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Abstract: Artificial Intelligence (AI) technologies have been powerful solutions used to improve food
yield, quality, and nutrition, increase safety and traceability while decreasing resource consumption,
and eliminate food waste. Compared with several qualitative reviews on AI in food safety, we
conducted an in-depth quantitative and systematic review based on the Core Collection database of
WoS (Web of Science). To discover the historical trajectory and identify future trends, we analysed the
literature concerning AI technologies in food safety from 2012 to 2022 by CiteSpace. In this review, we
used bibliometric methods to describe the development of AI in food safety, including performance
analysis, science mapping, and network analysis by CiteSpace. Among the 1855 selected articles,
China and the United States contributed the most literature, and the Chinese Academy of Sciences
released the largest number of relevant articles. Among all the journals in this field, PLoS ONE and
Computers and Electronics in Agriculture ranked first and second in terms of annual publications and
co-citation frequency. The present character, hot spots, and future research trends of AI technologies
in food safety research were determined. Furthermore, based on our analyses, we provide researchers,
practitioners, and policymakers with the big picture of research on AI in food safety across the whole
process, from precision agriculture to precision nutrition, through 28 enlightening articles.

Keywords: artificial intelligence; food safety; bibliometric review; CiteSpace

1. Introduction

Artificial intelligence (AI), as a far-reaching emerging technology, has experienced
birth, ups, and downs, and the harvest, not only impacting our personal lives but also
essentially transforming how firms make decisions [1]. Machine learning (ML) is currently
a main branch of AI, integrating probability theory, statistics, and convex optimization
to resolve the problems of computer vision, speech recognition, natural language pro-
cessing, robot control, etc. [2]. Compared to other ML techniques, deep learning (DL)
reveals excellent performance in image recognition, speech recognition, molecule predic-
tion, particle accelerator data analysis, brain circuit reconstruction, etc. [3]. It is known
that AI has three pillars, namely, data, algorithms, and computing power. By contrast,
the food safety system has arisen as one of the most important application scenarios that
use data-intensive approaches to drive the sustainable development of human beings and
minimize its environmental impact.

Food safety is extremely important for human health and survival and deserves more
advanced technologies to protect both consumers from foodborne illness and firms from
reputational damage [4]. AI and big data, regarded as the fourth industrial revolution,
already have a significant impact on the food industry by increasing food production,
quality, and nutrition, and reducing resource consumption and waste [5]. Furthermore,
recent studies have explored AI-based methods to deal with dietary problems that usually
lead to chronic diseases such as hypertension [6].

Several reviews exist on AI applications in farm management, food processing, and food
nutrition [7–10]. Still, panoramic scanning is scarce. On the other hand, bibliometric methods
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can explore the evolution and landscape of research, thus capturing the historical trajectory
and future trends over time [11]. In this study, we make the following contributions:

• We selected 1855 articles as research samples to explore which AI technologies were
applied for a sustainable food system from farm to fork;

• Our review elaborated on the development trend and current research hotspots on AI
technologies in food safety and predicted the future research direction;

• This review should be helpful for researchers and practitioners to comprehensively
understand the application status of AI technologies in the food sector;

• We have elaborated on the countries, institutions, and journals that have contributed
much to the research on AI technologies in food safety.

The rest of this article is arranged as follows: First, we briefly outlined the development
of AI in Section 2. Second, we outlined the overall research process in Section 3. Third, we
portrayed the distribution in related subfields (e.g., food science technology, environmental
science, remote sensing, nutrition dietetics information, etc.) and virtualized the science
mapping (e.g., co-citation analyses and co-authorship analyses) in Section 4. Then, we
conducted a network analysis (e.g., keyword co-occurrence analysis and cluster analysis)
in Section 5. Finally, the advantages derived from the implementation of AI in food safety
were listed, as well as the future expectations in the domain of the whole process.

2. Theoretical Background

AI has enabled computer systems or algorithms to learn insight, knowledge, and
patterns from data and perform specific tasks without explicitly being programmed [12].
Machine learning is a subcategory of AI that implements intelligence. Deep learning, a
subfield of machine learning, has revolutionised many domains of machine intelligence,
such as computer vision, machine translation, and medical diagnosis. This technique
enables machines to achieve competitive or even superior performance over humans.
Due to the significant advantages in pattern recognition and image processing, CNN-
based approaches have been the most popular architectures for food classification, quality
detection, and nutrition evaluation [13].

Convolutional neural networks (CNNs) have especially become standard models for
image recognition since AlexNet [14] significantly outperformed the existing contemporary
approaches on the ImageNet LSVRC-2010 dataset and achieved absolute advantages in the
ILSVRC-2012 competition. CNNs extract features and recognize patterns from the input
images by sliding filters across the image. There has been a lot of interest in designing
deeper and more complex CNN architectures to improve the representation capability
further. State-of-the-art CNNs, such as DenseNet [15], ResNet [16], and VGGNet [17], have
demonstrated that the increased depth has led to significant performance improvement. In
particular, the residual skip connections introduced the problem of vanishing gradients
and the degradation problem, allowing for an extremely deep architecture design.

Despite this, this approach inevitably increases computational costs and memory
requirements. Much effort has been made to strike an excellent trade-off between model
performance and computation efforts. CNNs built on depth-wise separable convolution
and group convolution, such as ShuffleNet [18], ResNeXt [19], and MobileNet [20], have
raised the possibility of mobile applications performed on a platform with limited compu-
tational resources. These networks are designed to pursue the best accuracy with fewer
parameters and lower inference latency. More recently, neural architecture search (NAS)
has demonstrated its potential in automatically designing CNNs that are comparable or
even superior to those CNNs manually designed by human experts. Representative work
includes EfficientNet [21], MnasNet [22], and NASNet [23], each of which utilises reinforce-
ment learning to discover the optimal architecture from a search space of candidates. The
focus of CNN architecture design has shifted from designing deeper and more complex
networks to designing more efficient networks with high performance, either manually
or automatically.
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The above CNNs with powerful representation capability are further generalised to
various domains using transfer learning techniques. By pre-training these networks on a
large-scale dataset such as ImageNet with 1000 classes, these networks are equipped with
prior knowledge and converge faster on the dataset of the target domain during fine-tuning.
Transfer learning is constructive, especially when the dataset size is small. With a limited
amount of data, the network might be unable to learn meaningful features. The pre-training
process on a large-scale dataset allows CNNs to inherit well-trained low-dimensional filters
that require many data to train.

Since food safety involves multiple disciplines, including environmental science, food
science, economics, and agriculture [24], we strived to cover the following topics in this
study: exploring the current AI-based applications and examples in the food industry,
discovering the important research hotspots and pieces of literature, summarizing the
trajectories and trends of AI development in food safety, identifying potential gaps, and
creating a guideline for further research.

3. Method and Data
3.1. Method and Software

Our literature review has two steps: a systematic visualised review and a bibliometric
analysis. In contrast to the prior studies [25,26] in AI research using a natural language
processing toolkit or heuristic approach, we analysed the relevant data and the visual
networks by CiteSpace to explore historical origins, evolutionary trajectories, and future
trends in our research.

