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Abstract: Cancer is one of the leading causes of death worldwide, the incidence of which is increasing
annually. Interest has recently grown in the anti-cancer effect of functional foods rich in selenium (Se).
Although clinical studies are inconclusive and anti-cancer mechanisms of Se are not fully understood,
daily doses of 100–200 µg of Se may inhibit genetic damage and the development of cancer in humans.
The anti-cancer effects of this trace element are associated with high doses of Se supplements. The
beneficial anti-cancer properties of Se and the difficulty in meeting the daily requirements for this
micronutrient in some populations make it worth considering the use of functional foods enriched in
Se. This review evaluated studies on the anti-cancer activity of the most used functional products
rich in Se on the European market.

Keywords: selenium; selenium-rich product; functional food; Brazil nuts; Brassica species;
cancer prevention

1. Introduction

Cancer is one of the leading causes of mortality worldwide, accounting for nearly
10 million deaths in 2020. The most common cancer is female breast cancer (11.7%), followed
by lung (11.4%), colorectal (10.0%), prostate (7.3%), and stomach (5.6%) cancers [1,2].
According to Global Cancer Statistics (GLOBOCAN 2020: Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries), the number of people with cancer
will continue to grow and reach 28.4 million by 2040 [3]. The main causes of the increase in
cancer incidence are environmental and lifestyle factors, with an estimated 30–40% of all
cancers preventable through lifestyle and diet [4–6].

In recent years, the chemopreventive effect of diet has focused on selenium (Se), and
most epidemiological studies and clinical trials support the protective role of Se against
cancer development. However, high doses of Se supplements must be consumed for an
anti-cancer effect. The multi-centre, double-blind, randomised, placebo-controlled cancer
prevention trial by Clark et al. reported that supplementation of 200 µg of Se per day can
reduce the incidence of and mortality from carcinomas [7]. Nonetheless, some studies
have shown an inverse association between Se exposure and risk of some cancer types.
The randomised, prospective, double-blind SELECT (Selenium and Vitamin E Cancer
Prevention Trial) study indicated that the supplementation (mean of about 5 years) of
selenomethionine and vitamin E does not prevent prostate cancer in the generally healthy
population, with a statistically non-significant increase in prostate cancer in the vitamin
E-alone group and non-significant increase in diabetes mellitus associated with the Se-alone
group. There are several possible explanations for why Se did not prevent prostate cancer
in men in the SELECT study [8–11]. The supplements may have exceeded the dose at
which the protective effect is observed, and the study participants may have had different
levels of Se intake before the study. Se possibly reduces the risk of prostate cancer, but only
in men with Se deficiency [12]. The Cochrane reviews on Se for cancer prevention have
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shown that those with higher Se levels have a lower incidence of cancer. However, the
lower risk of cancer may be related to other factors that reduce the cancer risk, such as a
healthier diet or lifestyle [13]. Therefore, an additional analysis of Se action in the context
of cancer prevention is necessary [9,13].

Se consumption varies considerably throughout the world, with some diets being
Se deficient and some having an excess of Se (Eastern European countries 10−30 µg
Se/day vs. Venezuela 200−350 µg Se/day) [14,15]. Se action is important in the human
body (e.g., structural and enzymic roles, and antioxidant activity catalyses the production
of active thyroid hormone [16]), and thus Se deficiency is a major global problem [17].
According to nutritional requirements, the adequate intake (AI) of Se is 70 µg/day for adults,
15−65 µg/day for children depending on age, and 85 µg/day for lactating women [18].
Regarding cancer prevention, some researchers suggest a daily dose of 100–200 µg of Se
to inhibit genetic damage and cancer development [19]. The Scientific Committee for
Food (SCF) adopts the tolerable upper level (UL) of Se for adults as 255 µg/day [20].
Consequently, functional food rich in Se is of interest due to difficulties in meeting the
daily Se requirements and its beneficial anti-cancer properties. Thus, this review evaluated
studies on the anti-cancer activity of functional products rich in Se identified in PubMed,
Scopus, Cochrane Library, Web of Science, and Embase using the following keywords:
“selenium enriched” and “cancer” or “selenium rich” and “cancer” or “selenium enriched”
and “chemoprevention” or “selenium rich” and “chemoprevention”. An additional search
was performed for Brazil nuts (on account of having the highest Se content naturally
occurring in food), Brassica species (as a source of Se-methylselenocysteine), Allium species
(one of the most widely consumed vegetables worldwide), and Se-enriched yeast (evaluated
in human clinical trials). English language articles published until 30 January 2023 were
reviewed (Figure 1).
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2. Dietary Sources of Selenium Compounds and Their Metabolism

Experimental studies have shown that the anti-cancer activity of Se is dependent on the
chemical form affecting its intracellular distribution in the body [21,22]. Se in the diet may
be delivered in organic or inorganic forms and the most common dietary Se compounds
are selenomethionine (SeMet), selenocysteine (SeCys), Se-methylselenocysteine (MeSeCys),
and selenite [23,24] (Figure 2). SeMet is the dominant form in food products [25] with
vegetables, grains, legumes, nuts, and yeast rich in the organic forms of Se. Inorganic Se is
also observed in some of these foods and water [23,26,27], with SeMet found in many food
products, including grains, meat, eggs, dairy products, nuts (especially Brazil nuts), and
yeast [28]. Dietary sources of SeCys are animal products [29], whereas Brassica and Allium
species, including garlic and onions, are sources of MeSeCys. Selenite occurs naturally in
foods in small amounts, and the main source of the inorganic Se compounds in the human
diet is supplementation [30].
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Figure 2. Dietary sources of selenium compounds.

