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Abstract: Tartary buckwheat is a common functional food. Its grains are rich in flavonoids and phe-
nols. The rapid measurement of flavonoids and phenols in buckwheat grains is of great significance
in promoting the development of the buckwheat industry. This study, based on multiple scattering
correction (MSC), standardized normal variate (SNV), reciprocal logarithm (Lg), first-order derivative
(FD), second-order derivative (SD), and fractional-order derivative (FOD) preprocessing spectra,
constructed hyperspectral monitoring models of total flavonoids content and total phenols content in
tartary buckwheat grains. The results showed that SNV, Lg, FD, SD, and FOD preprocessing had
different effects on the original spectral reflectance and that FOD can also reflect the change process
from the original spectrum to the integer-order derivative spectrum. Compared with the original
spectrum, MSC, SNV, Lg, FD, and SD transformation spectra can improve the correlation between
spectral data and total flavonoids and total phenols in varying degrees, while the correlation between
FOD spectra of different orders and total flavonoids and total phenols in grains was different. The
monitoring models of total flavonoids and total phenols in grains based on MSC, SNV, Lg, FD, and
SD transformation spectra achieved the best accuracy under SD and FD transformation, respectively.
Therefore, this study further constructed monitoring models of total flavonoids and total phenols
content in grains based on the FOD spectrum and achieved the best accuracy under 1.6 and 0.6 order
derivative preprocessing, respectively. The R2

c, RMSEc, R2
v, RMSEv, and RPD were 0.8731, 0.1332,

0.8384, 0.1448, and 2.4475 for the total flavonoids model, and 0.8296, 0.2025, 0.6535, 0.1740, and 1.6713
for the total phenols model. The model can realize the rapid measurement of total flavonoids content
and total phenols content in tartary buckwheat grains, respectively.

Keywords: tartary buckwheat; hyperspectral; total flavonoids; total phenols; preprocessing

1. Introduction

Buckwheat is a common food crop. As a functional food rich in flavonoids, phenols,
and other functional components, buckwheat has attracted more and more attention [1–4].
At present, studies have shown that flavonoids and phenols play an important role in the
treatment of diabetes, hypertension, and other diseases, and in improving the antioxidant
effect of the body [5–7]. Accurately measuring the content of flavonoids and phenols is the
premise of using them. At present, the common methods for the measurement of flavonoids
mainly include liquid chromatography [8] and spectrophotometry [9]. The methods for
the measurement of phenols mainly include chromatography [10], mass spectrometry [11],
and spectrophotometry [12]. Although these methods have the advantages of strong
repeatability and high accuracy to varying degrees, they also have the disadvantages of
complex operation steps and of being time-consuming and laborious. Therefore, finding a
method that can quickly measure these substances is of great significance to improving the
utilization efficiency of flavonoids and phenols in buckwheat.

Hyperspectral remote sensing technology has become an important technical means
for many researchers to analyze the target quantitatively and qualitatively because it can
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obtain the characteristics of the target quickly and losslessly [13–15]. Agriculture is one
of the important application directions of remote sensing technology. Predecessors have
used hyperspectral remote sensing technology to conduct a lot of research on soil organic
carbon [16], nitrogen [17], and water content [18], crop biomass [19], chlorophyll [20,21],
and leaf area index [22], as well as crop grain quality [23]. Some researchers also used
spectral technology to study the flavonoids content in buckwheat grains. For example,
Wang et al. [24] used near-infrared spectroscopy to monitor the content of total flavonoids
in buckwheat grains and obtained a model with high accuracy, whose validation R2 reached
0.967. Rutin is a kind of flavonoid. Yang et al. [25] constructed a near-infrared spectral
prediction model of rutin content in buckwheat grains by using the partial least squares
regression (PLSR) method, with a prediction R2 of 0.76, which had a good prediction effect.
Ladan et al. [26] quantitatively analyzed the rutin content of buckwheat grains of seven
different varieties, and the correlation coefficient of the validation model reached 0.98.
In general, it is feasible to use hyperspectral remote sensing technology to quantitatively
monitor the content of flavonoids in buckwheat grains. At the same time, there are few
reports on the hyperspectral monitoring of phenols in buckwheat grains.

Research showed that proper preprocessing of hyperspectral data before constructing
a hyperspectral monitoring model is an important means to reduce spectral noise and
improve the model accuracy [27]. For example, Xu et al. [28] conducted Svitzky–Golay
filter (SGF), wavelet packet transform, multiple scattering correction (MSC), and derivatives
transformation on spectral data before constructing their hyperspectral monitoring model
of soil organic matter. The results showed that the denoising effect of SGF was higher than
that of other methods and that low-order, fractional-order derivative (FOD) preprocessing can
highlight the spectral characteristics of soil. It can be seen that it is very necessary to preprocess
the hyperspectral data properly before constructing a hyperspectral monitoring model.