3.2. Sample

In the process of literature collection, we used SCI Expand search in the Core Collection
database of WoS (Web of Science). Even though there are several bibliographic databases,
such as Scopus, Google Scholar, Dimensions, Microsoft Academic, etc., WoS was more
suitable for large-scale bibliometric analysis with high reliability [27]. Through the research
on the previous papers in relevant fields, we determined the search formula as follows:
TS = (“food safety” OR “foodborne illness” OR “nutrition” OR “food security” OR “food
quality”) AND (“Artificial intelligence” OR” data clustering” OR “data mining” OR “neural
network*” OR “Bayes* network” OR “semantic segmentation” OR “supervised learning”
OR “unsupervised clustering” OR “feature* selection” OR “machine learning” OR “feature*
extraction” OR “expert* system*” OR” deep learning” OR “big data”).

A total of 2378 documents were obtained according to the literature review search
process. Based on bibliometric analysis [28,29], when conducting literature retrieval in WoS,
we set three criteria for sample screening, namely “time span”, “document type”, and “WoS
categories”. Then, we set the published years of the collected documents to the period from
2012 to 2022 and limited the types of documents to articles and reviews. After that, through
the screening of WoS categories, records in categories less relevant to the focus of this study
were excluded. Finally, 1855 primary literature samples of research on AI in the food safety
field from 2012 to 2022 and 55,282 references to these pieces of literature were generated.

3.3. Analyses

We divided the selected 1855 samples into 15 fields, such as food science and technol-
ogy, environmental science, remote sensing, nutrition dietetics, etc. After the descriptive
analysis, we deployed science mapping [30], including co-citation and keyword occurrence
analyses. Then, we further screened 143 highly cited and high-quality articles by network
metrics and gained seven thematic clusters. Finally, 28 articles were selected and stud-
ied to present the AI applications in food safety across the whole process from precision
agriculture to precision nutrition, as shown in Figure 1.
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4. Analysis and Results
4.1. Current Status of Al Research
4.1.1. Annual Trends

A number of publications have been released since 2019, as shown in Figure 2, indicat-
ing explosive interest in this subject. Due to the constant progress of AI technology, more
and more applications are being employed to predict crop yields, control food quality, and
reduce foodborne illness. The increasing trend seems set to continue, and more studies
may emerge.
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4.1.2. Distribution of Publications

Figure 3 shows the analysis of the discipline category of the literature pieces. After
analysing the discipline categories of all the selected pieces of literature, the top five dis-
cipline categories with the highest number of publications were food science technology
(410 articles), environmental sciences (280 articles), remote sensing (215 articles), nutrition
dietetics (193 articles), and imaging science information systems (179 articles). This indi-
cated that the interdisciplinary integration characteristics of AI in food safety were evident.
Furthermore, these results implied that the research on AI had expanded into various fields.
However, there are still some significant gaps in the depth and breadth of these fields.
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4.1.3. Publication Timeline

In order to specifically describe the research on AI in food safety, we chose the five
most popular subfields and then drew the publication timeline, as shown in Figure 4. The
annual publications in these five fields presented a gradually increasing trend from 2012 to
2022, but the number of published papers before 2018 fluctuated to varying degrees. Since
2018, three fields, namely food science technology, environmental sciences, and nutrition
dietetics, have been growing rapidly. This trend meant rapid expansion and recent advances
in AI technologies. In addition, we noticed a declining trend in the fields of remote sensing,
imaging science, and photographic technology after 2021. In summary, although AI in food
safety increased attention in general, there were still significant differences in each subfield
concerning AI development.
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4.2. Co-Citation Analyses
4.2.1. Author Co-Citation Analysis

Author co-citation analysis depicted the co-citation author network generated by
CiteSpace to show the interrelationships among cited authors and identify the authors
with strong influence [31]. Figure 5 demonstrates the co-citation network of AI in food
safety research during 2012–2022. To show the author co-citation network clearly, we
just displayed the authors with the most cited references in each time slice. There were
421 nodes and 1892 links in the author co-citation network. These nodes were plotted with
citation tree rings containing several time slices. The citation tree rings’ thickness indicates
the authors’ citation frequency in the corresponding time slice.
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4.2.2. Reference Co-Citation Analysis

Reference co-citation networks represented the structure and development of a field in
detail, which was composed of the nodes and connections among co-cited references [32].
The reference co-citation network from 2012–2022 is shown in Figure 6, containing 622 effec-
tive nodes and 2264 links. Every node in Figure 6 showed an article cited by other literature,
while the links represented their co-cited relationship. These nodes were also displayed in
terms of tree rings to show the citation frequency of an article. The thickness of citation
tree rings indicates the citation frequency of these articles in the corresponding time slice.
The thickest nodes with tree rings indicate the most important references and lay out the
starting point of related research. The article with the thickest citation rings, published in
Remote Sensing of Environment, introduced Google’s powerful computing capability and
bravely solved many social problems such as diseases, food security, and water resources
management [33]. The highest citation frequency of this paper also indicated that the
application of remote sensing technology in food safety had been one of the hot issues in
recent years.

4.2.3. Citation Burst Analysis

Citation burst analysis [34] was used to search the representative articles with high
citation growth rates. A citation burst is an abrupt increase in citations for an article. For
example, if the article’s citations suddenly increased in recent years, this reference had a
strong citation burst [35]. As shown in Figure 7, the articles with strong influences signified
the new pivotal turning points in the subfield research and indicated profound prospects
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and future trends. The red lines represented the time range of a reference citation burst,
and the strength index meant the citation growth rate.
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Among the 15 references, the burst strength of LeCun et al. (2015) [3] was 12.05, the
strongest during the period from 2018 to 2020. This paper provided a clear introduction
and profound interpretation of deep learning, which laid a strong theoretical foundation
for subsequent research on deep learning and made a great contribution to research on
AI in food safety. In addition, Schmidhuber (2015) summarized DL in the supervised and
unsupervised neural networks, feedforward, and recurrent neural network [36].

In the subfield of food science technology, hyperspectral and multispectral imaging
were proven to be effective non-destructive detection techniques for assessing food quality
objectively and accurately and may be of interest in computer vision applications for the
precise prediction of bacterial loads [37–42].

Furthermore, AI applications can be classified into two types: food safety evaluation
and authenticity claims [43]. In the subfield of nutrition dietetics, Zeevi et al. (2015) de-
signed an algorithm that combined personal metrics with behaviour habits to customize
dietary intake by predicting glycemic responses [44]. In the subfield of remote sensing,
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Mosleh et al. (2015) reviewed the fusion of optical images, microwave technologies, and AI
methods for mapping areas and forecasting yield [45]. In the subfield of environmental
sciences, Xiong et al. (2017) proposed a comprehensive approach using pixel-based classifi-
cation and object-based segmentation for mapping the geographical extent of croplands,
which was of great importance for field management [46]. In the subfield of imaging science
information systems, Simonyan and Zisserman (2015) [17] proposed two advanced CNN
models to improve accuracy, while He et al. (2016) [16] presented a novel algorithm to
simplify the training of CNNs. Recently, machine learning has been increasingly applied to
explore the rapidly increasing foodborne pathogen genome resources and their metadata.
Tree boosting is a highly effective machine-learning method and has been widely used by
researchers [47].

