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Abstract: Fruits and vegetables are a vital source of redox-active phytochemicals in the diet. Tradi-
tional green leafy vegetables (GLVs) are a rich source of carotenoids, dietary fiber, minerals, phenols,
vitamins, and tocopherols and are commonly consumed in rural areas worldwide. In traditional
Korean medicine, many GLVs are used to treat various ailments. However, data on the carotenoid
and tocopherol content of many traditional GLVs consumed in the Republic of Korea are insufficient.
The current work aims to compare the carotenoid and tocopherol profiles of 18 traditional GLVs by
utilizing a single ion monitoring LC-MS approach to identify the potential GLVs for commercial
cultivation and healthy diet formulations. Among the traditional GLVs investigated, (all-E)-lutein
was the most abundant carotenoid, ranging from 44.4% in Glehnia littoralis to 52.1% in Heracleum
moellendorffii. It was followed by (all-E)-violaxanthin and (all-E)-β-carotene. The highest contents of
(all-E)-violaxanthin (75.6 µg/g FW), 9-Z-neoxanthin (48.4 µg/g FW), (all-E)-luteoxanthin (10.8 µg/g
FW), (all-E)-lutein (174.1 µg/g FW), total xanthophylls (310.5 µg/g FW), (all-E)-β-carotene (69.6 µg/g
FW), and total carotenoids (380.1 µg/g FW) were recorded in Pimpinella brachycarpa. Surprisingly,
Taraxacum mongolicum also showed the highest contents of (all-E)-violaxanthin, (all-E)-lutein, and
total carotenoids, which were statistically non-significant (p > 0.05, Tukey HSD) with P. brachycarpa.
The highest concentration of (all-E)-zeaxanthin (14.4 µg/g FW) was recorded in Solidago virga-aurea.
Among the studied herbs, 13.9 (H. moellendorffii)–133.6 µg/g FW (Toona sinensis) of α-tocopherol
was recorded. Overall, the results suggest that P. brachycarpa and T. mongolicum are rich sources of
carotenoids. On the other hand, T. sinensis is a rich source of α-tocopherol. These GLVs can be utilized
in the diet to enhance the intake of health-beneficial carotenoids and α-tocopherol.

Keywords: Pimpinella brachycarpa; Taraxacum mongolicum; Toona sinensis; phytochemicals; provitamin A;
lutein; β-carotene

1. Introduction

The World Health Organization recommends adequate intake (400–500 g per day) of
fruits and vegetables (including green leafy and cruciferous vegetables) to minimize the
risk of high blood pressure, coronary heart disease, and stroke [1]. Green leafy vegetables,
or GLVs, are an important part of a healthy diet as they are rich in essential nutrients
and phytochemicals with health benefits. These include dietary fiber, vitamins, minerals,
carotenoids, and polyphenolic compounds.

Clinical trials have also demonstrated the advantages of the enhanced intake of vegeta-
bles and fruits in reducing the risk of developing chronic and metabolic disorders, including
cancer, type 2 diabetes, obesity, and cardiovascular and neurological diseases [2–4]. The
redox-active phytochemicals involving carotenoids and tocopherols in fruits and vegetables
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help prevent these disorders by minimizing free radical-mediated oxidative damage to
proteins, cellular lipids, DNA, and other protein biomolecules [5–8].

Vitamin E, also known as tocols, which includes four tocotrienols (α-, β-, γ- and δ)
and four tocopherols (α-, β-, γ- and δ), differs by the position of methyl groups on the
chromanol ring [9]. Tocols serve as critical components of cellular lipids. They neutralize
free radicals, thus preventing the free radical-mediated oxidative damage of lipids and
minimizing the incidence of diseases associated with oxidative stress [10–13].

Carotenoids are mainly tetraterpenoid (C40) pigments commonly synthesized de-novo
by photoautotrophs, including higher plants. Animals rely on provitamin A carotenoids
(converted by the body into vitamin A, e.g., β-cryptoxanthin and α- and β-carotene) as a
dietary source to carry out vital functions. Additionally, carotenoids without pro-vitamin
A activity (e.g., xanthophylls) have antioxidant abilities that shield against chronic and
metabolic ailments, as well as photooxidative harm to the skin and eyes in animals [7,14].