The anti-cancer activity also depends on the metabolism of the Se compound [31],
with diverse metabolic pathways producing various Se metabolites [32,33] (Figure 3). This
is particularly relevant in cancer prevention as the biological activities of the Se compounds
are mainly exerted via their metabolites [34,35].

Selenate is the inorganic form of Se which is present in small amounts in both plant
and animal products [36]. Selenate and selenite are reduced to hydrogen selenide (H2Se)
through an intermediate form selenogultatione (GSSeSG) using NADPH (nicotinamide
adenine dinucleotide phosphate) and glutathione reductase [21,37]. The H2Se is phos-
phorylated to selenophosphate (H3SePO3) from which SeCys is formed for selenoprotein
biosynthesis [38].
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Twenty-five selenoproteins have been identified in humans so far, most of which have
an as-yet-unknown function [39–41], but some may have anti-cancer effects [42]. Dietary
SeCys is transformed into hydrogen selenide through the β-lyase reaction [43]. SeMet is
converted to SeCys by trans-selenation [44] or to methylselenol (MeSeH) by cystathionine
γ-lyases [45–47] and is mainly involved in the production of selenoproteins, while the
alternative γ-lyase pathway plays only a minor role [32]. Se-methylselenocysteine is trans-
formed to MeSeH via β-lyase, and then MeSeH is further methylated to dimethylselenide
(DMeSe) and trimethylselenide (TMeSe). Methylated selenides are the end products of Se
metabolism that are excreted from the body by urine or breath [48]. Since MeSeCys can be
converted directly to methylselenol, this explains why they may be more efficacious than
other Se forms in cancer prevention [49,50]. MeSeH is also used to produce selenosugars
which are excreted in the urine [51]. Moreover, MeSeH can be demethylated to selenide
for further conversion to selenoproteins [43] and has been shown to have anti-tumour
effects [52–55].

The Se anti-cancer properties are not fully understood but may be influenced by
antioxidant protection, enhanced immune surveillance, modulation of cell proliferation,
inhibition of angiogenesis, and tumour cell invasion [56,57]. Additionally, Se may reduce
the incidence of cancer through its effect on apoptosis [49,58,59]. Se-induced apoptosis is
not fully understood but the complex mechanisms may include ROS generation, protein
kinases signalling, activation of caspases, and p53 phosphorylation [60].

Selenium Bioavailability

Se bioavailability depends on the source and chemical forms of the element [61]. Se
content in foods is determined by combination of geologic and environmental factors and
Se supplementation of fertilisers and animal feedstuffs [33]. Chemical forms of Se differ in
absorption and conversion into a biochemically active form. Organic sources are assimilated
more efficiently and are considered to be less toxic than inorganic compounds [27].
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The bioavailability of selenium may also be affected by some other components of the
food matrix [62]. Some studies have shown that vitamin E can increase the bioavailability
of selenium, while heavy metals and fibre decrease it [63–65]. Dietary sulphur (especially
from methionine) may compete with Se for absorption. Additionally, bioavailability may
influence parameters related to the human body, i.e., age, sex, Se status, or lifestyle [66].

Current research is concerned with improving bioavailability and identification of
biomarkers of exposure and anti-cancer activity. Interestingly, in recent years, studies have
shown that some Se enrichment of yeasts and lactic acid bacteria represent sources of more
bioavailable organic and less toxic forms of Se [67].

3. Functional Foods Rich in Selenium

According to the European Food Safety Authority (EFSA), “a functional food is defined
as a food, which beneficially affects one or more target functions in the body, beyond
adequate nutritional effects, in a way that is relevant to either an improved state of health
and well-being and/or reduction of risk of disease. A functional food can be a natural
food or a food to which a component has been added or removed by technological or
biotechnological means, and it must demonstrate its effects in amounts that can normally
be expected to be consumed in the diet” [68].

The Functional Food Center (FFC) defines a functional food as a natural or processed
food that contains known or unknown biologically active compounds, which in defined,
effective, non-toxic amounts provide clinically proven and documented health benefits in
the prevention and treatment of chronic diseases [69,70].

In the United States, functional foods are regulated in the same way as conventional
foods and dietary supplements. The primary distinction between functional food and food
in general is in the claims made for benefits, other than nutritional benefits, attributed to
the functional food [71].

Unfortunately, most countries do not have a formal definition of functional food,
and therefore terms such as dietary supplements, nutraceuticals, or medical foods are
often used. Consequently, functional food may be defined as natural food enriched with
a health-promoting ingredient, food where some component has been added for spe-
cial health reasons, or food where the ingredient has been technologically or chemically
modified [72,73]. Accordingly, functional food rich in Se for prevention can be classified
into natural Se-rich food products, foods fortified with Se, and supplements.