4.2.4. Journal Co-Citation Analysis

Journal co-citation analysis revealed the structure and distribution of knowledge by
displaying the network of the co-cited journals. As shown in Figure 8, there were 30 journals
containing 159 effective nodes and 845 links. Every node represents a journal in the datasets.
These nodes were plotted in terms of tree rings to show the citation frequency of a journal.
The thickness of the citation tree rings indicates the citation frequency of these journals
in the corresponding time slice. The links between these nodes display the co-citation
relationships of different journals. The most frequently cited journals among the selected
datasets are PLoS ONE, Computers and Electronics in Agriculture, Nature, Remote Sensing, and
Scientific Reports. From 2019 to 2022, the growth rate of citations of these five journals was
significantly higher than before, as shown in Figure 9.

Foods 2023, 12, x FOR PEER REVIEW 9 of 33 
 

 

 

Figure 8. The journal co-citation network of AI related publications. 

 

Figure 9. The number of co-citation articles of the top 5 journals in 2012~2022. 

4.3. Co-authorship Analysis 

The institute and country co-authorship network revealed the cooperative 

relationships among different countries and academic units [48]. As shown in Figure 10, 

there were 391 effective nodes and 582 links, including the top 50 institutes. These nodes 

were plotted in terms of tree rings—the thicker the tree rings, the more active the 

institutes. As shown in Figure 11, the top five institutions in terms of the number of 

publications were Chinese Acad Sci, Univ Chinese Acad Sci, China Agr Univ, Zhejiang 

Univ, Chinese Acad Agr Sci, etc. The results of co-analysis by institutions and countries 

indicated that China had paid much attention to AI applications in food safety. 

Figure 8. The journal co-citation network of AI related publications.

4.3. Co-authorship Analysis

The institute and country co-authorship network revealed the cooperative relation-
ships among different countries and academic units [48]. As shown in Figure 10, there were
391 effective nodes and 582 links, including the top 50 institutes. These nodes were plotted
in terms of tree rings—the thicker the tree rings, the more active the institutes. As shown
in Figure 11, the top five institutions in terms of the number of publications were Chinese
Acad Sci, Univ Chinese Acad Sci, China Agr Univ, Zhejiang Univ, Chinese Acad Agr Sci,
etc. The results of co-analysis by institutions and countries indicated that China had paid
much attention to AI applications in food safety.
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5. Keywords and Hot Spots
5.1. Keyword Co-Occurrence Analysis

In order to explore the topological features and historical trajectory of a single theme
or area, we can analyse the evolution of co-keyword networks as well as keyword co-
occurrence networks [49]. We used keyword time-zone visualization to track the themes
of AI research and depicted the hot spots in each time slice, as shown in Figure 12. We
selected the keyword as the node type in CiteSpace and set the TopN to 50 and the time
slice to 1. The year under keywords from 2012 to 2022 indicated when the hot spots first
appeared. In each column, the nodes were arranged from bottom to top in descending
order of frequency. Based on the keyword time zone map, we divided the application of AI
in the food field into three stages.
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Stage 1 (2012–2014): The initial stage of the AI algorithm model constructed in food
safety. In this stage, hyperspectral imaging technology combined with AI models was used
for food quality assessment and non-destructive testing of food products’ internal and ex-
ternal characteristics. The artificial neural network (ANN) algorithm was gradually applied
to deal with image data collected by near-infrared spectroscopy and other instruments [50].
In the first stage, the high-frequency words, including classification, model, identification,
etc., indicated the relevant algorithms were used to build models to predict crop yields or
classify products.

For instance, compared with the widely used partial least squares regression (PLS), a
combined strategy of back propagation artificial neural network (BP-ANN) and genetic
algorithm (GA) was proven to be much more efficient [51]. In this case, the root-mean-
square error (RMSE) was compared with the results of near-infrared spectroscopy (NIR)
after calculating the spectra data. If RMSE was unacceptable, it would return to the input
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layer until the RMSE was less than the pre-set value. The RMSE of the prediction (RMSEP)
between the measured and predicted values is estimated as follows:

RMSEP =

√
Σi(ŷi − yi)

2

n
(1)

Stage 2 (2015–2017): The flourishing period of machine learning applied in the food
industry. ML, accompanied by big data and remote sensing technologies, was widely used
in food nutrition, yield prediction, and the agricultural environment. In addition, DL-based
visual recognition algorithms and edge computing-based service computing paradigms
were developed for dietary assessment [52]. The high-frequency words included machine
learning, system, big data, remote sensing, etc. In general, the large-scale research on and
applications of ML in this period provide ideas and inspiration for the next stage.

For instance, two ML models, model-based recursive partitioning (MOB) and Bayesian
neural networks (BNN), were applied in forecasting crop yields for the Canadian Prairies [53].
Especially if there were more years with dramatically variable yield data, the MOB and
BNN functions would likely identify the slight nonlinear relationship and thus outperform
the linear techniques such as multiple linear regression (MLR). In this BNN model, the
yield was expressed as a nonlinear function:

ŷ = ∑
j

w̃jtanh
(
Σiwjixi + bj

)
+ b̃ (2)

where ŷ was the model output, tanh denoted the hyperbolic tangent function, and the
parameters, w̃j, b̃,wji, and bj, were determined by fitting the nonlinear function to the data.

Stage 3 (2018–2022): The boom period of deep learning applied in precision food safety.
As a branch of ML, deep learning disrupted many food safety domains, from algorithms to
architectures, from precision agriculture to precision nutrition [54,55]. The high-frequency
keywords at this stage were deep learning, artificial intelligence, convolutional neural
network, etc. Moreover, advances in DL have made great contributions to integrated
precision food safety across industry, research, and healthcare.

A case in point is a method to detect coffee adulteration. Based on the previously
trained ResNet (He et al., 2016) [16], the convolutional algorithms with transfer learning
were designed to reduce the required images and final mathematical model costs. The
models can distinguish different types of coffee with errors below 1.0% and detect adulter-
ations below 1.4%, thus benefiting producers, distributors, and consumers [56]. Formally,
the building block of ReNet was defined as:

y = F (x, {wi}) + x (3)

Here x and y were the input and output vectors of the layers considered. The function
F (x, {wi}) represented the residual mapping to be learned.

5.2. Research Hotspots

Through cluster analysis of the keyword, we summarized the research hotspots of AI
technologies in food safety. With CiteSpace, we selected the keyword as the node type and
set the TopN to 50 to analyse the top 50% with the highest frequency each year. In addition,
the year of each slice was set to 1, and the threshold value to (2, 2, 20) (4, 3, 20) (3, 3, 20).
Seven clusters were obtained: remote sensing, food quality, personalized nutrition, big
data, food safety, deep learning, and artificial neural networks.

As shown in Figure 13, N = 494, E = 3146, density = 0.0258, modularity Q = 0.4477
(>0.3), and silhouette S = 0.7082 (>0.7), indicating significant clustering structure and the fit
goodness of the graph [57]. Popular topics, keywords, authors, and journals of 143 highly
cited and high-quality articles are listed in Table 1.
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Table 1. Topics, keywords, authors, and journals.