However, although the effect of derivative preprocessing on the model was also
considered in different degrees when constructing the hyperspectral monitoring model
of total flavonoids content, only the integer-order derivative (IOD) was considered, and
the effect of FOD preprocessing on the model was not further considered when the IOD
preprocessing had a good effect.

In this study, through selenium treatment of buckwheat, the total flavonoids, total
phenols content, and hyperspectral reflectance of buckwheat grains were obtained. The
hyperspectral reflectance data were preprocessed using MSC, standardized normal variate
(SNV), reciprocal logarithm (Lg), first-order derivative (FD), and second-order derivative
(SD). The models were constructed by PLSR. At the same time, we judged whether deriva-
tive preprocessing would be a better preprocessing algorithm. If the effect of FD or SD was
better, further FOD preprocessing was carried out. This paper aims to: (1) study the effects
of MSC, SNV, Lg, FD, and SD preprocessing on the accuracy of hyperspectral monitoring
models of total flavonoids and total phenols in tartary buckwheat grains; (2) when the
accuracy of the model based on FD or SD spectra is higher, further analyze whether the
accuracy of the model based on the FOD spectrum is higher; and (3) realize the rapid
acquisition of total flavonoids and total phenols content in tartary buckwheat grains.

2. Materials and Methods
2.1. Experimental Design

The experiment adopted an orthogonal experimental design. The experiment was
conducted in Taigu County, Jinzhong City, Shanxi Province from June to October 2018, and
Youyu County, Shuozhou City, Shanxi Province from May to September 2018. A total of
8 treatments of 0, 1.37, 2.74, 5.48, 8.22, 12.33, 18.495, and 27.7425 g·hm−2 were set, and each
treatment was repeated three times. Among them, the tested varieties in Taigu County
were “Heifeng 1 hao” and “Jinqiao 2 hao”. The branching stage and early flowering stage
were selected for treatment, and the area of each plot was 12 m2 (3 m × 4 m), a total of
48 plots. The tested varieties in Youyu County were “Heifeng 1 hao” and “Jinqiao 6 hao”.
The early flowering stage and peak flowering stage were selected for treatment, and the
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area of each plot was 10 m2 (2 m × 5 m), a total of 48 plots. Selenium was applied to soil
and leaves. The specific orthogonal design scheme is shown in Table 1.

Table 1. L16 (8 × 23) orthogonal test scheme.

Number Concentration
(g·hm−2) Varieties Selenium

Application Stage
Selenium

Application Method

1 C1 V1 S1 M1
2 C1 V2 S2 M2
3 C2 V1 S1 M1
4 C2 V2 S2 M2
5 C3 V1 S1 M2
6 C3 V2 S2 M1
7 C4 V1 S1 M2
8 C4 V2 S2 M1
9 C5 V1 S2 M1
10 C5 V2 S1 M2
11 C6 V1 S2 M1
12 C6 V2 S1 M2
13 C7 V1 S2 M2
14 C7 V2 S1 M1
15 C8 V1 S2 M2
16 C8 V2 S1 M1

Note: C1, C2, C3, C4, C5, C6, C7, and C8 represent 8 selenium application concentrations of 0, 1.37, 2.74, 5.48,
8.22, 12.33, 18.495, and 27.7425 g·hm−2, respectively. V1 means that ‘Heifeng 1 hao’ is planted in both Taigu
and Youyu, and V2 means that ‘Jinqiao 2 hao’ is planted in Taigu and ‘Jinqiao 6 hao’ is planted in Youyu. S1
means that the selenium application stages in Taigu and Youyu are the branching stage and early flowering stage,
respectively. S2 means that the selenium application stages in Taigu and Youyu are the early flowering stage and
peak flowering stage, respectively. M1 and M2 mean that the selenium application methods are soil selenium
application and foliar selenium application, respectively.

2.2. Index Measurement

After the tartary buckwheat was mature, the grains were harvested and dried indoors
for seven days, so that the water content of all samples was basically at the same level.
Then, the grains were shelled, crushed, and screened through a 0.2 mm sieve (Zhangxing
Sieve, Shaoxing, China), so that all the crushed samples remained the same thickness [24].
The sieved samples were used to measure hyperspectral reflectance, total flavonoids, and
total phenols content. We used the FieldSpec 3 portable hyperspectral radiometer (ASD
Company, Boulder, CO, USA) to measure the hyperspectral reflectance of the grain powder.
The collection band range was 350 nm–2500 nm. Before measurement, we placed the
sample into a black petri dish and flattened it. Then, a plant probe was used to measure the
spectrum; a whiteboard was used to correct before each measurement. The total flavonoids
content was measured using colorimetry [29]. The total phenols content was measured
using the Solarbio Kit [30].