3.1. Food Products Naturally Rich in Selenium Used in Cancer Prevention

The amount of Se in foods varies and depends upon geological and geographical
factors [74] (Table 1). For example, the Se content in plants depends upon the type of soil
and its natural Se content, the use of Se-enriched fertilisers, and Se bioavailability [75].
Depending on the ability to accumulate Se, plants may be classified as non-Se-accumulators,
secondary Se-accumulators, and Se-accumulators. Se-accumulators can contain up to
40,000 µg Se/g when grown in Se-rich environments, while non-accumulators rarely collect
more than 100 µg Se/g dry weight. The only Se-accumulator plant used as a food source is
Bertholletia excelsa, the origin of Brazil nuts, with some species of Brassica and Allium being
secondary Se-accumulators.

Table 1. Main food sources of selenium.

Food Source Average Content µg/g Reference

Brazil nuts 2−20 Parekh P. P. et al., 2008 [76]
Garlic 0.15 Larsen E. H. et al., 2006 [77]

Broccoli 0.13 * De Temmerman et al., 2014 [78]
Brussels sprouts 0.25 * De Temmerman et al., 2014 [78]
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Table 1. Cont.

Food Source Average Content µg/g Reference

Fish 0.4−4.3 Rayman M. P.et al., 2008 [27]
Meats (mussels) 0.3 Rayman M. P. et al., 2008 [27]
Yolk from egg 0.12−0.42 Pilarczyk B. et al., 2019 [79]

* Se content in dry mass.

The Se content in animal products is much lower and depends primarily on the Se
content of the feed. Most Se is found in fish (0.4−4.3 µg/g), organs such as the liver and
kidney (0.2−2.0 µg/g), and muscles (around 0.3 µg/g) [27]. Moreover, the food preparation
process affects the Se, with cooking in water reducing Se by 5–50%, depending on the type
of product [80,81].

3.2. Brazil Nuts

Brazil nuts obtained from the Bertholletia excelsa tree belong to the Lecythidaceae family
and are native to South America [82,83]. They are good sources of nutrients, including
protein, fibre, vitamins, minerals, and other bioactive compounds, and thus have various
potential health benefits [84,85]. Brazil nuts are the richest known food source of Se, with
an average concentration of 2 to 20 µg/g [76]. However, concentrations in individual nuts
vary considerably (0.03−512 µg/g) [86] depending on the Se content and bioavailability
in the soil [87,88]. Se bioavailability in Brazil nuts is the same as in selenite, which is used
to restore Se activity in tissues and selenoprotein; therefore, it is believed to be helpful
in cancer prevention [89] (Table 2). Ip et al. (1994) [90] showed that Se compounds in
Brazil nuts maintain the activity of selenoenzymes (glutathione peroxidase and type I
5′-deiodinase), suggesting that the Se bioavailability in Brazil nuts is similar to that of
selenite. In rats, Brazil nuts as a source of Se (16 and 30 µg/g) were as effective as a similar
amount of selenite in maintaining selenoenzyme activity and preventing mammary cancer.

Table 2. Effect of Brazil nuts on cancer prevention.

Form, Sources and Dose of Se Period Effect Experimental Model Reference

Two preparations of processed
Brazil nuts
Experiment 1: Final dietary Se
levels 2 and 3 µg/g (from Brazil
nuts content 16 µg Se/g.
Experiment 2: Final dietary Se
levels 1 and 2 µg/g (from Brazil
nuts 30 µg Se/g)
(dominant form of Se: MeSeCys)
vs.
Selenite—dietary Se content 1
and 2 µg/g

2 weeks and 6 months
(2 weeks before
administration of 7,12-
dimethylbenz(a)anthracene
and 6 months after
administration)

Mammary cancer: protection
increased Se retention in the
mammary gland, plasma, liver,
and kidney
Se in Brazil nuts and selenite are
similarly bioactive

Pathogen-free female
Sprague-Dawley rats

Ip C. et al.,
1994 [90]

Two Brazil nuts
Average 53 µg/g Se per day
(possible range: 20–84 µg Se)
Dominant form of Se: SeMet

14 weeks Increased plasma Se concentration
and enhanced GPx activity

59 New
Zealand adults

Thomson C. D.
et al., 2008 [89]

Brazil nuts and green extract,
alone and in combination
Six Brazil nuts
Average 48 µg/g Se per day

6 weeks

Colorectal cancer: regulated genes
associated with selenoproteins,
WNT signalling (β-catenin),
inflammation (NF-κB),
and methylation
The combination of Brazil nuts and
green extract does not provide
additional effects compared with
either agent alone

61 adults aged
52–75 years

Hu Y. et al.,
2016 [91]

MeSeCys, Se-methylselenocysteine; SeMet, selenomethionine.
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A beneficial anti-cancer prevention effect has also been observed in humans [92].
Thomson et al. (2008) [89] showed that 12 weeks of consuming 2 Brazil nuts (average
53 µg Se) per day increased the plasma Se concentration and enhanced glutathione per-
oxidase (GPx) activity. In an epidemiological observational study, the effect of 6 weeks
of supplemented Brazil nuts (6 nuts per day, 48 µg Se) and green tea extract (800 mg
of epigallocatechin-3-gallate) reduced the risk of colorectal cancer by regulating genes
associated with selenoproteins, WNT signalling (β-catenin), inflammation (NF-κB), and
methylation (DNMT1). However, the interventions did not significantly affect the plasma
CRP (C-reactive protein) level and rectal acetylated histone H3 or Ki-67 expression. Fur-
thermore, the combination did not provide additional effects compared to each agent
separately [91].