Topic Keyword Author(s) Journal

Remote
sensing

Food security Maimaitijiang et al., 2019 [58]
1. Remote Sensing

of Environment

Random forest Hao et al., 2015 [59] 2. Remote Sensing

Vreugdenhil et al., 2018 [60] 3. Remote Sensing

Impact Han et al., 2020 [61] 4. Remote Sensing

Climate
change

Teluguntla et al., 2018 [62]
5. Isprs Journal of

Photogrammetry and
Remote sensing

Cao et al., 2020 [63] 6. Remote Sensing

Time series
Vegetation
Index

Duke et al., 2022 [64]
7. International Journal of

Remote Sensing

Ma et al., 2021 [65]
8. Remote Sensing

of Environment

Remote
sensing

Hu et al., 2021 [66]
9. Remote Sensing

of Environment

Tao et al., 2019 [67] 10. Remote Sensing
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Table 1. Cont.

Topic Keyword Author(s) Journal

Food
quality

Machine
learning

Saha and Manickavasagan,
2021 [68]

11. Current Research in
Food science

Jiménez-Carvelo et al., 2019 [69]
12. Food Research

International

Classification Ropodi et al., 2016 [43]
13. Trends in Food Science

& Technology

Pu et al., 2014 [70] 14. Meat Science

Prediction Bhargava and Bansal, 2021 [71]
15. Journal of King Saud

University-Computer
and Information Sciences

Lopes et al., 2019 [72] 16. Sensors

Barbon et al., 2018 [73] 17. Journal of Spectroscopy

Identification Kim et al., 2013 [74] 18. Food Chemistry

Lin et al., 2022 [75]
19. Critical Reviews in Food

Science and Nutrition

Crusiol et al., 2022 [76] 20. Precision Agriculture

Food quality Talukdar et al., 2022 [77] 21. Agricultural Systems

Liao et al., 2021 [78]
22. Theoretical and

Applied Climatology

Quality Rezapour et al., 2021 [79] 23. Sustainability

Guo et al., 2021 [80] 24. Ecological Indicators

Löw et al., 2018 [81]
25. GIScience &

Remote Sensing

Support
Vector
Machine

Çetin, 2022 [82]
26. Journal of Food

Processing and
Preservation

Meenu et al., 2021 [83]
27. Trends in Food Science

& Technology

Magnus et al., 2021 [84] 28. Food Control

Kollia et al., 2021 [85] 29. Electronics

Lee et al., 2021 [86] 30. Sensors

Zhang et al., 2020 [87] 31. Sustainability

O’Hagan et al., 2012 [88] 32. PLoS ONE

Reščič et al., 2021 [89] 33. Nutrients

Barabási et al., 2020 [90] 34. Nature Food

Chungcharoen et al., 2022 [91]
35. Computers and

Electronics
in Agriculture
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Table 1. Cont.

Topic Keyword Author(s) Journal

Habib et al. 2022 [92]
36. Journal of King Saud

University-computer
and Information Science

Qiu et al., 2021 [93]
37. Computers and

Electronics
in Agriculture

Kim et al., 2022 [94] 38. Food Control

Ndraha et al., 2021 [95] 39. Food Control

Parent et al., 2021 [96] 40. PLoS ONE

Hengl et al., 2021 [97] 41. Scientific Reports

Mangmee et al., 2020 [98] 42. Food Control

Bouzembrak et al., 2019 [99] 43. Food Control

Atas et al., 2012 [100]
44. Computers and

Electronics
in Agriculture

Saetta et al., 2023 [101] 45. Food Control

Liu et al., 2022 [102] 46. Food Control

Shen et al., 2022 [103] 47. Food Control

Cardoso and Poppi, 2021 [104] 48. Food Control

Alfian et al., 2020 [105] 49. Food Control

Davies et al., 2021 [106] 50. Nutrients

Westhues et al., 2021 [107]
51. Frontiers in

Plant Science

Yan et al., 2021 [108] 52. Genome Biology

Shete et al., 2020 [109] 53. Plant Phenomics

Ni et al., 2016 [110]
54. Frontiers in

Plant Science

Ma et al., 2014 [111] 55. Plant Cell

Personalized
nutrition

Nutrition Zeevi et al., 2015 [44] 56. Cell

Wang and Hu, 2018 [112]
57. Lancet Diabetes

& Endocrinology

Risk
Triantafyllidis,
and Tsanas, 2019 [113]

58. Journal of medical
Internet research

Zmora and Elinav, 2021 [114] 59. Nutrients

Health Alfian et al., 2017 [115]
60. Journal of

Food Engineering

Sundaravadivel et al., 2018 [116]
61. IEEE Transactions on

Consumer Electronics

Lei et al., 2018 [117] 62. IEEE Access
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Table 1. Cont.

Topic Keyword Author(s) Journal

Data mining Chen et al., 2012 [118]
63. Expert Systems

with Applications

Guo et al., 2019 [119] 64. Molecular Plant

Liu et al., 2020 [120] 65. IEEE Access

Disease Wang and Yue, 2017 [121] 66. Food Control

Kirk et al., 2022 [122] 67. Advances in Nutrition

Gunasekara et al., 2018 [123] 68. Nucleic Acids Research

Bigdata

System Frelat et al., 2016 [124]

69. Proceedings of The
National Academy of
Sciences of The United
States of America

Zhang et al., 2013 [125]
70. International Journal of

Distributed
Sensor Networks

Model Misra et al., 2020 [126]
71. IEEE Internet of

Things Journal

Jung et al.,2021 [127]
72. Current Opinion

in Biotechnology

Rai, 2022 [128]
73. Molecular

Biology Reports

Yu et al., 2013 [129] 74. BMC Genomics

Big data Al-Adhaileh and Aldhyani,
2022 [130]

75. PEERJ
Computer Science

McLennon et al., 2021 [131] 76. Agronomy Journal

Kumar et al., 2021 [8] 77. Journal of Food Quality

Artificial
intelligence Qian et al., 2020 [132]

78. Critical Reviews in Food
Science and Nutrition

Katiyar et al., 2022 [133] 79. Journal of Food Quality

Chai et al.,2022 [134]
80. Trends in Food Science

& Technology

Management Zhao et al., 2020 [135] 81. Frontiers in Genetics

Khan et al., 2020 [136] 82. Sensors

Liu et al., 2022 [137] 83. Science Bulletin

Morgenstern et al., 2021 [138] 84. Advances in Nutrition

Food
Safety

Food safety Kittichotsatsawat et al.,
2021 [139]

85. Sustainability

Growth Oscar, 2017 [140]
86. International Journal of

Food Science
and Technology

Network Kyaw et al., 2022 [141]
87. Critical Reviews in Food

Science and Nutrition
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Table 1. Cont.