The Republic of Korea is well known for its traditional high-vegetable diet, which is
probably responsible for the significantly lower rates of chronic diseases than other indus-
trialized countries with similar economic development [1]. Several traditional GLVs such
as Amaranthus lividus L., Angelica gigas Nakai, Glehnia littoralis F. Schmidt ex Miq., Heracleum
moellendorffii Hance, Peucedanum japonicum Thunb., Pimpinella brachycarpa (Kom.) Nakai, Ar-
alia continentalis Kitag., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz., Artemisia princeps
Pamp., Cirsium setidens Nakai, Ligularia fischeri (Ledeb.) Turcz., Petasites japonicus (Siebold
& Zucc.) Maxim., Rudbeckia laciniata L., Solidago virga-aurea L. var. asictica Nakai, Taraxacum
mongolicum Hand.-Mazz., Adenophora triphylla (Thunb.) A.DC. var. japonica (Regel) H. Hara,
Allium victorialis var. platyphyllum Makino, and Toona sinensis (A.Juss.) M.Roem. are sold at
local markets in Korea (Table 1). The extracts and compounds obtained from traditional
GLVs (1–18) have been shown to possess antioxidant [15–22], anticancer [18,23–26], antiin-
flammation [20,25,27,28], anti-melanogenic [29,30], anti-fatigue [31], anti-obesity [32,33], an-
tidiabetic [34], and immunostimulatory [35] activities. GLVs have abundant phytopigments.
Several studies have confirmed the content of α-carotene, β-carotene, lutein, violaxanthin,
zeaxanthin, and α-tocopherol in a few traditional GLVs [15,16,36–40]. However, data on
carotenoid content and compositions of several traditional GLVs consumed in Korea are
still unavailable. Moreover, GLVs are not widely investigated for tocopherol content. Thus,
quantifying bioactive phytochemicals in these species can help identify potential GLVs for
healthy food formulations.

Table 1. List of different traditional green leafy vegetables (GLVs) investigated in the present study.

S/No. Family Scientific Name Local Name Place of Collection

1 Amaranthaceae Amaranthus lividus L. Chambireum a

2

Apiaceae

Angelica gigas Nakai Chamdangwi a

3 Glehnia littoralis F. Schmidt ex Miq. Haedangpung a

4 Heracleum moellendorffii Hance Uhsuri a

5 Peucedanum japonicum Thunb. Gatgireum a

6 Pimpinella brachycarpa (Kom.) Nakai Chamnamul a

7
Araliaceae

Aralia continentalis Kitag. Ttangdureup a

8 Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. Eomnamu c

9

Asteraceae

Artemisia princeps Pamp. Suk a

10 Cirsium setidens Nakai Gondre b

11 Ligularia fischeri (Ledeb.) Turcz. Gomchwi a
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Table 1. Cont.

S/No. Family Scientific Name Local Name Place of Collection

12 Petasites japonicus (Siebold & Zucc.) Maxim. Mowi b

13 Rudbeckia laciniata L. Samipgukhwa b

14 Solidago virga-aurea L. var. asictica Nakai Miyeokchwi a

15 Taraxacum mongolicum Hand.-Mazz. Mindle a

16 Campanulaceae Adenophora triphylla (Thunb.) A.DC. var. japonica
(Regel) H. Hara Jandae a

17 Liliaceae Allium victorialis var. platyphyllum Makino Sanmaneul d

18 Meliaceae Toona sinensis (A.Juss.) M.Roem. Chamjuknamu a

a. Purchased from the Hanaro market, Seoul, Republic of Korea, in April 2022. b. Collected from the farm grown
in Gangwon Province, Republic of Korea, in May 2022. c. Collected from Hadenter Farm, Gyeongbuk Province,
Republic of Korea, in May 2022. d. Collected from Ulleung Agricultural Technology Center grown in Gyeongbuk,
Republic of Korea, in May 2022.

A report by Yoon et al. [10] revealed that GLVs consumed in the Republic of Korea
are good sources of carotenoids (β-carotene and lutein), and their contents are higher than
other commonly consumed plant foods. The authors [10] investigated the contents of
β-carotene, lutein, and total phenolic in several vegetables consumed in Korea.

Given the information presented above, this study aimed to determine the levels and
composition of carotenoids and tocols (Vitamin E) in 18 different types of traditional GLVs
using liquid chromatography (LC)–mass spectrometry (MS) with a single ion monitoring
(SIM) approach.