The beneficial anti-cancer effect of Brazil nuts may be related not only to their high
Se content but also to other nutrients, e.g., polyphenols. Studies by Yang et al. evidenced
the proliferation of HepG2 and Caco-2 cell lines, which were significantly inhibited in a
dose-dependent manner after exposure to nut extracts [93]. Even though Brazil nuts are
a convenient source of Se in the human diet, care should be taken to avoid the possible
toxic effects associated with a chronically high Se, Ba, and Ra intake. Therefore, the intake
should be limited to 30 g of nuts per day (around 5–6 nuts) [76,82,90,94].

It is worth noting the toxic values of barium and radium taken with food is not clearly
established; however, Ba toxicity has been reported with ingestions as small as 200 mg
Ba/kg/day [95,96].

3.3. Brassica Species

The Brassicaceae family is a large group with around 3000 species and occurs world-
wide [97]. The most commonly consumed species are broccoli, brussels sprouts, cauliflower,
and cabbage [98]. Brassica species have a high capacity to accumulate Se as it can replace Se
in the proteins, although this accumulation is limited by soil Se concentrations [78,99] and
is around 0.029−0.247 µg/g−1 in dry mass (turnip 0.029 µg/g, kale 0.046 µg/g, cauliflower
0.102 µg/g, broccoli 0.129 µg/g, and brussels sprouts 0.247 µg/g) [78]. Several members of
the Brassicaceae family accumulate up to 10 µg/g dry mass in their tissues when grown in
Se-rich soil, including broccoli, kale, and cabbage [100]. Se compounds such as MeSeCys
and selenoglucosinolates in Brassica tissues may have a potential anti-cancer activity [101].

In vivo and in vitro studies have confirmed the anti-cancer activity of Se-enriched
broccoli and broccoli sprouts in colon, mammary, intestinal, and prostate cancers. Fin-
ley et al. reported that 3 weeks of a diet of salinised broccoli in rats significantly decreased
the incidence of aberrant preneoplastic lesions (indicative of colon cancer), aberrant crypts,
and aberrant crypt foci. Additionally, the high-Se broccoli was more effective than selenate
or selenite for cancer prevention, probably related to the unique chemical form of Se in
broccoli (MeSeCys) [102]. Similar results were observed for Se-fortified brussels sprouts on
mammary cancer cells [103]. Davis et al. [104] fed mice with Se-enriched broccoli (2.1 mg
Se/kg in diet) and noted significantly fewer small intestinal tumours and a smaller total
tumour burden than in mice fed the control diet (0.11 mg Se/kg in diet).

Moreover, Zeng et al. showed that the Se-enriched broccoli activates specific pro-
apoptotic genes linked to tumour protein p53, activator protein 1, nuclear factor kappa-
light-chain-enhancer of activated B cells, and stress signal pathways in response to tumour
formation [105]. Tsai et al. [106] observed that Se-enriched broccoli extract inhibits the
growth of HCT116 and HCT116+Chr.3 human colon cancer cells. Se-enriched Japanese
radish sprouts, kale, and kohlrabi sprouts also showed cancer prevention activity; however,
there is less research available on these vegetables. A diet of Se-enriched Japanese radish
sprouts in rats caused a significantly lower incidence of mammary tumours compared to
the control group [107]. The Se-enriched kale and kohlrabi sprout extracts (≥1 mg/mL)
showed cytotoxic potency to all the studied SW480, SW620, HepG2, and SiHa human
metastatic cancer cell lines [108]. Detailed information on studies on Brassica species in
cancer prevention is presented in Table 3.
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Table 3. Effect of Brassica vegetables on cancer prevention.

Form, Sources and Dose of Se Period Effect Experimental Model Reference

Se-enriched broccoli
2 µg Se/g diet as high Se broccoli
(selenised broccoli—Se concentration
500 µg/g)

3 weeks
Colon cancer: decreases
aberrant crypts and
aberrant crypt foci

Fisher F-344 inbred
rats, weanling males

Finley J. W. et al.,
2000 [102]

Se-fertilised broccoli or broccoli florets
First experiment: 3 µg of Se/g of diet
Second experiment: 2 µg Se/g of diet

22 weeks

Mammary cancer:
significantly reduces the
number of tumours
Colon cancer: significantly
fewer aberrant colon crypts

Pathogen-free female
Sprague–Dawley rats

Finley J. W. et al.,
2001 [103]

Se-enriched broccoli sprout
(dominant form of Se: MeSeCys)
2.1 mg Se/kg diet or 0.11 mg Se/kg
(control group)

10 weeks
Intestinal cancer: small
tumours and a smaller
total tumour burden

Heterozygotic male
Min mice

Davis C. D. et al.,
2002 [104]

Se-enriched broccoli
(dominant form of Se: MeSeCys)
2.1 mg Se/kg diet or 0.11 mg Se/kg
(control diet)

