore, the structural modification of anthocyanins helps to
improve its chemical-based antioxidant capacity, thereby providing ideas for its antioxidant
application in functional foods.

According to the literature, the strong antioxidant capacity of anthocyanins is due to
the fact that they contain multiple phenolic hydroxyl groups, which can react with free
radicals to generate stable semiquinone radicals, which interrupts the oxidation chain
reaction [60,154]. The acylation of anthocyanins with organic acids adds additional phenol-
type hydroxyl functions to the overall structure, which enhances the antioxidant activity of
the product [155]. However, the antioxidant activity of acylated anthocyanins was affected
by the characteristics of intramolecular acyl units (Table 6) [55,57]. Due to increased
volume and structural complexity of the acylation product molecule, steric hindrance
caused by acylation, the twisted acyl moiety, and the reduction of electron inductive
effects, the derivative is prevented from reaching the active site of DPPH, which reduces
DPPH free radical scavenging activity [53,60,155]. Therefore, the influence of acyl donors
on oxidation resistance of acylation products should be fully considered, particularly in
applications. Various methods should be used to study the chemical antioxidant potential
of the sample, such as DPPH free radical scavenging ability [51,57], ABTS free radical
scavenging method [2], ferric reducing antioxidant power (FRAP) [60], and oxygen free
radical absorption capacity (ORAC) assays [61,63].

A correlation of antioxidant activity and anthocyanin content has been reported [156].
Therefore, reducing the degradation of anthocyanins in application will also indirectly
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improve their antioxidant properties. The combination of anthocyanin and maltodex-
trin/modified maize starch protects anthocyanin from the damage of oxygen and tempera-
ture [79]. The antioxidant activity of sour cherry pomace extract encapsulated in whey and
soy proteins improved during the storage period of 4 months [157].

5.2.2. Cellular Antioxidant

In vivo antioxidant assays (cellular antioxidant activity) are a superior approach to
investigate the medicinal potential of modified anthocyanins [61]. Cellular antioxidant
activity includes cellular adsorption, metabolism, and intracellular distribution of antiox-
idants [158]. The research by Zhang et al. [61] suggested that acylation with fatty acids
improved the cellular uptake of anthocyanins, and the highest intracellular antioxidant
activity was achieved with medium-chain C3G-laurate. Moreover, another study found that
acylation of cyanindin-3-O-glucoside could effectively prevent the release of reactive oxy-
gen species (ROS) caused by oxidative damage and alleviate oxidative stress damage [63].
However, in numerous studies, antioxidant properties of anthocyanins and modified an-
thocyanins have only been analyzed by simple experimental systems in vitro. Meanwhile,
cellular antioxidant activity needs to be paid more attention to improve the application
value of anthocyanins in functional foods and medicines.

Table 6. Antioxidant properties of anthocyanins and modified anthocyanins.

Anthocyanins Modified Method Improvement Effect Reference

cyanidin-3-O-glucoside co-pigmentation The DPPH clearance ratio of C3G itself was 83.25 ± 16.50%, and the ratio of
C3G in nanocomposites was 87.47 ± 6.69%. [19]

black rice anthocyanin
extracts double emulsion

The scavenging activities of ABTS radical cation and DPPH radical of all
microcapsules ranged from 0.7 to 5.8 µg Trolox/100 g dw and 0.6–3.5 µg

Trolox/100 g dw, respectively. The co-pigment addition increased
scavenging activities of ABTS radical cation and DPPH radical.

[21]

cyanidin-3-O-glucoside microencapsulation After intestinal digestion, the ORAC value of anthocyanins in the vesicles
was 2.8 times higher than that of free anthocyanins. [22]

blueberry anthocyanins
extracts enzymatic acylation

The DPPH radical scavenge rate of anthocyanins extracts was 64.75% and
increased by 6.56% and 15.21% after grafting with p-coumaric acid and

caffeic acid, respectively. Additionally, the inhibition ratio in the β-carotene
bleaching assay of the anthocyanins of anthocyanins extracts was 77.11%

and increased by 7.93% and 16.86% respectively.

[43]

blackcurrant
anthocyanins extracts enzymatic acylation

The inhibition capacities of acylated products of delphinidin-3-O-rutinoside,
cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside reached 67%, 88%,

and 72% of the ability of BHT, respectively, which was significantly higher
than unacylated products.

[52]

anthocyanin extracts
(cyanidin-3-glucoside enzymatic acylation

Cyanidin-3-(6”-dihydroferuloyl) glucoside and
cyanidin-3-(6”-dihydrosinapoyl) glucoside exhibited better antioxidant

activity than cyanidin-3-glucoside.
[57]

raspberry anthocyanin enzymatic acylation The acylated anthocyanins effectively prevented the release of ROS caused
by oxidative damage and alleviated oxidative stress damage. [63]

Iranian borage
anthocyanins extracts microencapsulation

In comparison with crude Iranian borage extract, the IC50 of microcapsules
had a significant decrease at 40 ◦C during 60 days of storage, and the

antioxidant property increased 7.54 times for microcapsules.
[79]

anthocyanin extracts emulsion
The DPPH radical scavenging potential of anthocyanins encapsulation by

the emulsion method (EC50 7.43 mg mL−1) was comparatively higher than
that of unencapsulation anthocyanins.