Topic Keyword Author(s) Journal

Temperature Erdogdu et al., 2017 [142]
88. Food Engineering

Reviews

Nogales et al., 2022 [143] 89. Food Control

Deep
learning

Deep learning Zhou et al., 2019 [13]
90. Comprehensive reviews

in food science and food
safety

Zhang et al., 2019 [144] 91. Remote Sensing

Liu et al., 2021 [145]
92. Trends in Food Science &

Technology

Kaur et al., 2022 [146] 93. Sensors

Wolanin et al., 2020 [147]
94. Environmental research

letters

Wongchai et al., 2022 [148] 95. Ecological Modelling

Hu et al., 2020 [149] 96. IEEE Access

Feature
extraction

Zambrano et al., 2018 [150]
97. Remote Sensing of

Environment

Xiao et al., 2022 [151] 98. Frontiers in Nutrition

Zhu et al., 2021 [152]
99. Current Research in

Food Science

Shao et al., 2022 [153] 100. Foods

Chen et al., 2021 [154] 101. Nutrients

Veeramani et al., 2018 [155] 102. BMC Bioinformatics

Zhai et al., 2022 [156] 103. PLoS ONE

Image Dey et al., 2022 [157]
104. Computers and

Electronics in
Agriculture

Rong et al., 2019 [158]
105. Computers and

Electronics in
Agriculture

Too et al., 2019 [159]
106. Computers and

Electronics in
Agriculture

Chakravartula et al., 2022 [160] 107. Food Control

Estrada-Pérez et al., 2021 [161] 108. Food Control

Vo et al., 2020 [162] 109. Food Control

Izquierdo et al., 2020 [163] 110. Food Control

Convolutional
neural
network

Hafiz et al., 2022 [164]
111. Journal of King Saud

University-Computer
and Information Sciences

Ma et al., 2021 [165]
112. Food Research

International
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Table 1. Cont.

Topic Keyword Author(s) Journal

Ahn et al., 2019 [166] 113. Sensors

Yang et al., 2021 [167] 114. Plant Methods

Zingaretti et al., 2020 [168]
115. Frontiers in Plant

Science

Ma et al., 2018 [169] 116. Planta

Tay et al., 2020 [170] 117. Nutrients

Artificial
neural

network

Neural
network Huang et al., 2014 [171] 118. Food Chemistry

Delloye et al., 2018 [172]
119. Remote Sensing

of Environment

Das et al., 2018 [173]
120. International Journal

of Biometeorology

Geng et al., 2017 [174] 121. Food Control

Al-Mahasneh et al., 2016 [175]
122. Food Engineering

Reviews

Anandhakrishnan and Jaisakthi
2022 [176]

123. Sustainable Chemistry
and Pharmacy

Chamundeeswari et al.,
2022 [177]

124. Microprocessors
and Microsystems

Artificial
neural
network

Zhao et al., 2022 [178]
125. Infrared Physics &

Technology

Sujarwo et al., 2022 [179] 126. Sustainability

Pham et al., 2020 [180] 127. IEEE Access

Tao et al., 2019 [181]
128. Journal of

Integrative Agriculture

Raj and Dash, 2022 [182]
129. Critical Reviews in Food

Science and Nutrition

Kondakci and Zhou, 2017 [183]
130. Food and

Bioprocess Technology

Bortolini et al., 2016 [184]
131. Journal of

Food Engineering

Okut et al., 2013 [185]
132. Genetics

Selection Evolution

González-Camacho et al.,
2012 [186]

133. Theoretical and
Applied Genetics

Performance Lv et al., 2022 [187] 134. Genomics

Li et al., 2022 [188] 135. Food Control

Shi et al., 2021 [189]
136. Computers and

Electronics
in Agriculture

Kuzuoka et al., 2020 [190] 137. Food Control
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Table 1. Cont.

Topic Keyword Author(s) Journal

Tao et al., 2020 [191] 138. Sensors

Tian et al., 2020 [192]
139. Computers and

Electronics
in Agriculture

Geng, 2019 [193] 140. Food Control

Wang et al., 2017 [194] 141. Food Control

Silva et al., 2015 [195] 142. Food Control

Sadhu et al., 2020 [196]
143. Journal of Food

Process Engineering

5.2.1. Cluster #0—Remote Sensing

The name of Cluster #0 was remote sensing. Remote sensing data were usually
integrated with socio-economic factors, soil data, and climate data properties based on the
Google Earth Engine platform to build ML or DL models for predicting yield. Compared
to traditional ground-based field surveys, empirical statistical models, and crop growth
models, ML and DL methods improved yield prediction accuracy at low cost and thus were
significant to food security and policymaking, particularly in the continually changing
environments of population and climate [58,61,63]. In addition, remote sensing data can
also be applied to crop monitoring, mapping, and classification by random forest (RF)
modelling [59,60,62,64].

5.2.2. Cluster #1—Food Quality

The name of Cluster #1 was food quality. Non-destructive testing technology has been
crucial in monitoring food quality, rapid identification, and classification. ML methods,
such as support vector machine (SVM), linear discriminant analysis (LDA), back propa-
gation artificial neural network (BP-ANN), k-nearest neighbours, J48 decision tree, and
random forest (RF), can be used to evaluate the degree of freshness of meat and the grade
product quality of cereal crops precisely, at the microscopic level, and have thus played
a vital role in food quality control [73]. Especially in the case of walnut processing, ML
techniques such as extreme learning machine (ELM) and SVM were applied to obtain the
most optimal performance in foreign object identification and food quality evaluation [84].

5.2.3. Cluster #2—Personalized Nutrition

The name of Cluster #2 was personalized nutrition. Nutritional diets and healthy
behaviour are critical factors in preventing and controlling non-communicable diseases.
Machine learning, mobile technology, and the Internet of Things (IoT) have been applied
in the personalized nutrition domain to develop robust and impactful data-driven inter-
ventions [44,113,114]. A web-based expert system for nutrition diagnosis was proved to be
more accurate than a human dietitian [118]. In addition, based on the rough set theory, Lei
et al. (2018) proposed an improved algorithm to select the corresponding core ingredients,
with the recommended food exerting positive effects on diseases [117]. Despite advances,
those applications were still in their infancy, and much research was needed before they
were widely applied in clinical and public health settings [112].

5.2.4. Cluster #3—Big Data

The name of Cluster #3 was big data. With the rapid development of IoT, data-driven
food safety governance was the subject of much scholarly research. Zhang et al. (2013)
proposed an algorithm to track pollution sources and trace back potentially infected food in
the markets [125]. The impact of environmental factors, such as temperature, pesticides, and
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rainfall, was estimated at the farm level on agricultural crop yield [130,131]. Unmanned
aerial systems-based high throughput phenotyping system has become a precise and
reliable platform at field scales and has even sped up breeding cycles in many crops [127].
In addition, big data gathered from social media was analysed for consumer behaviour and
used for food product development [126]. Augmented/mixed reality technologies may
integrate with other emerging techniques to become one interesting future direction in the
food sector [134].