2. Materials and Methods
2.1. Reagents, Standards, and Plant Materials

An authentic standard of tocols mix (α-, β-, γ-, and δ-tocotrienols and α-, β-, γ-, and
δ-tocopherols) was obtained from ChromaDex (ChromaDex Inc., Irvine, CA, USA). (all-
E)-β-carotene was procured from Merck Ltd., Seoul, Republic of Korea. (all-E)-lutein,
9-Z-neoxanthin, (all-E)-violaxanthin used in this investigation were isolated from let-
tuce, while (all-E)-zeaxanthin was prepared from corn seeds using our established pro-
tocol [41]. An acid-catalyzed reaction was used to transform (all-E)-luteoxanthin from
(all-E)-violaxanthin [42].

The solvents used in the study were of LC grade and sourced from J.T. Baker® located
in Suwon-Si, Republic of Korea.

The 18 traditional green leafy vegetables were collected from natural habitats and the
traditional market, as detailed in Table 1. The vegetables were brought to the lab, cleaned, indi-
vidually packed in Ziplock polythene bags, and stored at −90 ◦C in an ultra-low temperature
deep freezer (CLN-2300CW, Nihon Freezer Co., Ltd., Yushima, Japan) until analysis.

2.2. Extraction of Carotenoids and Tocols

The lipophilic bioactive carotenoids and tocols were simultaneously extracted from
fresh foliage using our recently optimized method [43]. In sum, a 2 g fresh sample was
placed into a Falcon 50 mL conical centrifuge tube and homogenized with 25 mL of
a solvent mixture (acetone/ethanol/cyclohexane, 1:1:2, v/v) containing 0.1% butylated
hydroxytoluene (BHT) as an antioxidant [44]. The mixture was then subjected to bath
sonication (JAC-2010; 300 w, 60 Hz, for 10 min) and ultra-shaking for 2 min in collomix viba
x.30 (Tinting Solutions B.V., Nederland) to ensure complete extraction. The sample was
vacuum filtered and pellets were extracted again until obtaining the colorless pellets. The
filtrate containing lipophilic compounds were pooled, transferred to a 300 mL Short Neck
Boiling flask (round bottom), and dried in a vacuum rotary evaporator at 35 ◦C. The extract
containing carotenoids and other lipophilic compounds were recovered in 4 mL of acetone
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containing 0.1% BHT and transferred to a 5 mL glass vial fitted vial with a PTFE-lined
screw cap closure. A small portion of the extract was filtered using a Nylon syringe filter
(pore size 0.45 µm; Whatman) and transferred to an amber HPLC vial for the analysis of
tocols and carotenoids.

The carotenoids and tocols were analyzed in their non-hydrolyzed form, as the hy-
drolysis process can lead to the degradation of these compounds [45].

2.3. LC-MS Analysis

To analyze the tocols and carotenoids, a liquid chromatography (LC)–mass spectrom-
etry (MS) with a single ion monitoring (SIM) approach was employed. The LC-MS/SIM
analysis was carried out using an LCMS-9030 quadrupole time-of-flight (Q-TOF) mass
spectrometer manufactured by Shimadzu in Tokyo, Japan. The analysis was performed in
an atmospheric pressure chemical ionization (APCI; Positive mode), following the LC sepa-
ration in a YMC C30 carotenoid column (150 mm × 4.6 mm, 3 µm; YMC, Wilmington, NC)
maintained at 20 ◦C. The solvent system was methanol/water (95:5; v/v) containing 5 mM
of ammonium formate (Mobile Phase A) and methyl tertiary butyl ether/methanol/water
(90:7:3, v/v/v) containing 5 mM of ammonium formate (Mobile Phase B). Ammonium
formate was added as an ionization enhancer in the mass spectrometer. The gradient
elution program involved starting at 0% B at 0 min and reaching 100% B at 45 min, fol-
lowed by a 5 min post-run at 0% B. The flow rate was maintained at 0.5 mL/min. The
source and compound parameters were optimized as follows: drying gas flow, 10 L/min;
nebulizing gas flow, 3 L/min; corona needle voltage, 4.0 kv; interface temperature, 400 ◦C;
DL temperature, 300 ◦C; heat block temperature, 300 ◦C; Q1 resolution, ±20 ppm; and data
acquisition (sampling), 1.85625 Hz [43]. Quantitative analysis was performed using the
selected ion monitoring (SIM) mode. Table 2 lists the optimized SIM transitions (m/z). To
quantify each carotenoid and tocol compound, external standards were used. The linearity
range for each standard compound can be found in Table A1.