10 weeks
Intestinal cancer: activates
specific pro-apoptotic
genes linked to tumour

Heterozygotic male
Min mice

Zeng H. et al.,
2003 [105]

Se-enriched Japanese radish sprouts
(dominant form of Se: MeSeCys)
8.8 µg of Se/in diet or
under 1 µg of Se/g in a control diet

13 weeks

Mammary cancer:
significantly lowers the
incidence of tumours in the
Se-enriched sprout-added
test diet group than in the
basal diet group

Virgin female
Sprague–Dawley
strain rats

Yamanoshita O.
et al., 2007 [107]

Se-enriched broccoli sprouts
(dominant form of Se: MeSeCys)
24.2 µM

72 h

Prostate cancer: inhibits
cell proliferation, decreases
prostate-specific antigen
secretion, and
induces apoptosis

In vitro model Abdulah et al.,
2009 [109]

Se-enriched broccoli extract
1.08 × 10−4 M Se and
2.50 × 10−7 M Se

2 × 48 h

Colon cancer: inhibits the
growth of HCT116 and
HCT116+Chr.3 human
colon cancer cells

In vitro model Tsai C. F. et al.,
2013 [106]

Se-fortified kale and kohlrabi sprouts
(dominant form of Se: SeMet)
0.07−0.17 mg of Se/g dried weight

24 h

Human metastatic cancer:
cytotoxic effect on SW480,
SW620, HepG2, SiHa cell
lines (at ≥1 mg/mL
sprouts extract)

In vitro model Zagrodzki P. et al.,
2020 [108]

MeSeCys, Se-methylselenocysteine; SeMet, selenomethionine.

Vegetables from the Brassica family are characterised by potential anti-cancer activ-
ity; however, their beneficial effect is dependent on their Se content. In the review by
Ramires et al. (2020) [110], it was noted that functional food, such as broccoli powder
or kale powder, was available on the market, but was relatively expensive. Powdered
vegetables can potentially contain higher amounts of Se but labels lack information about
the Se content.

3.4. Allium Species

Allium species belongs to the Alliaceae family and are one of the oldest cultivated
vegetables used as food [111]. The most popular Alliums widely used all over the world
are garlic (Allium sativum) and onion (Allium cepa) [112]. Some in vitro and in vivo studies
showed Allium species, especially garlic, have an anti-cancerogenesis effect [113–115]. It
has been suggested that the chemopreventive effect of vegetables is due to the various
active compounds, especially organosulphur, organoselenium, and polyphenols [116–121]
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(Table 4). The differences in the anti-cancer effect may be related to the dose of active
substances and processing losses such as thermal treatment [113].

Table 4. Effect of allium vegetables on cancer prevention.

Form, Sources and Dose of Se Period Effect Experimental Model Reference

Se-enriched garlic 150 µg/g Se
(concentration in diet 3 µg/g Se)
vs.
Regular garlic 0.06 µg/g Se (concentration
in diet 0.0012 µg/g Se)
vs.
Selenite 3 µg/g Se (in diet 3 µg/g Se)
vs.
Control group
(dominant form of Se in Se-enriched garlic:
MeSeCys)

26 weeks

Mammary cancer:
inhibited total tumour
yield and tissue Se levels
were lower in animals
ingesting the Se-enriched
garlic than selenite

Pathogen-free female
Sprague–Dawley rats

Ip C. et al.,
1992 [122]

Experiment I
- Control (0.1 µg/g Se)
- 0.85% regular garlic
(0.1 µg/g Se)
- 1.7% regular garlic
(0.1 µg/g Se)
0.85% high Se garlic
(1 µg/g Se)
- 1.7% high Se garlic
(2 µg/g Se)
Experiment II
- Control (0.1 µg/g Se)
- 3.5% regular onion
(0.1 µg/g Se)
- 7% regular onion
(0.1 µg/g Se)
3.5% high Se onion
(1 µg/g Se)
- 7% high Se onion
(2 µg/g Se)
(dominant form of Se in Se-enriched garlic:
MeSeCys)

8 months
and 2 weeks

Mammary cancer:
consumption does not
cause excessive Se
accumulation in tissues

Female
Sprague–Dawley rats

Ip C. et al.,
1994 [123]

Se-enriched garlic 112 µg/g and 1355 µg/g
in dry weight (final concentration in diet
2 µg/g Se)
vs.
Control group 0.1 µg/g Se in diet
(dominant form of Se in Se-enriched garlic:
MeSeCys)

3 weeks
and
22 weeks

Mammary cancer:
tumour reduction was
due to the effect of Se not
the effect of garlic

Pathogen-free female
Sprague–Dawley rats

Ip C. et al.,
1995 [124]

Se-enriched garlic diet concentration 3 µg/g
Se
vs.
Sodium selenite diet concentration 3 µg/g
Se
vs.
Control group 0.01 µg/g Se in diet
(dominant form of Se in Se-enriched garlic:
MeSeCys)

7 weeks

Mammary cancer:
inhibited total tumour
yield, as well as the
proliferation, survival
and matrix degradation
of endothelial cells
critical for angiogenesis

Female
Sprague–Dawley rats

Jiang C. et al.,
1999 [121]
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Table 4. Cont.