[105]

anthocyanin extracts nanoliposomes as
delivery system

Compared with unencapsulated anthocyanins, the anthocyanins in
nanoliposomes were more stable and exhibited higher antioxidant activity

within 28 days.
[112]

concentrated anthocyanin
extract co-pigmentation The co-pigmentation of anthocyanin and rutin showed a beneficial effect on

antioxidant capacity from the 5 weeks of storage. [120]

elderberry anthocyanin
extracts microencapsulation

The combination of polysaccharide encapsulation and EGCG
copolymerization improved the stability of anthocyanins against high

temperature and the presence of ascorbic acid.
[159]
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5.3. Lipophilicity of Modified Anthocyanins

Since anthocyanins are widely distributed water-soluble pigments in nature, their in-
corporation into lipid-rich matrices (such as many foods and formulas) is limited. Improve-
ment in the lipophilicity of anthocyanins is mainly accomplished by chemical modification.
Essentially, lipophilicity consists of the esterification of a lipophilic moiety (fatty acid or
fatty alcohol) on different substrates (phenolic acid, sugar, protein, etc.), which results in
new anthocyanin molecules with modified hydrophilic and lipophilic balance [160]. The
enhanced lipophilic properties of an acylated derivative will contribute to penetrate into
lipid matrices or lipophilic media and expand the scope of application of anthocyanins as
colorants from aqueous to fat-rich food matrices [53].

Grajeda-Iglesias et al. [161] used octanoyl chloride as an acyl donor to successfully
lipophilize anthocyanins at room temperature, significantly improving the lipophilicity
of anthocyanins [52]. The octanol/water partition coefficient (log P) was usually used to
measure the lipophilicity of acylated derivatives. After acylation with lauric acid, the log P
values of acylated anthocyanin derivatives significantly increased from negative to positive,
indicating the characteristic transformation from hydrophilicity to lipophilicity [52,162].
Cruz et al. [51] also found that the lipophilicity of anthocyanins is related to the length of
the fatty acid chain.

5.4. Bioavailability of Modified Anthocyanins

The bioavailability of anthocyanins is closely related to human health [163]. However,
the bioavailability of anthocyanins is typically less than 0.1%, requiring a large amount
of administration [7,37,164]. The modification method to improve the bioavailability of
anthocyanins can be summarized as: (1) the structure of chemically modified anthocyanins
enhances its lipophilicity, improves its ability to freely pass through the gastrointestinal
membranes, and increases metabolic efficiency [45,165]; and (2) physical embedding of
anthocyanins prevents contact with the protein in the stomach environment and prevents
degradation caused by pH changes, thereby allowing smooth release in the intestine and
participation in microbial metabolism and blood circulation [35,166].

The enhanced lipophilicity of anthocyanins may lead to their improved incorporation
into the lipid bilayer of the cell membrane, resulting in better bioavailability in the body
as well as greater potential in drug delivery based on liposomes [165]. However, in the
stomach environment of pH 1–2, anthocyanins exist as polar flavylium cations, which
impedes their passive diffusion through the gastric mucosa [37]. Acylation of anthocyanins
could significantly enhance their lipophilicity [53,165], the affinity of the cell membrane,
and its ability to freely pass through the gastric mucosa [167]. Additionally, encapsulating
anthocyanins through the interaction between wall materials (protein and polysaccharide)
and anthocyanins could provide resistance to the effects of digestive enzymes and pH
changes in the gastrointestinal tract, which could degrade anthocyanins [94,168]. The low
pH of the stomach can easily cause denaturation of protein. Compared with the protein-
based wall material, polysaccharide-based wall material has a more significant protective
effect on anthocyanins in the stomach [109].

6. Physiological Functions of Modified Anthocyanins

Anthocyanins play a significant role in the treatment of cancer [169], inflamma-
tion [170,171], neurological diseases, cardiovascular diseases [17,19], etc. and offer multiple
benefits for human health. Low absorption stability in the human body and low solubility
are significant obstacles in drug delivery of anthocyanins [164]. Most importantly, low
permeability of anthocyanins in epithelial cells as well as untargeted release of cancer and
inflammatory factors reduce their physiological functions [172]. Therefore, novel and suit-
able delivery systems are needed to enhance the absorption of anthocyanins in epithelial
cells and provide a targeted release to the tumor cells of the anthocyanins [173].