5.2.5. Cluster #4—Food Safety

The name of Cluster #4 was food safety. Salmonella is an important factor causing
foodborne illness, while the prediction models based on ML or DL play an increasingly
significant role in the assessment of food safety. To eliminate Salmonella in ground chicken,
Oscar (2017) developed a multiple-layer feedforward neural network model [140]. An
automated food processing line guided by AI was conceptually designed to improve
the microbial detection and quality evaluation of liquid foods [141]. Virtualization and
mathematical modelling represented a new and sophisticated strategic tool for designing
and innovating the food processing system [142].

5.2.6. Cluster #5—Deep Learning

The name of Cluster #5 was deep learning (DL). DL has been widely applied in
food safety, from farm practices to dietary intervention. DL architectures provide critical
tools for crop disease prediction and automated agricultural farm monitoring [144,149].
Xiao et al. (2022) introduced the application of DL in food detection systems from hardware
to software [151]. Liu et al. (2021) introduced a CNN model to feature extractors for
complex food, such as cereals, meat and aquatic products, fruits, and vegetables [145].
Zhu et al. (2021) reviewed the application of traditional ML and DL methods, including
machine vision techniques, in food processing [152]. Tay et al. (2020) discussed current
dietary assessment methods, including DL applications in food volume estimation [170].
To evaluate nutrient content quickly and accurately, Shao et al. (2022) introduced a non-
destructive detection method based on Swin Transformer as the backbone network for
image feature extraction [153].

5.2.7. Cluster #6—Artificial Neural Network

The name of Cluster #6 was the artificial neural network (ANN). Without complete
information and even any prior knowledge, ANN models can still identify nonlinear rela-
tionships and predict dependent response, and thus were applied in food image analysis,
quality detection, food safety risk prediction, crop distribution, and yield prediction, and
various thermal and non-thermal food-processing operations [173,177,179,182,188,191,197].
Geng et al. (2017) introduced a predictive model based on AHP integrated extreme learning
machine (ELM), rather than a traditional artificial neural network (ANN), to monitor the
food safety system in China [193]. Pham et al. (2020) and Anandhakrishnan and Jaisakthi
(2022) separately detected early diseases on plant leaves with small disease spots through
ANN and deep convolutional neural network (DCNN) [176,180]. Zhao et al. (2022) pro-
posed a hybrid convolutional network combined with hyperspectral imaging for wheat
seed classification [178]. Fu et al. (2022) employed a radial basis function neural network
model to detect heavy metal contents in saline–alkali land [198].

6. Discussion
6.1. Theoretical Implications

Next-generation food systems should provide high-quality, nutritious food in a more
sustainable way with regard to molecular breeding, agricultural production, food process-
ing and distribution, and food nutrition [199]. After re-screening the 143 articles obtained
in the previous section, we selected a total of 28 articles and divided them into the above
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four application research areas to explore the roadmap for the future. Table 2 lists the AI
techniques used in each subfield and the titles of related articles.

Table 2. AI technologies and applications.

Field Sample Functionality Method(s) Result(s)

Molecular
Breeding

Crops
(Yan et al., 2021) [108] Genomic prediction LightGBM

LightGBM exhibited superior
performance of genomic
selection prediction.

Maize
(Liu et al., 2022). [137]

Germplasm
exploitation MODAS

MODAS can accelerate
association analysis of
genotypic data.

Pig and maize
(Zhao, et al., 2020) [135] Genomic prediction SVM

The prediction model based on
SVM outperformed BayesR
and GBLUP in two data sets.

Sea cucumber
(Lv et al., 2022) [187] Genomic prediction

DNN-MCP
RR-GBLUP Bayes B
DNN

DNN-MCP can greatly
improve genomic
prediction ability.

Agricul-tural
Production

Tomato
(Anandhakrishnan and
Jaisakthi, 2022) [174]

Leaf disease
recognition DCNN

DCNN model gained an
accuracy of 98.40% for the
testing set.

Farm crop
(Wongchai et al., 2022) [148]

Crop disease
prediction

DAL_CL
RNN

Experimental results showed
an accuracy of 96%.

Rice
(Qiu et al., 2021) [93]

Nitrogen Nutrition
Index

AB, ANN, KNN,
PLSR, RF SVM

The RF algorithms performed
the best, with the R2 ranging
from 0.88 to 0.96 and RMSE
ranging from 0.03 to 0.07.

Soybean
(Crusiol et al., 2022) [76] Monitoring of yield PLSR,

SVR

Field-based SVR models
presented the highest
accuracies for yield mapping.

Grape leaves
(Kaur et al., 2022) [146]

Identification of leaf
diseases Hy-CNN TL, LR

For leaf disease recognition,
Hy-CNN has the highest
accuracy of 98.7%.

Corn
(Ma et al., 2021) [65]

Prediction of
corn yield BNN

The BNN model can predict
corn yield in normal and
abnormal years with
extreme weather.

Crop
(Hu et al., 2021) [66] Crop type mapping RF-r

The spatial consistency
between the sub-pixel crop
distribution map generated by
temporal MODIS and the
medium-high resolution
reference map reached 0.75.

Rice
(Guo et al., 2021) [80] Yields prediction MLR, BPNN,

SVM, RF

In yield predictions, SVM
obtained the
highest precisions.

Crop
(Tao et al., 2019) [67]

Cropping intensity
mapping BNPK

For cropping intensity
index mapping, BNPK model
can settle intra-class variations.

Agricultural productivity
(Zambrano et al., 2018) [150]

Prediction of
agricultural
productivity

OLR, DL
OLR, compared to DL, only
showed a slightly
smaller accuracy.
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Table 2. Cont.

Field Sample Functionality Method(s) Result(s)

Food Processing
and

Distribu-tion

Antioxidant peptide
(Shen et al., 2022) [103] Feature extraction LR, LDA, SVM,

KNN

The ML-based predictor was
effective in mining the
multifunctional peptides.

Walnut
(Rong et al., 2019) [158]

Objectives
detection CNN

The proposed method
obtained an accuracy of 95%
for foreign object detection.

Walnut
(Magnus et al., 2021) [84]

Non-destructive
food classification

ELM, SVM LDA,
QDA
PLS-DA

An ML-based algorithm,
compared to classical
techniques, improved the
performance metric by up
to 80%.

Bacterial biofilms
(Lee et al., 2021) [86]

Detection of
bacterial biofilms

DT, KNN LDA,
PLS-DA

KNN algorithm proved a high
performance in predicting the
biofilm region.

Barley flour
(Lopes et al., 2019) [72]

Barley flour
classification

CVS, SVM, KNN,
J48, RF

The accuracy of this method
ranged from 75.00%
to 100.00%.

Milk
(Liu et al., 2022) [102] Anomaly detection BN

Food safety problems in the
supply chain could be
predicted by detecting severe
changes in related fields.

Coffee (Chakravartula et al.,
2022) [160]

Coffee adulterant
quantification CNN

The results confirmed the
feasibility of the CNN
algorithm with excellent
performances (R2 > 0.98).

Kimchi supply chain
(Alfian et al., 2017) [115]

Food traceability
system MLP

In the case of missing sensor
data, MLP proved to be the
best model with high
prediction accuracy.

Fresh food
(Bortolini et al., 2016) [184]

Fresh food
distribution LP

The expert system
outperformed the traditional
cost minimization model.