2.3. Data Analysis

In this study, the effect of the preprocessing algorithm in the process of constructing
the model was analyzed, preliminarily by using correlation analysis through different
preprocessing methods of the original spectrum. Then, the PLSR method was used to
construct the model, and the final model accuracy was used to evaluate the advantages
and disadvantages of the preprocessing algorithm. The algorithm and model evaluation
indicators used are as follows.

2.3.1. Preprocessing Algorithm

MSC [31] can eliminate the scattering effect caused by uneven sample distribution.
The specific calculation steps are as follows:

(1) Calculate the average spectral reflectance of all samples and record it as x;
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(2) The spectral reflectance xi of each sample is linearly regressed with x to obtain the
baseline offset bi and baseline shift ci;

(3) Subtract ci from xi and divide by bi to obtain the corrected spectrum xmsc of each sample.
The SNV [32] can eliminate the influence of diffuse reflection on the spectrum. The

calculation equation is as follows (1):

xsnv =
x− x
xstd

(1)

where x and xstd are the average value and the standard deviation of spectral reflectance of
all samples, respectively.

Lg [33,34] transformation takes the reciprocal first and then logarithm of the original spec-
trum, which can reduce the influence of multiplicative factors caused by illumination changes.

Derivative transformation refers to the derivation of the original spectral curve, which
can be divided into IOD and FOD. Among them, IOD is more used as FD and SD [35,36],
while FOD can be used to calculate any real-order derivative [37]. The FD, SD, and FOD
can be calculated by the following equations [37]:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

(2)

f ′′ (x) = lim
h→0

f (x + 2h)− 2 f (x + h) + f (x)
h2 (3)

f α(x) ≈
t

∑
m=0

Γ(−α + 1)
m! Γ(−α + m + 1)

f (λ−m) (4)

where f (x) is the function of the original spectral curve, h is the increment of the independent
variable, f ′(x) is the FD, f ′′(x) is the SD, f α(x) is the α-order derivative, α can be any real
number, Γ() is the gamma function, and t is the number of fitting points used in calculating
the FOD, which is 40 in this paper.

It is worth noting that in this study, FD and SD were calculated by the 3-point binomial
fitting curve. The FOD was calculated by the G-L method, which is defined based on
discrete points. Therefore, the FD and SD calculated by this method may be slightly
different from the results obtained by using the 3-point binomial fitting curve [38].

2.3.2. Modeling Method and Model Evaluation

PLSR is a modeling method that integrates the advantages of principal component
analysis, canonical correlation analysis, and multiple linear regression analysis. It is suitable
for solving the modeling problem of variables with high collinearity and is considered to
be a better linear modeling method in hyperspectral data modeling [39]. In its modeling
process, it is necessary to select the number of potential variables. This study used the leave
one cross-validation method to determine the number of latent variables [40].

This study used the sample subset partition based on the joint X–Y distances (SPXY)
method to divide the 96 samples into a calibration set and a validation set according to the
ratio of 2:1, including 64 samples in the calibration set and 32 samples in the validation set.
The determination coefficient (R2), root mean square error (RMSE), and relative analysis error
(RPD) were used to evaluate the accuracy of the model. Generally speaking, the closer R2 is to
1, the smaller the RMSE and the larger the RPD, indicating the higher accuracy of the model.

2.4. Software

In this paper, View Spec Pro 6.0 (ASD Company, Boulder, CO, USA) was used to
eliminate abnormal values of the hyperspectral data; Microsoft Excel 2021 (Microsoft
Corporation, Redmond, Washington, DC, USA), Unscrambler 9.7 (CAMO Software AS.,
Trondheim, Norway), and MATLAB 2021(MathWorks. Inc., Natick, MA, USA) were used
to organize the data and construct the model, and Origin 2021(OriginLab Corporation,
Northampton, MA, USA) was used for mapping.
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3. Results
3.1. Data Characteristics of Total Flavonoids and Total Phenols in Tartary Buckwheat Grains

The maximum and minimum values of the total set of total flavonoids and total
phenols were assigned to the calibration set (Table 2). The average value, standard deviation,
and coefficient of variation in the total set, calibration set, and validation set of total
flavonoids content were close. The average value, standard deviation, and coefficient of
variation in the validation set of total phenols content were smaller than those of the total
set and the calibration set. In general, the data distribution was reasonable and can be used
for subsequent analysis.