Table 2. The selected ion monitoring (SIM) transitions (m/z) utilized for carotenoid and tocol analysis.

Class of Compounds Compound Transition (m/z) *

Carotenoids

(all-E)-β-carotene; β,β-carotene 537.4493

(all-E)-zeaxanthin; β,β-carotene-3,3′-diol 569.4377

(all-E)-lutein; β,ε-Carotene-3,3′-diol 551.4284

(all-E)-luteoxanthin; β-carotene-3,3′-diol,
5,6:5′,8′-diepoxy-5,5′,6,8′-tetrahydro- 601.4281

9-Z-neoxanthin; 5′,6′-epoxy-6,7-didehydro-
5,6,5′,6′-tetrahydro-β,β-carotene-3,5,3′-triol 601.4281

(all-E)-violaxanthin; 5,6,5′,6′-diepoxy-
5,6,5′,6′-tetrahydro-β,β-carotene-3,3′-diol) 601.4276

Tocopherols
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2.4. Calculation of Vitamin A Activity

The vitamin A activity, as retinol activity equivalents (RAEs), was calculated based on
the in vivo conversion factor of 1 µg RAE = 12 µg of β-carotene proposed by the Food and
Nutrition Board, Institute of Medicine (IOM), USA [46].

2.5. Statistical Evaluation and Quality Assurance

Three separate replicates of extraction and analysis were performed for each green
leafy vegetable (GLV). The statistical analysis was conducted using IBM SPSS statistics
version 25, including a one-way analysis of variance (ANOVA) with a significance level of
0.05 and post hoc testing with Tukey B HSD.

The lower limits for detection (LOD) and quantitation (LOQ) of utilized LC-MS
methods were determined based on a signal-to-noise (S/N) ratio of more than 3 and more
than 10, respectively [47].

Moreover, the employed LC-MS/SIM method was tested for precision (ability to pro-
duce consistent and reproducible results), linearity (relationship between the concentration
of the analyte and its response), and accuracy (closeness of the measured value to the true
value of the analyte) [48,49].

To calculate the precision of the instrument (both inter-day and intra-day) for chro-
matographic retention time and peak area measurement, multiple injections of the same
concentration within the working range were performed, and the coefficient of variation (%
CV) was calculated. The intra-day precision was determined by performing six replicate
injections of the same concentration in a single day. On the other hand, to establish the
inter-day precision, the standard compounds were analyzed six times over two separate
days that were not consecutive.

3. Results and Discussion
3.1. Validation of LC-MS/SIM Methodology

The LC-MS/SIM method used to quantify carotenoids and tocols underwent valida-
tion to assess its accuracy, precision, and linearity [48,49]. The coefficient of variation (CV; a
ratio of the standard deviation (SD) to the mean of the peak area counts) or relative standard
deviation (RSD) was measured and found to be <0.35% and 9.23% (inter-day and intra-day)
for chromatographic retention times and peak area counts, respectively, for carotenoids
and tocopherols (Table A1). The calibration curves demonstrated a high coefficient of
correlation (r2; >0.999–1.000) between standard concentrations and corresponding peak
area counts. These findings provide evidence that the employed LC-MS/SIM method is
reliable and can be used with confidence.

3.2. Carotenoid Composition

Carotenoids are crucial bioactive substances that greatly influence the nutritional
quality and appealing color of food [50]. In the present investigation, six major carotenoids,
including five xanthophylls ((all-E)-zeaxanthin), (all-E)-lutein, (all-E)-luteoxanthin, 9-Z-
neoxanthin, and (all-E)-violaxanthin) and a provitamin A carotenoid (all-E)-β-carotene
were quantified (Figure 1; Tables 3 and 4). The quantified levels of all identified carotenoids
were significantly higher than the limit of quantification (LOQ) (Table A1).