Food Nutrition

Daily diet
(Shao et al., 2022) [153]

Nutritional
evaluation ST, FFM

Swin-Nutrition provided a
novel non-destructive
detection technology.

Restaurant food
(Chen et al., 2021) [154]

Nutrition
assessment.

Calorie Mama
(DL model)

The DL model obtained an
accuracy of 75.1%.

Soft drinks (Hafiz et al.,
2022) [164]

Classification and
dietary assessment

DCNN with
transfer learning

The DCNN-based transfer
learning model showed an
accuracy of 98.51%.

Infant diet
(Sundaravadivel et al.,
2018) [116]

Automated
nutrition
monitoring

Bayesian network
Smart-Log predicted
8172 foods for 1000 meals with
98.6 percent accuracy.

Chinese dishes
(Ma et al., 2021) [165] Nutrient estimation DCNN

The DCNN model showed the
highest performance for
protein estimation.

6.1.1. AI Technologies in Molecular Breeding

Since traditional breeding technologies are limited, laborious, and time-consuming
selection processes, AI accelerated the breeding cycle [88,128]. ML was used as a pre-
diction model to identify different patterns in large-scale datasets based on prior knowl-
edge [111,200]. For instance, Zhao et al. (2020) [135] chose the most optimal hyperparam-
eters and kernel function for the SVM model to explore the genomic-based prediction
performance in pigs and maize. To gain the possible significant loci, Liu et al. (2020)
constructed the maize gene, SNP locus, and carotenoid components network using the
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conditional Gaussian Bayesian network learning method [120]. Lv et al. (2022) proposed
minmax concave penalty (MCP) regularization for sparse deep neural networks (DNN-
MCP), which can provide the optimal sparse structure for DNN and then greatly improve
their ability to predict genomes, especially for the genomes of three quantitative traits [187].
Recently, a software package MODAS (multi-omics data association analysis), applied
dimensionality reduction (DR) to accelerate association analysis of genotypic data [137].
ML and DL have played increasingly crucial roles in exploiting multi-omics data and
discovering knowledge of molecular breeding [201].

6.1.2. AI Technologies in Agricultural Production

Sustainable agricultural production is critical to food security, considering the growing
populations and limited resources. ML methods, such as SVM, RF, and KNN, have been
used to forecast agricultural production and productivity and guide precision fertiliza-
tion [79–81,91,93,94,189]. Deep learning, especially CNN-based image processing, was
combined with gene technology, remote sensing, cloud computing, and IoT to improve
the efficiency and effectiveness of the food supply chain in the whole process [139,202].
Several examples indicated applications of CNN models to monitor and predict leaf dis-
eases [146,148,157,176].

Recent successful cases include the application of XGBoost in the fields of crop yield
prediction and oyster culture environment monitoring [95,203]. On the other hand, RNN,
BNN, and some ML models, such as SVM, SVR, RF, and ANFIS, have been employed
for yield predictions [65,76,204]. In addition, more and more model predictive control
methods involving agricultural infrastructure, field management, product processing,
and greenhouses promote the transformation from conventional agriculture to precision
agriculture [205].

6.1.3. AI Technologies in Food Processing and Distribution

Food safety accidents may be caused by cross-contamination in food processing and
distribution facilities, and there is much room for future AI applications in food traceability
systems [65,86,115,132]. A computer vision system based on CNN or ML models, such as
SVM, KNN, J48, and RF, has been seen as a potential technique for automatic food classi-
fication, adulterant quantification, and feature extraction [72,84,103,104,145,158,160,161].
ML algorithms have also been used to improve the effectiveness of the drying system
for orange slices [82]. Swarm intelligence (SI), a subfield of AI, was employed to provide
an efficient approach to fresh food distribution [133]. The assessment and monitoring
model developed by SVM can predict the risks incurred during transportation and thus
improve food safety [87]. A three-objective distribution planner with an expert system
outperformed the traditional cost optimization model and was applied to settle the distri-
bution of fresh foods [184]. Another BN-based dynamic unsupervised anomaly detection
model suggested that severe changes in related domains of the food supply chain may lead
to food safety problems [102]. It can be predicted that the fusion of image processing with
ML and DL from shallow to deep will create many opportunities for food processing and
distribution [206].

6.1.4. AI Technologies in Food Nutrition

AI technologies were also widely applied in food nutrition since dietary problems can
lead to other chronic diseases and thus increase the risk of heart attacks [112]. With missing
data, ML algorithms generally outperformed the statistical methods for predicting diet
quality [89]. Dietary monitoring systems based on ML methods even could automatically
assess dietary intake [44,113]. Shao et al. (2022) introduced a non-destructive detection
method, combining Swin Transformer with a feature fusion module, which was applied to
evaluate the nutrient content of food [153]. Chen et al. (2021) implemented a proprietary
deep-learning model that provided a nutrition assessment of restaurant food [154]. Sundar-
avadivel et al. (2018) proposed a nutrition monitoring system using a Bayesian network



Foods 2023, 12, 1242 23 of 33

for nutritional balance [116]. Lei et al. (2018) developed an algorithm based on rough
sets to select nutritional ingredients to aid recovery from some diseases [117]. Sadhu et al.
(2020) applied DE and SA algorithms, combined with the ANN-based processing model, to
explore the nonlinear correlation between cooking parameters and nutritional values and
found that frying time significantly impacts food nutrition [196]. Undoubtedly, ML will
develop and expand new methods to reveal the relationship between food composition
and nutrition [90]. Furthermore, the results obtained by a DCNN-based model for nutrient
estimation and dietary assessment shed light on potential future improvements [164,165].

6.2. Practical Implications

This study provides vital hints for researchers and practitioners in related fields. First,
our review elaborated on the development trend and current research hotspots on AI
technologies in food safety and predicted the future research direction, which is helpful
for researchers to clarify the state of current research and grasp the direction and focus
of future research. Practitioners in related industries can gain useful information from
our research, have a deep insight into the development potential of AI technology, and
grasp the future development direction of the industry. Second, this review may be helpful
for researchers and practitioners to comprehensively understand the application status
of AI technologies in the food sector. For example, which links in the food industry tried
to change the status quo of food safety? What are AI technologies being widely used to
promote the development of food safety? How do these technologies apply to the food
safety field? Third, this paper has elaborated on the countries, institutions, and journals
that have contributed much to the research on AI technologies in food safety. The research
results should be helpful to researchers and practitioners in considering where to get more
cooperation opportunities and where to seek more valuable information and help.

6.3. Limitations

Although the database used in our bibliometrics research was powerful and widely
used by many researchers, the possibility of missing data from the WoS cannot be ruled
out. Moreover, all the analysis work in this paper was based on the literature samples
we retrieved rather than all published articles in the field of AI. Therefore, some relevant
literature samples may not be included due to the scope of WoS. In addition, with the
breakthrough in AI technologies, more and more fields have begun to emphasize AI
applications. Some research on AI that indirectly impacts the field of food safety may not
appear in the article title, abstract, and keywords. These articles may not appear in the
literature samples we have searched. Therefore, to fully interpret the future applications
of AI, we suggested that subsequent researchers expand the search scope and make the
literature samples for analysis more comprehensive, which is helpful for gaining some
insights from the literature distributed in other fields. Furthermore, we suggested that
different databases (such as Google Scholar) be used to search for literature samples in
future research. A comprehensive analysis should be made of literature samples searched
from multiple databases.