Recently, incorporation of anthocyanin molecules into various carriers was shown to
enhance the absorption of anthocyanins in epithelial cells and provide a targeted release to
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cancer cells, which inevitably increases their anti-cancer activity [174]. On the one hand,
no specific receptors on the surface of small intestinal epithelial cells have been found to
carry anthocyanins into cells [172]. The mechanism for anthocyanin transport across the
epithelium was primarily based on passive diffusion. Nanoparticles enhance absorption
of anthocyanins in epithelial cells via endocytosis, enhancing absorption of anthocyanins
encapsulated in the gastrointestinal tract [103]. Anthocyanin–fucoidan nanocomplexes
are absorbed through endocytosis in the small intestine and have higher cell permeabil-
ity, absorption, and plasma chemical stability than free anthocyanins [164]. On the other
hand, nanocarriers are capable of improving targeting and delivery of polyphenols to
cancer cells due to their ability to overcome environmental barriers. Anthocyanin/chitosan
(CH)/chondroitin sulfate (CS) nanoparticles induced higher cancer cell apoptosis due to
their protective effect of biopolymer particles, which avoided the degradation of antho-
cyanin and increased the biological activities at the same concentration [175]. Because
tumor regions have unique environmental characteristics such as low pH, pH-sensitive
polymeric anthocyanin carriers have been designated as promising candidates for efficient
tumor therapy [176–178]. The pH-responsive drug-delivery system of black carrot antho-
cyanins loaded in halloysite nanotubes achieves targeted release of cancer cells [38]. As
compared to anthocyanins, the viability of both breast cancer and colon cancer cell lines
was reduced by two-fold against anthocyanin-loaded HNT.

7. Application Challenges of Anthocyanins

While considerable research has been carried out regarding the modification of antho-
cyanins, there are still a series of problems in practical applications, especially the safety
of modified products. For instance, the safety of the product is difficult to predict due to
the introduction of hazardous residuals in the chemical modification. The organic solvents
that are dedicated to acylation are harmful to human health, such as tert-butanol, acetone,
acetonitrile, etc. [46,179]. The crash of encapsulation particles into the shell seems to be a
potential hazard. The high temperature during processing leads to the denaturation of wall
materials such as proteins or reacts with carbonyl compounds, which may form harmful
products, such as Maillard reaction/caramelization products, acrylamide, and so on [81,86].
Therefore, not only do harmful residues introduced by modification need more attention,
but the stabilization processing of anthocyanins also needs more studies.

On the other hand, the high cost and low yield limit the large-scale production of
modified anthocyanins. Although the properties of anthocyanin were improved by acyla-
tion, many factors caused the acylation of anthocyanin to stagnate in the laboratory stage,
such as unidentified structures and low conversion rate. The conversion rates of blueberry
anthocyanin enzymatic acylation with coumaric acid and caffeic acid are less than 10% [43].
The structures of a considerable number of acylated products have not been analyzed in
detail [55,180]. The drying technology used in microencapsulation increases the cost; this
is true for both freeze-drying technology that uses vacuum technology or spray-drying
technology that is prone to waste materials and loss of fine particles in the exhaust gas [181].
The stability and solubility of modified anthocyanins only were studied in the model
solution, and their properties in complex food systems are still unclear [64,182].

Additionally, the classical microencapsulation methods can significantly improve the
stability of anthocyanins but, in general, can deliver the bio-accessible and/or bioavailable
anthocyanins to their absorption sites [7]. It is unknown whether acylated anthocyanin
affects the production and efficiency of its metabolites [144]. Therefore, there is also a
concern about the bioavailability of modified anthocyanins. Increased in vitro stability and
bioavailability of modified anthocyanins, such as stabilized anthocyanins, require more
attention to target absorption and metabolism pathways [64].

Overall, it is necessary to conduct further scientific and systemic research on the stabil-
ity, bioavailability, toxicity, and metabolism of modified anthocyanin. Strict assessments
can accelerate the application of anthocyanins in the food industry. Furthermore, the
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combination of the best performance of the product with environmental protection, high
yield, and low cost should also be considered.

8. Conclusions

The modification of anthocyanins has gradually become an effective measure to over-
come the instability of anthocyanins, which leads to low bioavailability and physiological
function obstacles. This review not only focused on the advanced modification strategies
but also summarized the effects of modification technologies on the antioxidant capacity,
lipophilicity, and bioavailability of anthocyanins. Modification (e.g., co-pigmentation, acy-
lation, microencapsulation, and pickering emulsion) has been reported to be an effective
method for maintaining and/or improving the shelf-life and stability of anthocyanins due to
controlling the degradation of anthocyanins during storage and gastrointestinal digestion.

The improved stability of modified anthocyanins significantly improves their bioavail-
ability and further promotes their physiological functions. In addition, the current chal-
lenges and technical limitations in stabilizing anthocyanins were also identified by us.
This includes how the introduction of organic reagents in the acylation process threatens
product safety and how overcoming the high cost of microencapsulation requires techno-
logical innovation. The strategies of high yield and low cost and improving the stability of
anthocyanin deserve more attention in the field of food additives, food colorants, and smart
packaging indicator materials. In the fields of dietary supplement and disease prevention,
we should fully understand and clarify the mechanisms of absorption and metabolism of
anthocyanins in the human body.
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