Among the traditional GLVs investigated in the present investigation, the (all-E)-
lutein (β,ε-carotene-3,3′-diol) was the most prominent carotenoid ranging between 44.4
(Glehnia littoralis)–52.1% (Heracleum moellendorffii) of total carotenoids, followed by (all-
E)-violaxanthin (5,6:5′,6′-diepoxy-5,5′,6,6′-tetrahydro-β,β-carotene-3,3′-diol) and (all-E)-β-
carotene (Tables 3 and 4). The highest contents (µg/g FW) of (all-E)-lutein (174.1), (all-E)-
luteoxanthin (10.8), 9-Z-neoxanthin (48.4), (all-E)-violaxanthin (75.6), total xanthophylls
(310.5), (all-E)-β-carotene (69.6), and total carotenoids (380.1) were recorded in Pimpinella
brachycarpa. Surprisingly, Taraxacum mongolicum also showed the highest contents of (all-E)-
violaxanthin, (all-E)-lutein, and total carotenoids, which were statistically non-significant
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with Pimpinella brachycarpa. In contrast, Solidago virga-aurea exhibited the highest contents
(14.4 µg/g FW) of (all-E)-zeaxanthin among all of the traditional GLVs investigated.
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Table 3. The xanthophyll contents (µg/g FW) in the studied traditional GLVs.

S/No. (all-E)-
Violaxanthin

9-Z-
Neoxanthin

(all-E)-
Luteoxanthin (all-E)-Lutein (all-E)-

Zeaxanthin
Total

Xanthophylls

1 47.7 ± 2.11 27.0 ± 3.38 1.17 ± 0.11 113.5 ± 5.08 0.49 ± 0.01 189.9 ± 10.4

2 64.3 ± 5.30 29.0 ± 1.51 0.74 ± 0.08 138.7 ± 5.78 1.25 ± 0.22 233.9 ± 12.89

3 67.2 ± 1.11 30.1 ± 0.79 2.66 ± 0.54 130.9 ± 0.63 2.27 ± 0.50 233.0 ± 1.23

4 35.8 ± 4.4 22.1 ± 1.75 2.10 ± 0.56 111.6 ± 6.0 0.35 ± 0.03 171.9 ± 12.7

5 43.9 ± 0.35 23.2 ± 0.62 2.53 ± 0.86 100.3 ± 0.73 0.39 ± 0.05 170.3 ± 2.61

6 75.6 ± 5.95 a 48.4 ± 2.37 a 10.8 ± 1.14 a 174.1 ± 6.51 a 1.64 ± 0.12 310.5 ± 13.57 a

7 43.9 ± 4.33 16.5 ± 2.14 1.85 ± 0.20 96.5 ± 3.34 1.02 ± 0.07 159.8 ± 10.1

8 54.2 ± 5.64 17.3 ± 2.58 1.33 ± 0.03 97.9 ± 3.83 0.39 ± 0.12 171.1 ± 12.2

9 66.3 ± 1.05 31.6 ± 1.47 1.89 ± 0.34 128.6 ± 4.38 1.85 ± 0.13 230.3 ± 6.43

10 49.2 ± 4.41 23.2 ± 0.61 3.74 ± 1.64 112.2 ± 5.76 2.17 ± 0.35 190.5 ± 12.1

11 67.2 ± 6.14 29.6 ± 2.43 1.31 ± 0.17 130.0 ± 9.38 1.12 ± 0.06 229.3 ± 17.9

12 48.8 ± 0.99 24.5 ± 0.49 2.624 ± 1.17 110.8 ± 0.50 1.02 ± 0.28 187.8 ± 1.45

13 70.4 ± 2.04 27.8 ± 2.27 1.68 ± 0.19 139.3 ± 10.5 1.76 ± 0.10 240.9 ± 14.7

14 61.8 ± 4.02 21.5 ± 2.17 1.23 ± 0.07 120.6 ± 4.54 14.44 ± 0.07 a 219.6 ± 10.9

15 75.1 ± 2.44 a 41.2 ± 0.94 2.04 ± 0.31 163.7 ± 4.95 a 0.94 ± 0.28 283.0 ± 7.05

16 75.3 ± 1.47 a 22.9 ± 1.37 1.19 ± 1.18 126.4 ± 3.81 3.51 ± 0.13 229.3 ± 7.70

17 49.0 ± 7.07 22.5 ± 1.13 1.39 ± 0.49 100.5 ± 4.77 0.63 ± 0.18 174.1 ± 12.7

18 59.1 ± 0.77 18.1 ± 0.09 7.97 ± 3.21 107.9 ± 5.95 2.53 ± 0.21 195.6 ± 10.2

The results represent the average ± standard deviation (SD) obtained from three replicate analyses. The values
with the superscript letter “a” show the highest (p < 0.05, Turkey B HSD) contents among the various traditional
GLVs. The S/No. 1–18 represents the S/No. of samples in Table 1.