7. Conclusions

In this paper, a bibliometric review was conducted to promote the development of
research on AI in food safety. Specifically, the visualization tool CiteSpace was used in this
review to perform several key bibliometric analyses on literature samples retrieved from
the WoS database and to explore the development status and evolution trend of AI in food
safety in a visual way.

In addition, we listed the leading AI technologies in four promising research direc-
tions and summarized the existing literature. After that, we gave a brief overview of
these articles. Classification algorithms based on ML and DL greatly improve genomic
prediction ability and thus have been widely used in molecular breeding [108,135,137,187].
Due to the advantages of image recognition, ML and DL have been applied to monitor
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diseases and predict the yield in agriculture production [65–67,76,80,93,146,148,150,174].
Computer vision systems based on ML or DL represented great potentiality in food pro-
cessing and distribution [72,84,86,102,103,115,158,160,184]. In addition, non-destructive
detection methods based on ML or DL shed light on nutrient estimation and dietary
assessment [116,153,154,164,165].

In conclusion, our study clarified the future development direction of research on AI
in food safety by systematically and comprehensively understanding the state of current
research and its trends.
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Abbreviations

AB adaptive boosting
ABC artificial bee colony
AI artificial intelligence
ANFIS adaptive network-based fuzzy inference system
ANN artificial neural network
BN Bayesian network
BNN Bayesian neural network
BNPK Bayesian network model fusing prior knowledge
BP-ANN back propagation artificial neural network
BPNN back propagation neural network
BayesR Bayesian mixture model
CGBN conditional Gaussian Bayesian network
CNN convolutional neural network
CS cuckoo search
CVS computer vision system
DAL_CL deep attention layer-based convolutional learning
DCNN deep convolutional neural network
DE differential evolution
DNN deep neural network
DNN-MCP MCP regularization for sparse deep neural network
DR dimensionality reduction
DS data science
DT decision tree
FFM feature fusion module
ELM extreme learning machine
GA genetic algorithm
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GBLUP genomic best linear unbiased predictor
GP Gaussian processes
GS greed search
Hy-CNN hybrid convolutional neural network
K2 K2 algorithm for Bayesian network structure
KNN k-nearest neighbours
LDA linear discriminant analysis
LightGBM light gradient boosting machine
LR logistic regression
LP linear programming
J48 J48 decision tree
MCP minmax concave penalty
ML machine learning
MLP multilayer perceptron
MLR multiple linear regression
MOB model-based recursive partitioning
MODAS multi-omics data association studies
MODIS moderate resolution imaging spectra radiometer
MOLO multi-objective local optimization
NIR near-infrared spectroscopy
NN neural network
OLR optimal linear regression
PC Phenocentric
PLS partial least squares regression
PLS-DA partial least-squares discriminant analysis
PLSR partial least squares regression
QDA quadratic discriminant analysis
R2 determination coefficient
RF random forest
RF-r random forest regression
RMSE root-mean-square error
RNN recurrent neural network
ResNet residual network
SA simulated annealing
SNP single nucleotide polymorphism
ST Swin Transformer
SVM support vector machine
SVR support vector regression
TL transfer learning
XGBoost extreme gradient boosting

References
1. Haenlein, M.; Kaplan, A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif.

Manag. Rev. 2019, 61, 5–14. [CrossRef]
2. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
3. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
4. Kudashkina, K.; Corradini, M.G.; Thirunathan, P.; Yada, R.Y.; Fraser, E.D. Artificial Intelligence technology in food safety: A

behavioral approach. Trends Food Sci. Technol. 2022, 123, 376–381. [CrossRef]
5. Kim, S.S.; Kim, S. Impact and prospect of the fourth industrial revolution in food safety: Mini-review. Food Sci. Biotechnol. 2022,

31, 399–406. [CrossRef] [PubMed]
6. Tahir, G.A.; Loo, C.K. A comprehensive survey of image-based food recognition and volume estimation methods for dietary

assessment. Healthcare 2021, 9, 1676. [CrossRef]
7. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674.

[CrossRef]
8. Kumar, I.; Rawat, J.; Mohd, N.; Husain, S. Opportunities of artificial intelligence and machine learning in the food industry. J. Food

Qual. 2021, 4535567. [CrossRef]

http://doi.org/10.1177/0008125619864925
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.tifs.2022.03.021
http://doi.org/10.1007/s10068-022-01047-6
http://www.ncbi.nlm.nih.gov/pubmed/35464250
http://doi.org/10.3390/healthcare9121676
http://doi.org/10.3390/s18082674
http://doi.org/10.1155/2021/4535567


Foods 2023, 12, 1242 26 of 33

9. Marvin, H.J.; Bouzembrak, Y.; Van der Fels-Klerx, H.J.; Kempenaar, C.; Veerkamp, R.; Chauhan, A.; Stroosnijder, S.; Top, J.;
Simsek-Senel, G.; Tekinerdogan, B. Digitalisation and Artificial Intelligence for sustainable food systems. Trends Food Sci. Technol.
2022, 120, 344–348. [CrossRef]

10. Deng, X.; Cao, S.; Horn, A.L. Emerging applications of machine learning in food safety. Annu. Rev. Food Sci. Technol. 2022, 12,
513–538. [CrossRef]

11. Zhang, Y.; Zhang, M.; Li, J.; Liu, G.; Yang, M.M.; Liu, S. A bibliometric review of a decade of research: Big data in business
research–setting a research agenda. J. Bus. Res. 2021, 131, 374–390. [CrossRef]

12. Smith, P.D. Hands-On Artificial Intelligence for Beginners: An Introduction to AI Concepts, Algorithms, and Their Implementation; Packt
Publishing Ltd.: Birmingham, UK, 2018; pp. 6–7.

13. Zhou, L.; Zhang, C.; Liu, F.; Qiu, Z.; He, Y. Application of deep learning in food: A review. Compr. Rev. Food Sci. Food Safety 2019,
18, 1793–1811. [CrossRef] [PubMed]

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

15. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

17. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
18. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

19. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

20. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

21. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.

22. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 2820–2828.

23. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8697–8710.

24. Shen, C.; Wei, M.; Sheng, Y. A bibliometric analysis of food safety governance research from 1999 to 2019. Food Sci. Nutr. 2021, 9,
2316–2334. [CrossRef]

25. Jovanovic, M.; Mitrov, G.; Zdravevski, E.; Lameski, P.; Colantonio, S.; Kampel, M.; Tellioglu, H.; Florez-Revuelta, F. Ambient
Assisted Living: Scoping Review of Artificial Intelligence Models, Domains, Technology, and Concerns. J. Med. Internet Res. 2022,
24, e36553. [CrossRef]

26. Camaréna, S. Artificial intelligence in the design of the transitions to sustainable food systems. J. Clean. Prod. 2020, 271, 122574.
[CrossRef]
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