Form, Sources and Dose of Se Period Effect Experimental Model Reference

Se-enriched garlic
(296 µg/g Se)
and Se-enriched yeast (1922 µg/g Se)
(final concentration in diet 1, 2 or 3 µg/g Se)
vs.
Control group 0.1 µg/g Se in diet
(dominant form of Se in Se-enriched garlic:
γ-glutamyl-MeSeCys)

6 weeks

Mammary cancer:
decreased morbidity
and mortality
Se-garlic was significantly
more effective in
suppressing the
development of
premalignant lesions and
adenocarcinomas than
Se-yeast despite
Se-enriched yeast having a
higher total tissue
Se content

Pathogen-free female
Sprague–Dawley rats

Ip C. et al.,
2000 [125]

MeSeCys, Se-methylselenocysteine; γ-glutamyl-MeSeCys, γ-glutamyl-Se-methylselenocysteine.

The Se concentration in regular Allium species is <0.5 µg/g, while in Se-enriched garlic
and onion, Se concentrations in dry mass vary from 68−1355 µg/g and 96−601 µg/g,
respectively [26,33,126–128]. Obviously, the concentration of Se in Se-enriched vegetables
is dependent on the intensity of Se fertilisation [50].

There are two dominant forms of Se in selenised garlic, MeSeCys and γ-glutamyl-
MeSeCys [129]. In humans, MeSeCys and γ-glut-MeSeCys enter the methylated pool of
Se and are transformed into MeSeH by β-lyase. It has been shown that for MeSeCys, the
production of a monomethylated Se metabolite from MeSeCys via β-lyase is a key step in
its cancer chemoprevention [130]. As methylselenol has been recognised as an anti-cancer
compound, the consumption of foodstuff containing this precursor of MeSeH is generally
recommended [62].

Natural allium and that cultivated with Se fertilisation have a protective role in
cancer prevention [113,129]. However, Se-enriched garlic is more anti-carcinogenic than
regular garlic or other chemically defined sources of Se such as selenite or SeMet [131,132].
Furthermore, the anti-cancer activity of Se-enriched garlic with a moderate Se content
(100–300 µg/g Se dry weight) was very similar to that of garlic with a high Se content
(>1000 µg/g Se) [50].

The chemopreventive effect of Se-enriched allium vegetables has been observed in
mammary cancer. Ip et al. showed that garlic cultivated with selenite fertilisation has
a chemopreventive activity in the rat 7,12-dimethylbenz[a]anthracene (DMBA)-induced
mammary tumour model [122]. Furthermore, consumption of Se-enriched garlic and
Se-enriched onion does not cause excessive Se accumulation in tissues with no observed
perturbation in the maintenance of functional selenoenzymes even at a high dose of sup-
plementation [123]. Moreover, Se-enriched garlic is more potent than Se-enriched yeast in
suppressing the growth of premalignant lesions and the formation of adenocarcinomas in
the mammary gland of carcinogen-treated rats [125].

However, Allium vegetable consumption may be limited by personal preferences as
well as their characteristic taste and smell. In addition, to meet the Se demand, a much
larger amount of natural garlic than that enriched with Se must be consumed [133].

3.5. Se-Enriched Yeast

Se-enriched yeast is a common form of Se used for dietary supplements [134]. Produc-
tion of Se-enriched yeast is more manageable than the production of other Se-enriched foods
(e.g., Se-enriched broccoli or Se-enriched onion) and less costly [135,136]. It is produced
by the anaerobic fermentation of Saccharomyces cerevisiae in a Se-enriched medium [137].
The main seleno compound in Se-enriched yeast is selenomethionine, representing approx-
imately 60–85% of the total Se [134,138,139], followed by selenocysteine (approximately
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2–4% of all types of Se). The Se content in the commercial dried product does not exceed
2.5 mg Se/g (range 1−2.4 mg Se/g) [139].

It has been suggested that the use of Se-enriched yeast, in the case of deficiency, has a
multidirectional beneficial effect on human health [140]. However, the anti-cancer effect
of Se-enriched yeast is controversial. Some studies confirmed the beneficial effects of Se-
enriched in cancer [134,141], but the use of Se-enriched yeast in the prevention of prostate
cancer development did not prove beneficial and in some studies increased the risk of
developing cancer [142–144].

The effect of Se-enriched yeast on chemoprevention in humans is shown in Table 5.
Clark et al. (1996), in a double-blind, randomised, placebo-controlled study, observed
the effect of supplementation with Se-enriched yeast on skin cancer. Patients treated for
4.5 (mean 2.8) years with 50 µg of Se-enriched yeast (200 µg of Se) were not protected against
the development of basal or squamous cell carcinoma of the skin. However, the analysis
of secondary endpoints supports the hypothesis that Se supplementation may reduce the
incidence of lung, colorectal, and prostate cancer [7]. In a re-analysis of the data to include a
further 25 months of blinded intervention, Se-enriched yeast supplementation significantly
reduced total and prostate cancer incidence [134,145]. Yu et al. [141] observed no primary
liver cancer after 4 years of supplementation with selenised yeast (200 µg Se/day) compared
to the placebo group.