Table 2. Data characteristics of total flavonoids and total phenols.

Data Sets Num Min (%) Max (%) Ave (%) SD CV

Total
flavonoids

Total set 96 0.4275 1.9275 0.9733 0.3653 0.3754
Calibration set 64 0.4275 1.9275 0.9985 0.3708 0.3714
Validation set 32 0.4329 1.4507 0.9227 0.3543 0.3840

Total
phenols

Total set 96 1.9115 4.0968 2.7298 0.4352 0.1594
Calibration set 64 1.9115 4.0968 2.7787 0.4865 0.1751
Validation set 32 2.0145 3.2471 2.6319 0.2909 0.1105

Notes: Num, Min, Max, Ave, SD, and CV mean the number, minimum, maximum, average, standard deviation,
and coefficient of variation.

3.2. Effect of Preprocessing Algorithm on Spectral Reflectance

In this study, two samples close to the average content of total flavonoids and total
phenols in two data sets were taken as examples to analyze the changes in the original
spectrum and its transformation spectra. It can be seen from the Figure 1 that the change
trends of the original spectral reflectance of the two samples are basically the same. Both
of them basically showed a trend of increase first and then decrease with the increase in
wavelength, and both of them formed multiple reflection peaks and absorption valleys.
Among the five transformation spectra, except MSC, the other four algorithms all had a
great change effect on the original spectrum. The SNV algorithm did not change the overall
change trend of the original spectral curve but changed the value of spectral reflectance.
The change trend of the Lg spectrum was opposite to that of the original spectral curve.
The values of the FD and SD spectra were mainly positive and negative alternately, and the
changes in the SD spectrum were more frequent. These two algorithms made the original
spectrum lose all its original spectral features. However, MSC transformation had no visible
difference from the original spectral reflectance. It can be seen that different preprocessing
algorithms had different effects on the changes in the original spectral curve.
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3.3. Correlation Analysis between Transformation Spectra and Total Flavonoids and Total Phenols
in Grains

Figure 2 shows the correlation between the original spectrum and different transforma-
tion spectra and the content of total flavonoids and total phenols in grains. The correlation
of total flavonoids content and total phenols content with the same transformation spec-
trum was basically similar, but there were also some differences. The total flavonoids
content and total phenols content were negatively correlated with the original spectrum,
but positively correlated with the Lg spectrum. The two indicators were mainly negatively
correlated with MSC and SNV spectra in the range of 401–800 nm, while they were mainly
positively correlated in the range of 800–2450 nm. The correlation between the two indi-
cators and FD and SD spectra was mainly positive and negative correlation alternating
in the continuous band range, and the alternating phenomenon of the SD spectrum was
more obvious. In addition, compared with the original spectrum, the correlation between
the total flavonoids content and total phenols content and the transformation spectra was
improved to a certain extent.Foods 2023, 12, x FOR PEER REVIEW  7  of  16 

 

 

 
Figure  2. Correlation  between  transformation  spectra  and  total flavonoids  and  total phenols  in 

grains. R, TF, and TP mean the original spectrum, total flavonoids, and total phenols; the same ap-

plies below. 

3.4. PLSR Monitoring Model of Total Flavonoids and Total Phenols in Grains 

When constructing the PLSR model, it is necessary to determine the number of the 

best latent variables. This study used the minimum RMSEcv as the standard to select the 

number of latent variables. Table 3 shows RMSEcv and the number of latent variables of 

the monitoring model of total flavonoids and total phenols in grains based on different 

transformation spectra. The optimal number of latent variables of the total flavonoids con-

tent model based on R, MSC, SNV, Lg, FD, and SD was 11, 10, 11, 11, 5, and 3, respectively. 

Moreover, the optimal number of latent variables of the total phenols content model was 

3, 1, 1, 3, 4, and 1, respectively. 

Table 3. Selection of latent variables of the model based on different transformation spectra. 