Only a few GLVs investigated in the present study were previously explored for
carotenoid composition and content. Sathasivam et al. [40] also recorded the dominance
of lutein and β-carotene in Heracleum moellendorffii leaves, with a total carotenoid con-
tent of 1668 µg/g dry weight (DW). In Pimpinella brachycarpa, Yoon et al. [51] recorded
54.5 and 32.3 µg/g FW of lutein and β-carotene, respectively. In contrast, we recorded
174.1 and 69.9 µg/g FW of lutein and β-carotene, respectively. Similarly, in Toona sinensis,
223 µg/g FW of lutein and 186 µg/g FW β-carotene are reported by Cheng et al. [36], which
is substantially greater than the contents documented in the present investigation.

Kao et al. [52] recorded the prominence of (all-E)-β-carotene, followed by (all-E)-
violaxanthin, 9-Z-neoxanthin, and (all-E)-lutein in Taraxacum officinale, a close relative
of T. mongolicum investigated in the present study. It is commonly known as dandelion
and is traditionally used for heat relieving, detoxification, diuretic, and hepatoprotective
activities [53,54].

The carotenoid compositions and contents varied significantly among the different
plants. Moreover, a significant variation has been documented among the species of the
same genus. In a study of the carotenoid composition of medicinally important GLVs
consumed in India, a near 3-fold variation was recorded for the total carotenoid content
among the leaves of three species of the genus Amaranthus, with the highest total carotenoid
content in A. viridis L. (2538 µg/g DW), followed by A. gangeticus L. (789 µg/g DW), and
A. tristis L. (675 µg/g DW) [39].
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Table 4. The (all-E)-β-carotene, total carotenoids, and retinol activity equivalents (RAEs) in studied
traditional GLVs.

S/No. (all-E)-β-Carotene * Total Carotenoids
(TC) *

% (all-E)-Lutein in
TC

% (all-E)-β-Carotene
in TC RAE (µg) % DRI from 100 g **

1 57.9 ± 4.75 247.8 ± 15.2 45.8 ± 0.76 23.4 ± 0.49 a 4.83 ± 0.40 53.6 ± 4.40

2 46.0 ± 0.16 280.0 ± 13.0 49.5 ± 0.24 16.5 ± 0.71 3.83 ± 0.01 42.6 ± 0.14

3 61.6 ± 0.46 294.6 ± 1.69 44.4 ± 0.47 20.9 ± 0.04 5.13 ± 0.04 57.0 ± 0.43

4 42.5 ± 4.6 214.5 ± 17.2 52.1 ± 1.41 a 19.8 ± 0.55 3.55 ± 0.38 39.4 ± 4.25

5 37.2 ± 0.44 207.5 ± 3.04 48.4 ± 0.36 17.9 ± 0.05 3.10 ± 0.04 34.4 ± 0.40

6 69.6 ± 3.92 a 380.1 ± 17.5 a 45.8 ± 0.40 18.3 ± 0.19 5.80 ± 0.33 a 64.4 ± 3.63 a