Table 5. Effect of Se-enriched yeast on cancer prevention in human studies.

Form, Sources and
Dose of Se Period Effect Experimental Model Reference

High-Se brewer’s yeast
tablet (200 µg Se/day)
vs.
Placebo

4.5 ± 2.8 years

Skin cancer: Se
supplementation does not
protect against the
development of basal
or squamous cell
carcinomas but may reduce
total cancer, lung,
colorectal, and prostate
cancer incidence, as well as
lung cancer mortality

1312 patients with a history
of basal cell or symptoms
of cell carcinomas,
randomly assigned to the
Se-treatment group
(n = 653) and placebo
group (n = 659);
Mean age 63 years

Clark L. C. et al.,
1996 [7] and
Combs G. F.
et al., 1997 [146]

Selenised yeast tablets
200 µg Se/day
vs.
Placebo

4 years

Primary liver cancer: no
primary liver cancer was
observed in 113 people
supplemented with Se
during the 4-year study,
while 7 of the placebo
group were diagnosed
with primary liver cancer

226 participants randomly
assigned to the study
group (n = 113) and
placebo group (n = 113);
aged 21−63 years

Yu S. Y. et al.,
1997 [141]

Se-enriched yeast
247 µg Se/day
vs.
Placebo

9 months + 3 months
placebo after
supplementation

Prostate cancer: increased
blood glutathione levels
and significantly decreased
prostate-specific
antigen levels

36 healthy adults randomly
assigned to the study
group (n = 17) and placebo
group (n = 19);
aged 19−43 years

El-Bayoumy K.
et al., 2002 [144]

High-Se yeast
(200 or 400 µg Se/day)
vs.
Placebo

patients in the United
States—5 years,
patients in New
Zealand no more than
3 years

Prostate cancer: no
significant differences in
the time to prostate cancer
diagnosis between placebo
and study groups

699 men at high risk for
prostate cancer randomly
assigned to 200 µg Se/day
(n = 234), 400 µg Se/day
(n = 233) or placebo group
(n = 232); aged < 80 years

Algotar A. M.
et al., 2013 [143]

Current human clinical trial results have not demonstrated a chemopreventive effect
of Se-enriched yeast on prostate cancer cells. El-Bayoumy et al. reported that 9 months of
Se-enriched yeast supplementation increased blood glutathione levels and significantly
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decreased prostate-specific antigen levels in the Se-enriched yeast group [144]. Algotar et al.
found no significant differences in the time to prostate cancer diagnosis after several years
of supplemented high-Se yeast (200 µg and 400 µg Se/day).

3.6. Other Se-Enriched Food Products

Other functional Se-enriched products include mushrooms, tea, and milk. Their anti-
tumour activity has been demonstrated in lung, breast, colorectal, and murine sarcoma
cancer cells (Table 6).

Table 6. Effect of Se-enriched food products on cancer prevention.

Form, Sources and Dose of Se Period Effect Experimental Model Reference

Se-enriched milk proteins
vs.
Se-enriched yeast
(dominant form of Se: SeMet)
Four groups:
- milk protein control diet
(0.068 µg/g Se)
- dairy-Se diet (0.5 µg/g Se)
- dairy-Se diet (1 µg/g Se)
- milk protein control + yeast-Se
diet (1 µg/g Se)

4 weeks

Colorectal cancer: Se-enriched
milk regulates colonic GPx-2 and
selenoprotein P
mRNA expression

Male C57BL/6J mice Hu Y. et al.,
2010 [147]

Se-enriched milk protein
(150 µg/d)
vs.
Se-enriched yeast
(150 µg/d)
(dominant form of Se: SeMet)

6 weeks

Colorectal cancer: selenoprotein
gene expression (selenoproteins
P, GPx-1, GPx-2) was regulated
by dietary Se independent of
plasma Se levels, and
GPx activity
Se-enriched milk had a more
sustained effect than
Se-enriched yeast

23 healthy volunteers
randomly assigned to
consume Se-enriched milk
(n = 12) or Se-enriched
yeast (n = 11);
aged 52−79 years

Hu Y. et al.,
2011 [148]

Se-enriched Ganoderma lucidum
0.045 to 0.36 µM SeGLP-2B-1

24, 48 or
72 h

Breast cancer: inhibited the
growth of breast cancer cells in a
time- and dose-dependent
manner and increased caspase-9
and caspase-3 activity

MCF-7 human breast
cancer cells

Shang D. et al.,
2011 [149]

Se-enriched Ulva fasciata
A549 cells were treated with 3, 4,
5 and 6 µg/mL

72 h

Lung cancer: induced apoptosis
(sub-G1 phase cells,
upregulation of p53,
and activation
of caspase-3 in lung cancer cells)

A549 human lung
cancer cells

Sun X et al.,
2017 [150]

Se-containing tea
polysaccharides (Se-TPS) from
Se-enriched tea
vs.
Se-enriched yeast (Se 89 µg/g)
Six groups:
- control
- Se-yeast 100 mg/kg
- TPS 100 mg/kg
- Se-TPS 50 mg/kg
- Se-TPS 100 mg/kg
- Se-TPS 200 mg/kg

13 days

Murine sarcoma (S-180): Se-TPS
significantly inhibited the
proliferation of
S-180 cells in a
dose-dependent manner;
in vivo, Se-TPS inhibited tumour
growth in a
dose-dependent manner

In vitro model
and Kunming mice

Cheng L. et al.,
2018 [151]
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Table 6. Cont.