Lvs 
Total Flavonoids  Total Phenols 

R  MSC  SNV  Lg  FD  SD  R  MSC  SNV  Lg  FD  SD 

1  0.3436  0.2773  0.2771  0.3310  0.2913  0.2253  0.4534  0.3516  0.3513  0.4351  0.4204  0.4016 

2  0.2838  0.2761  0.2758  0.2825  0.2627  0.2115  0.3716  0.3561  0.3555  0.3630  0.3902  0.4116 

3  0.2763  0.2745  0.2738  0.2769  0.2457  0.2098  0.3642  0.3583  0.3572  0.3598  0.3697  0.4179 

4  0.2796  0.2502  0.2473  0.2794  0.2297  0.2101  0.3782  0.3690  0.3680  0.3707  0.3558  0.4149 

5  0.2587  0.2497  0.2490  0.2760  0.2234  0.2138  0.3779  0.3821  0.3811  0.3722  0.3595  0.4265 

6  0.2562  0.2512  0.2508  0.2708  0.2273  0.2211  0.4116  0.3958  0.3910  0.4053  0.3727  0.4185 

7  0.2705  0.2524  0.2531  0.2753  0.2484  0.2302  0.3960  0.3923  0.3895  0.4175  0.3753  0.4298 

8  0.2714  0.2345  0.2470  0.2744  0.2578  0.2397  0.4139  0.3861  0.3855  0.4124  0.3713  0.4321 

9  0.2552  0.2344  0.2355  0.2703  0.2624  0.2376  0.4032  0.3811  0.3886  0.4129  0.3738  0.4302 

10  0.2356  0.2291  0.2357  0.2530  0.2718  0.2353  0.3918  0.3775  0.3831  0.4085  0.3696  0.4316 

11  0.2225  0.2297  0.2355  0.2523  0.2748  0.2347  0.3896  0.3793  0.3825  0.4168  0.3742  0.4328 

Figure 2. Correlation between transformation spectra and total flavonoids and total phenols in grains.
R, TF, and TP mean the original spectrum, total flavonoids, and total phenols; the same applies below.

3.4. PLSR Monitoring Model of Total Flavonoids and Total Phenols in Grains

When constructing the PLSR model, it is necessary to determine the number of the
best latent variables. This study used the minimum RMSEcv as the standard to select the
number of latent variables. Table 3 shows RMSEcv and the number of latent variables of
the monitoring model of total flavonoids and total phenols in grains based on different
transformation spectra. The optimal number of latent variables of the total flavonoids con-
tent model based on R, MSC, SNV, Lg, FD, and SD was 11, 10, 11, 11, 5, and 3, respectively.
Moreover, the optimal number of latent variables of the total phenols content model was 3,
1, 1, 3, 4, and 1, respectively.

Figure 3 shows the accuracy of the model under the optimal number of latent variables.
The calibration accuracy of the total flavonoids content model constructed based on differ-
ent transformation spectra was not much different, with R2

c distributed around 0.8 and
RMSEc distributed around 0.15, and the calibration accuracy under SNV transformation
was the highest. The calibration accuracy of the total phenols content model based on differ-
ent transformation spectra was different, and the calibration accuracy reached the highest
under FD transformation. Different from the calibration accuracy, the total flavonoids
content model achieved the best validation accuracy under SD transformation, and its RPD
was 2.1462. The total phenols content model achieved the best validation accuracy under
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FD transformation, and its RPD was 1.8001. It can be seen that the total phenols content
model obtained the best model under FD transformation. The model of total flavonoids
content reached the highest validation accuracy in SD transformation, but its calibration
accuracy also had a high level at this time, so SD can be used as the best preprocessing
algorithm of total flavonoids content. It can be concluded that when the total flavonoids
content and total phenols content models reached the best accuracy, the preprocessing
algorithm used was derivative preprocessing. However, the FD and SD preprocessing
cannot reflect the process of the original spectrum changing to the IOD spectrum. Therefore,
in the following, this study will continue to study the effect of FOD preprocessing on the
accuracy of the total flavonoids content and total phenols content model.

Table 3. Selection of latent variables of the model based on different transformation spectra.

Lvs
Total Flavonoids Total Phenols

R MSC SNV Lg FD SD R MSC SNV Lg FD SD

1 0.3436 0.2773 0.2771 0.3310 0.2913 0.2253 0.4534 0.3516 0.3513 0.4351 0.4204 0.4016
2 0.2838 0.2761 0.2758 0.2825 0.2627 0.2115 0.3716 0.3561 0.3555 0.3630 0.3902 0.4116
3 0.2763 0.2745 0.2738 0.2769 0.2457 0.2098 0.3642 0.3583 0.3572 0.3598 0.3697 0.4179
4 0.2796 0.2502 0.2473 0.2794 0.2297 0.2101 0.3782 0.3690 0.3680 0.3707 0.3558 0.4149
5 0.2587 0.2497 0.2490 0.2760 0.2234 0.2138 0.3779 0.3821 0.3811 0.3722 0.3595 0.4265
6 0.2562 0.2512 0.2508 0.2708 0.2273 0.2211 0.4116 0.3958 0.3910 0.4053 0.3727 0.4185
7 0.2705 0.2524 0.2531 0.2753 0.2484 0.2302 0.3960 0.3923 0.3895 0.4175 0.3753 0.4298
8 0.2714 0.2345 0.2470 0.2744 0.2578 0.2397 0.4139 0.3861 0.3855 0.4124 0.3713 0.4321
9 0.2552 0.2344 0.2355 0.2703 0.2624 0.2376 0.4032 0.3811 0.3886 0.4129 0.3738 0.4302