7 33.5 ± 0.47 193.3 ± 10.5 50.0 ± 1.00 17.4 ± 0.71 2.80 ± 0.04 31.1 ± 0.43

8 26.8 ± 1.86 197.9 ± 14.05 49.5 ± 1.58 13.5 ± 0.02 2.23 ± 0.15 24.8 ± 1.72

9 53.6 ± 0.53 283.9 ± 5.90 45.3 ± 0.60 18.9 ± 0.58 4.47 ± 0.04 49.7 ± 0.49

10 39.1 ± 3.68 229.6 ± 15.7 48.9 ± 0.85 17.0 ± 0.44 3.26 ± 0.31 36.2 ± 3.41

11 47.7 ± 1.98 277.0 ± 19.8 46.9 ± 0.03 17.3 ± 0.52 3.98 ± 0.17 44.2 ± 1.84

12 46.7 ± 1.94 234.5 ± 0.49 47.3 ± 0.12 19.9 ± 0.79 3.890 ± 0.16 43.2 ± 1.80

13 59.3 ± 2.58 300.2 ± 17.3 46.4 ± 0.83 19.8 ± 0.28 4.94 ± 0.22 54.9 ± 2.39

14 42.1 ± 3.17 261.7 ± 14.0 46.1 ± 0.74 16.1 ± 0.35 3.51 ± 0.26 39.0 ± 2.93

15 65.4 ± 1.27 348.4 ± 8.31 a 47.0 ± 0.30 18.8 ± 0.08 5.45 ± 0.11 60.5 ± 1.17

16 46.3 ± 1.29 275.6 ± 8.99 45.9 ± 0.11 16.8 ± 0.08 3.86 ± 0.11 42.9 ± 1.19

17 43.0 ± 0.69 217.0 ± 13.3 46.3 ± 0.65 19.8 ± 0.90 3.58 ± 0.06 39.8 ± 0.64

18 31.1 ± 3.83 226.7 ± 14.1 47.6 ± 0.33 13.7 ± 0.84 2.59 ± 0.32 28.8 ± 3.55

The results represent the average ± standard deviation (SD) obtained from three replicate analyses. The values
with the superscript letter “a” show the highest (p < 0.05, Tukey B HSD) contents among various traditional
GLVs. The S/No. 1–18 represents the S/No. of samples in the table. * The contents are expressed as µg/g FW.
** Considering the recommended dietary reference intake (DRI) of 900 µg RAE/day for adults.

The (all-E)-β-carotene is the provitamin A carotenoid predominantly found in herbs.
The recommended dietary reference intake (DRI) of vitamin A for adult men is 900 retinol
activity equivalents (RAEs) according to the dietary guidelines [46]. The vitamin A content
calculated as the RAE, using the conversion of 1 RAE = 12 µg of β-carotene, revealed that
the consumption of 100 g of herbs investigated in the present study can supply the 24.8
(Kalopanax septemlobus)–64.4 % (Pimpinella brachycarpa) DRI of vitamin A (Table 4).

Along with the provitamin A carotenoids, the traditional GLVs investigated in the
present investigation are found to be rich in (all-E)-lutein. Lutein and zeaxanthin are
pigments in the macula that act as filters for blue light, thus protecting the retina and main-
taining vision [55]. Research has demonstrated that a higher intake of these compounds
can support eye health [55]. Thus, among the traditional GLVs studied in the present
investigation, Pimpinella brachycarpa and Taraxacum mongolicum are the richest sources of
(all-E)-β-lutein; thus, their enhanced intake may help to improve ocular health.

We have previously explored the carotenoid contents of several herbs, including baby
leaf vegetables [56], green and green/red perilla (Perilla frutescens Britt.) [57], and 23 diverse
lettuce cultivars [58]. In baby leaf vegetables, the (all-E)-β-carotene content ranged from 19.3
to 60.2 µg/g FW, with the total carotenoid content ranging from 57.1 to 195.2 µg/g FW [56].
In green/red and green perilla foliage, the (all-E)-β-carotene content was 51.2–52.1 µg/g
FW, with a total carotenoid content of 196.1–209.4 µg/g FW [57]. Among the 23 different
lettuce cultivars, the (all-E)-β-carotene content w ranged from 4.2 to 13.6 g/g FW, with the
total carotenoid content ranging from 54.4 to 129.8 g/g FW [58]. In this investigation, the
contents of (all-E)-β-carotene were 26.8–69.6 µg/g FW, with a total carotenoid content of
193.3–380.1 µg/g FW, indicating that traditional GLVs investigated in the present study are
more concentrated sources of carotenoids than commonly consumed GLVs. These results
are also supported by a recent study by Lee et al. [59], who observed much higher contents
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of β-carotene in underutilized GLVs, such as Moringa foliage (108 µg/g FW), sweet leaf
bush (125 µg/g FW), and sweet potato foliage (110 µg/g FW), compared to iceberg lettuce
(4 µg/g FW).

3.3. Tocols Composition

The term “tocols” encompasses four forms of tocopherols (α-, β-, γ-, and δ-) and four
forms of tocotrienols (α-, β-, γ-, and δ-) [60]. In the present study, the tocol content and
composition were analyzed using an LC-SIM-MS-based method. Among the studied herbs,
13.9 (Heracleum moellendorffii)–133.6 µg/g FW (Toona sinensis) of α-tocopherol was recorded,
whereas other types of tocopherols and tocotrienols were not detected in a significant
amount (Figure 2).
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Figure 2. The contents of α-tocopherol in studied traditional GLVs. The results represent the average
± standard deviation (SD) obtained from three replicate analyses. The values with the superscript
letter “a” show the highest (p < 0.05, Tukey B HSD) contents among the various traditional GLVs.
The numbers 1–18 on the X-axis represent the S/No. of samples in Table 1.