Form, Sources and Dose of Se Period Effect Experimental Model Reference

Se-enriched Cordyceps militaris
NCI-H292 cells were treated
with 0, 4, 8 and 12 mg/mL
and
A549 cells were treated with 0,
12.5, 25 and 50 mg/mL

24 h
Lung cancer: cell poliferation,
apoptosis in non-small cell
lung cancer

Human lung cancer cell
lines NCI-H292 and A549

Luo L. et al.,
2019 [152]

SeMet, selenomethionine.

Hu et al. showed that Se-enriched milk (1 µm/g) may protect against colorectal cancer
in a mouse model, with the upregulation of GPx-2 and selenoproteins in the colon crucial
for chemoprevention [147]. A subsequent study of 26 healthy human participants showed
rectal selenoprotein gene expression (i.e., SeP, GPx-1 and GPx-2) is significantly regulated
by dietary Se supplementation independent of Se plasma levels and GPx activity. This
regulation depends on the form of dietary Se supplementation, with Se-enriched milk
having a more sustained effect than Se-enriched yeast [148].

In an in vitro study, certain species of mushrooms such as Ganoderma lucidum used
as traditional medicine in Asia have potential anticancer effects in non-small-cell breast
cancer [149]. The potential anticancer activity was also observed in non-small-cell lung
cancer for other mushroom species such as Cordyceps militaris [152]. The anticancer activity
against lung cancer cells was observed with Ulva fasciata also known as sea lettuce, a
common green alga consumed in many parts of the world [150].

Cheng et al. showed that Se-containing tea polysaccharides (Se-TPS) from Se-enriched
tea significantly inhibited the proliferation of S-180 cells in a dose-dependent manner.
In an animal model, Se-TPS oral administration effectively inhibited tumour growth in
a dose-dependent manner. The anti-tumour effect of Se-TPS was significantly higher
than that of tea polysaccharides and Se-yeast due to the synergistic effect of Se and tea
polysaccharides [151].

4. Concluding Remarks—The Chemoprevention Effect of Se-Enriched Products

In vitro and animal studies confirmed the beneficial chemoprevention effect of func-
tional products rich in Se; however, this was not confirmed in clinical trials. Consequently,
future clinical research should determine the appropriate dosage and form of Se in food
products as well as use an appropriate study sample (determine their dietary Se intake,
effect of processing, and solubility of Se and exclude influencing factors, e.g., gender). It is
of note that the chemopreventive dose of Se (200 µg/day) is much higher than the adequate
intake (70 µg/day for adults) and is near the upper limit for this element (255 µg/day), and
therefore control of human intake is required. A summary of the chemoprevention effects
of Se-enriched products is shown in Table 7.

Table 7. Summary of the chemoprevention effects of Se-enriched products.

Products
Potential

Chemopreventive
Effect

Availability on the
Market

Recommended Daily
Dose * Comments/References

Brazil nuts Mammary and
colorectal cancer

Easily
accessible 4 nuts 1

- The Se content depends
on the origin of the nuts
- Excess may lead to toxic
effects [89,94,153]

Se-enriched
broccoli

Mammary, colon,
intestinal, prostate,

human metastatic cancer

Not yet available for sale
Only dried broccoli

powder with unspecified
Se content is available

Probably Se-enriched
broccoli powder 0.15−1 g

(depending on the
enrichment process)

- The Se content depends
on the enrichment process
- No human clinical trials
with Se-enriched broccoli
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Table 7. Cont.

Products
Potential

Chemopreventive
Effect

Availability on the
Market

Recommended Daily
Dose * Comments/References

Se-enriched
garlic Mammary cancer

Not yet available for sale
Only powdered garlic

with unspecified Se
content is available

Probably Se-enriched
broccoli powder 0.15−1 g

(depending on the
enrichment process)

- The Se content depends
on the enrichment process
- No human clinical trials
with Se-enrich garlic

Se-enriched
yeast

Skin cancer,
primary liver cancer Easily accessible

Around 0.5 g (depending
on the enrichment

process)

- No significant effect on
prostate cancer in a clinical
human study

* 200 µg/day was adopted as the chemopreventive dose [7,19]. 1 The average Se content in Brazil nuts was
assumed to be 10 µg/g, and one nut has an average of 5 g.

5. Conclusions

Se may have the potential to prevent cancer but most evidence to date is from animal
studies. The basis for future research on the validity of the introduction of Se as a preventive
factor in humans may be randomised control and epidemiological studies conducted in
humans. The beneficial anti-cancer properties of Se and the difficulty in meeting the daily
requirements of this micronutrient in some populations make it crucial to continue the
research. However, the question remains: what is the optimal form of Se for chemopreven-
tion and what biomarkers should be selected to predict those who will derive the most
benefit? Additionally, further research should focus on finding products characterised by
more bioavailable and less toxic forms of Se within the context of the anti-cancer activity.
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