10 0.2356 0.2291 0.2357 0.2530 0.2718 0.2353 0.3918 0.3775 0.3831 0.4085 0.3696 0.4316
11 0.2225 0.2297 0.2355 0.2523 0.2748 0.2347 0.3896 0.3793 0.3825 0.4168 0.3742 0.4328
12 0.2231 0.2308 0.2362 0.2588 0.2722 0.2346 0.3890 0.3995 0.3802 0.4189 0.3667 0.4322
13 0.2307 0.2424 0.2369 0.2610 0.2726 0.2334 0.3951 0.3970 0.4034 0.4226 0.3692 0.4323
14 0.2352 0.2545 0.2550 0.2650 0.2711 0.2333 0.4012 0.3870 0.4000 0.4363 0.3642 0.4326
15 0.2391 0.2601 0.2599 0.2778 0.2721 0.2329 0.3973 0.3789 0.3895 0.4306 0.3562 0.4328
16 0.2517 0.2587 0.2680 0.2879 0.2750 0.2328 0.3967 0.3734 0.3775 0.4268 0.3576 0.4326
17 0.2711 0.2503 0.2590 0.2929 0.2745 0.2326 0.3749 0.3731 0.3798 0.4221 0.3601 0.4327
18 0.2592 0.2499 0.2524 0.2822 0.2762 0.2326 0.3845 0.3862 0.3727 0.4260 0.3611 0.4326
19 0.2683 0.2534 0.2569 0.2806 0.2765 0.2326 0.3850 0.3932 0.3878 0.4220 0.3624 0.4326
20 0.2561 0.2580 0.2610 0.2856 0.2753 0.2326 0.4122 0.4104 0.3929 0.4254 0.3622 0.4325

Note: Lvs is the number of latent variables.
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3.5. Hyperspectral Monitoring of Total Flavonoids and Total Phenols Based on FOD
3.5.1. Effect of FOD on Spectral Reflectance

Figure 4 shows the spectral reflectance of the original spectrum (0 order) and 0.1~2 order
(in steps of 0.1) FOD preprocessing. With the increase of order, the reflectance characteristics
of the original spectral curve gradually disappeared. At the same time, FOD can show the
change process from the original spectrum to the IOD spectrum. The main performance was
that the value of spectral reflectance decreased gradually from order 0 to order 1.2, while the
value of spectral reflectance increased gradually from order 1.3 to order 2.

Foods 2023, 12, x FOR PEER REVIEW  9  of  16 
 

 

3.5. Hyperspectral Monitoring of Total Flavonoids and Total Phenols Based on FOD 

3.5.1. Effect of FOD on Spectral Reflectance 

Figure 4 shows the spectral reflectance of the original spectrum (0 order) and 0.1~2 

order (in steps of 0.1) FOD preprocessing. With the increase of order, the reflectance char-

acteristics of the original spectral curve gradually disappeared. At the same time, FOD can 

show the change process from the original spectrum to the IOD spectrum. The main per-

formance was that the value of spectral reflectance decreased gradually from order 0 to 

order 1.2, while  the value of spectral  reflectance  increased gradually  from order 1.3  to 

order 2. 

 

Figure 4. Spectral reflectance after FOD preprocessing. Figure 4. Spectral reflectance after FOD preprocessing.