Limited studies exist on the alpha-tocopherol content of green leafy vegetables (GLVs),
as most research has been concentrated on seed oil. Previous studies on α-tocopherol
levels in GLVs have revealed significant variation. Among the foliage of several edible
tropical plants, α-tocopherol contents ranged between 6.9 (Brassica oleracea)–426.8 (Sauropus
androgynus) µg/g FW [61]. Among the several GLVs commonly consumed in Southeast
Asia, 1.9 (green amaranth)–183 µg/g FW (foliage of Moringa oleifera) of α-tocopherols was
documented by Lee et al. [59].

Our recent investigation found that α-tocopherol levels in leaf mustard varied among
the four cultivars studied, with recorded amounts ranging from 67.2 (cv. Asia Curled) to
83.4 µg/g FW (cv. Cheong) [62]. In another recent study on GLVs, α-tocopherol levels
ranging from 22.0 µg/g FW in spinach to 87.7 µg/g FW in Moringa were recorded [43].
Considering these previous reports, Toona sinensis foliage investigated in the present study
is a rich source of α-tocopherol.

α-tocopherol plays a key role as a chain-breaking antioxidant, thus preventing the
free radical-mediated oxidative damage of lipids and minimizing the incidence of diseases
associated with oxidative stress, such as heart disease, certain types of cancer, and age-
related cognitive decline [10–13]. Additionally, α-tocopherol may help improve skin health
and immune function [63].

The DRI of α-tocopherol for both women and men is 15.0 mg per day [13]. Among
the various forms of tocols, α-tocopherol has the maximum vitamin E activity, with 1 mg
equaling 1 α-TE [13]. Vegetable oils, mainly wheat germ oil, are the richest source of
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tocols in the diet [13]. Nevertheless, taking into account the highest α-tocopherol content
(133.6 µg/g FW), Toona sinensis foliage can provide 90% of the DRI of vitamin E.

4. Conclusions

In this study, 18 traditional green leafy vegetables (GLVs) were analyzed for their
carotenoid and tocol content using LC-MS/SIM. Among the studied GLVs, the most abundant
carotenoid was (all-E)-lutein, followed by (all-E)-violaxanthin and (all-E)-β-carotene. The
highest content of carotenoids was found in Pimpinella brachycarpa and Taraxacum mongolicum,
while the highest content of (all-E)-zeaxanthin was recorded in Solidago virga-aurea. In con-
trast, the highest α-tocopherol content was found in Toona sinensis. The results suggest that
P. brachycarpa and T. mongolicum are good sources of carotenoids, while T. sinensis is a good
source of α-tocopherol. Adding these conventional GLVs to the diet can provide an optimal
way to obtain the maximum nutritional benefits of α-tocopherol and carotenoids.
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Appendix A

Table A1. The validation parameters for the liquid chromatography–mass spectrometry with a single
ion monitoring (LC-MS/SIM) analysis of carotenoids and tocopherols.

Compounds
Working

Range
(µg/mL)

Area Counts Precision Retention Time Precision Limits Correlation
Coefficient (R2)

Compounds Intra-Day CV
(%, n = 6)

Inter-Day CV
(%, n = 6 × 2)

Intra-Day CV
(%, n = 6)

Inter-Day CV
(%, n = 6 × 2) LOQ (µg/g) LOD (µg/g)

(all-E)-
violaxanthin 5–50 4.11 5.30 0.07 0.15 0.32 0.11 0.999

9-Z-
neoxanthin 5–50 7.01 7.42 0.09 0.17 0.84 0.28 0.999

(all-E)-
lactucaxanthin 5–50 4.68 5.43 0.08 0.18 0.87 0.29 1.000

(all-E)-lutein 5–50 2.53 4.98 0.07 0.16 0.15 0.05 0.999

(all-E)-
zeaxanthin 5–50 5.12 7.06 0.09 0.14 0.46 0.15 1.000

(all-E)-β-
carotene 5–50 4.91 6.05 0.08 0.17 0.68 0.23 1.000

α-tocopherol 10–100 8.82 9.23 0.23 0.35 2.94 0.97 0.999

LOQ, limits of quantitation; LOD, limits of detection; CV, coefficient of variation.
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