Foods 2023, 12, 1354 9 of 14

3.5.2. Correlation Analysis between FOD Spectra and Total Flavonoids and Total Phenols
in Grains

Figure 5 shows the correlation between FOD spectra and the content of total flavonoids
and total phenols in grains. In the range of order from 0 to 0.9, the FOD spectra was mainly
negatively correlated with the content of total flavonoids and total phenols, while in the
range of order from 1 to 1.5, it was mainly positively correlated. In the range of order
from 0.9 to 2, there was a trend of alternating positive and negative correlation, and this
phenomenon was more obvious with the increase of order. In addition, the FOD can show
the gradual process of the correlation between the FOD spectra and the content of total
flavonoids and total phenols at the same wavelength.
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3.5.3. PLSR Monitoring Model of Total Flavonoids and Total Phenols in Grains Based
on FOD

Figure 6 shows the accuracy of the monitoring model of total flavonoids and total
phenols in grains based on FOD. The R2

c of the total flavonoids content model showed
little difference under different orders and reached the highest calibration accuracy at
order 1.7, with R2

c and RMSEc of 0.8879 and 0.1252, respectively. However, the calibration
accuracy of the total phenols content model varied greatly under different orders, with the
lowest accuracy at order 2 and the highest accuracy at order 1.8. The validation accuracy
of the total flavonoids content model basically showed that with the increase in order, the
validation accuracy basically showed a gradually increasing trend, and reached the highest
validation accuracy at an order of 1.6. The validation accuracy of the total phenols content
model was similar to the calibration accuracy. Its validation accuracy varied greatly under
different orders and reached the highest validation accuracy at order 0.6. At the same
time, when each model reached the highest validation accuracy, its calibration accuracy
was also high. It can be concluded that the best models of total flavonoids content and
total phenols content can be obtained under FOD preprocessing of orders of 1.6 and 0.6,
respectively. Among them, the R2

c, RMSEc, R2
v, RMSEv, and RPD of the best model of total

flavonoids content were 0.8731, 0.1332, 0.8384, 0.1448, and 2.4475, respectively. The R2
c,

RMSEc, R2
v, RMSEv, and RPD of the best model of total phenols content were 0.8296, 0.2025,

0.6535, 0.1740, and 1.6713, respectively. At the same time, these two models were also the
best monitoring models of total flavonoids content and total phenols content obtained in
this study.
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4. Discussion

Spectroscopy believes that different chemical bonds such as C-O, O-H, and C-H
have different spectral characteristics [41]. Different substances are composed of different
molecular structures, so different substances can be guaranteed to have different spectral
characteristics. This is also the physical principle of quantitative monitoring of substances
using hyperspectral technology [42]. Flavonoid refers to a series of compounds formed by
the interconnection of benzene rings with phenolic hydroxyl groups through the central
three carbon atoms [43,44]. Phenol refers to substances with one or more hydroxyl groups
on a benzene ring [45]. Therefore, the structures of flavonoid and phenol make it possible
to be quantitatively monitored by hyperspectral technology.

Research has showed that proper preprocessing of hyperspectral data before construct-
ing a hyperspectral monitoring model can effectively reduce noise interference and improve
model accuracy [27]. It is generally believed that different preprocessing algorithms have
different denoising effects [33,34,46,47]. For example, MSC and SNV can eliminate the
scattering influence of the spectrum to varying degrees, Lg transformation can reduce the
influence of multiplicative factors caused by changes in lighting conditions, and derivative
transformation can amplify the spectral characteristics. In this study, before constructing
the hyperspectral monitoring model, we first considered the use of MSC, SNV, Lg, FD, and
SD, five preprocessing algorithms, in order to preprocess the original hyperspectral data.
The results showed that, except for the MSC, the other four algorithms had a greater effect
on the spectral reflectance than the original spectrum. This was similar to the previous
research results on other indicators, which was mainly determined by the nature of these
algorithms [48–50]. After preprocessing of the original spectra, the correlation between
the transformation spectra and the contents of total flavonoids and total phenols in grains
was further analyzed. The results showed that the correlation change trend between total
flavonoids content and transformation spectra was similar to that of total phenols content,
and there was only a certain difference in the correlation coefficient at the same wavelength.
In addition, compared with the original spectrum, each transformation spectrum improved
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the correlation between the spectral data and the content of total flavonoids and total
phenols in grains to varying degrees. Yang et al. [50] carried out MSC, SNV, Lg, and FD pre-
processing on the original spectrum before using hyperspectral technology to monitor the
urease activity. The results showed that the preprocessing algorithm changed the spectral
curve to varying degrees and improved the correlation between spectral reflectance and
urease activity. The results of this study were similar. It can be seen that each preprocessing
algorithm can reduce the spectral noise and improve the sensitivity of spectral information
to varying degrees. In this study, PLSR was used to construct monitoring models for
the content of total flavonoids and total phenols in grains. Combined with the previous
experience [19,40], the cross-validation method was used to determine the optimal number
of latent variables, and the model with the optimal number of latent variables was the
best model under the preprocessing. The results showed that the calibration accuracy and
validation accuracy of the total flavonoids content monitoring model based on different
preprocessing algorithms were similar, and the best model was obtained under SD trans-
formation. However, the calibration accuracy and validation accuracy of the total phenols
content monitoring model based on different preprocessing algorithms were different to
varying degrees. Among them, the SD transformation was the worst, while the FD trans-
formation was the best. It can be seen that the accuracy of the model constructed based
on different preprocessing algorithms was different. Yang et al. [25] constructed the rutin
content models based on SD and constant offset elimination spectra, and believed that the
model based on constant offset elimination spectra was more accurate. This was different
from the results of this study, which may be caused by different data and preprocessing
algorithms. Therefore, it is necessary to properly preprocess the hyperspectral data before
constructing the hyperspectral monitoring model.

The above research results showed that the monitoring models of total flavonoids and
total phenols achieved the best monitoring accuracy in derivative preprocessing. Therefore,
this study raised the question of whether using FOD to preprocess the spectrum can obtain
a higher accuracy. Based on this, this study further used the FOD algorithm to preprocess
hyperspectral data. The results showed that FOD preprocessing can show the change
process from the original spectrum to the IOD spectrum, which was mainly manifested
in the gradual decrease of spectral reflectance in the range of order from 0 to 1.2 and the
gradual increase in the range of order from 1.3 to 2. This was similar to the previous research
results on other indicators [51]. The results of correlation analysis showed that at the same
wavelength, with the change in order, the correlation between the preprocessing spectra
and the content of total flavonoids and total phenols in grains did not have a certain law, but
it can be seen that at the same wavelength, the correlation showed a gradual change trend
with the change in order. In addition, in the range of order from 0 to 0.9, the FOD spectra was
mainly negatively correlated with the content of total flavonoids and total phenols in grains,
while in the range of order from 0.9 to 2, the positive and negative correlation appeared
alternately. It can be seen that derivative preprocessing in the range of order from 0.9 to
2 played a more complex role in changing the correlation between spectral data and total
flavonoids and total phenols in grains. The modeling results showed that the monitoring
models of total flavonoids and total phenols reached the best accuracy under 1.6-order and
0.6-order preprocessing, respectively. At the same time, they were also the two best models
of total flavonoids content and total phenols content in this study. The R2

c, RMSEc, R2
v,

RMSEv, and RPD of the total flavonoids content model were 0.8731, 0.1332, 0.8384, 0.1448,
and 2.4475, respectively. The R2

c, RMSEc, R2
v, RMSEv, and RPD of the total phenols content

model were 0.8296, 0.2025, 0.6535, 0.1740, and 1.6713, respectively. The rapid monitoring of
total flavonoids and total phenols in tartary buckwheat grains can be achieved, respectively.
Yang et al. [52] achieved the highest accuracy under FOD preprocessing when constructing
the hyperspectral monitoring model of soil total nitrogen. This shows that when considering
the effect of derivative preprocessing on the hyperspectral model, it is necessary to consider
both IOD and FOD. It is generally believed that the FD and SD represent the slope and
curvature of the original spectral curve, respectively. FOD can reflect the sensitivity of the
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spectral curve slope and curvature changes [53]. Therefore, this may be one of the reasons
why this study obtained the best monitoring model under FOD preprocessing.

5. Conclusions

In this study, tartary buckwheat was treated with selenium, and the total flavonoids
content, total phenols content, and hyperspectral reflectance of tartary buckwheat grains
were obtained. Moreover, the effect of different preprocessing algorithms on the accuracy of
the PLSR monitoring model of total flavonoids content and total phenols content in tartary
buckwheat grains was studied. The main conclusions were as follows: SNV, Lg, FD, and
SD transformations changed the original spectral curve to varying degrees. Compared with
the original spectrum, MSC, SNV, Lg, FD, and SD transformations spectra all improved
the correlation between spectral data and the content of total flavonoids and total phenols
in grains to varying degrees. The PLSR models of total flavonoids and total phenols in
grains based on MSC, SNV, Lg, FD, and SD transformations spectra achieved the best
accuracy under SD and FD transformation, respectively. FOD can show the change process
from the original spectrum to the IOD spectrum, as well as the gradual process of the
correlation between the transformation spectra at the same wavelength and the content of
total flavonoids and total phenols. The PLSR monitoring model of total flavonoids and total
phenols content in grains based on FOD achieved the best accuracy under the 1.6-order
and 0.6-order derivatives, respectively. This study can provide a theory for realizing
hyperspectral monitoring of total flavonoids and total phenols in tartary buckwheat grains.
In addition, in future research, more preprocessing algorithms and modeling algorithms
should be considered to construct models capable of obtaining more accurate results.
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