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Abstract: Listeriosis is a serious infectious disease with one of the highest case fatality rates (ca. 20%)
among the diseases manifested from bacterial foodborne pathogens in humans, while dairy products
are often implicated as sources of human infection with Listeria monocytogenes. In this study, we charac-
terized phenotypically and genetically by whole-genome sequencing (WGS) 54 L. monocytogenes strains
isolated from Myzithra, a traditional Greek soft whey cheese (48 isolates), and swabs collected from
surfaces of a cheese processing plant (six isolates) in the Epirus region of Greece. All but one strain
of L. monocytogenes belonged to the polymerase chain reaction (PCR) serogroups IIa (16.7%) and IIb
(81.5%), corresponding to serotypes 1/2a, 3a and 1/2b, 3b, 7, respectively. The latter was identified
as a PCR-serogroup IVb strain (1.8%) of serotypes 4b, 4d, 4e. Bioinformatics analysis revealed the
presence of five sequence types (STs) and clonal complexes (CCs); ST1, ST3, ST121, ST 155, ST398
and CC1, CC3, CC121, CC155, CC398 were thus detected in 1.9, 83.3, 11.0, 1.9, and 1.9% of the
L. monocytogenes isolates, respectively. Antibiograms of the pathogen against a panel of seven selected
antibiotics (erythromycin, tetracycline, benzylpenicillin, trimethoprim-sulfamethoxazole, ampicillin,
ciprofloxacin, and meropenem) showed that 50 strains (92.6%), the six surface isolates also included,
were intermediately resistant to ciprofloxacin and susceptible to the rest of the six antimicrobial agents
tested, whereas strong resistance against the use of a single from three implicated antibiotics was
recorded to four strains (7.4%) of the pathogen isolated from Myzithra cheese samples. Thence, the
minimum inhibitory concentrations (MICs) were determined for erythromycin (MIC = 0.19 µg/mL),
ciprofloxacin (MIC ≥ 0.19 µg/mL), and meropenem (MIC = 0.64 µg/mL), and finally, just one strain
was deemed resistant to the latter antibiotic. The phylogenetic positions of the L. monocytogenes
strains and their genetic variability were determined through WGS, whilst also stress response and
virulence gene analysis for the isolates was conducted. Findings of this work should be useful as
they could be utilized for epidemiological investigations of L. monocytogenes in the food processing
environment, revealing possible contamination scenarios, and acquired antimicrobial resistance along
the food production chain.

Keywords: antimicrobial resistance; cheese processing environment; Listeria monocytogenes; Myzithra;
virulence genes; whey cheeses; whole-genome sequencing

1. Introduction

Listeria monocytogenes is the etiological agent of listeriosis disease in both humans
and animals. The ubiquitous character of the bacterium makes it widespread in both the
natural environment and the food processing environment, thus easily contaminating
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fresh produce (e.g., fruits and vegetables) [1–5] and foods of animal origin (e.g., meat and
dairy products) [6–9]. Listeriosis is a serious infectious disease with one of the highest
case fatality rates in humans (ca. 20%) among the diseases manifesting from bacterial
pathogens encountered in foods [10–12]. Contrary to the non-invasive form of febrile
gastroenteritis (intestinal listeriosis), symptoms of the severe invasive form of the disease
occur when the pathogen has spread beyond the intestines of the infected person. They
include fever, muscle pain, septicemia, meningitis, and meningoencephalitis, and they
usually start within two weeks of eating food contaminated with L. monocytogenes [13,14].
Invasive listeriosis affects the most vulnerable segment of the population; YOPI individuals
(i.e., young, old, pregnant, and immunocompromised), such as pregnant women and
their newborns, infants, elderly people (above 65 years old) and people with a weakened
immune system (e.g., patients undergoing treatment for hemodialysis, cancer, or AIDS).
In contrast, febrile gastroenteritis is a mild form of listeriosis that normally ends up as a
self-limiting infection, affecting mainly otherwise healthy people after ingesting a rather
large number of L. monocytogenes bacteria from contaminated food products [13,14]. In this
case, symptoms usually start within a few days (mostly within 24 h) after the consumption
of contaminated food with the pathogen and include diarrhea, fever, headache, and muscle
pain [14].

Control of L. monocytogenes in the food processing environment is quite difficult due to the
pathogen’s ability to tolerate extreme environmental conditions (e.g., acid resistance, heat resis-
tance, and high salt concentrations) [15–21]; adapt to a wide range of physical/physicochemical
stresses (e.g., pH, water activity, and temperature fluctuations) [16,17,19,20]; cope with sub-
lethal stresses induced from treatments with antimicrobials and disinfectants (e.g., plant
essential oils or quaternary ammonium compounds (QACs)) [20–23]; and form biofilms as
means of self-preservation [20,24,25]. These factors eventually lead to the persistence of
L. monocytogenes in food equipment and premises [20,26–28].

Animal-originated foods, such as meat, milk, and dairy products, are excellent sub-
strates for microbial proliferation. Most dairy products (e.g., cheese and yogurt) are the
result of microbial activity (fermentation) of the native microbiota contained in milk, al-
beit in the food and cheese production process in particular, microbial pathogens may
gain access to the final product and represent a threat to the consumer [29], given their
growth potential and survivability in cheese and its products thereof [30–35]. L. mono-
cytogenes cannot grow in the traditional Greek soft acid-curd cheeses, such as Galotyri
and Katiki [35,36], or hard ripened cheeses like traditional Greek Graviera cheese [32,37],
although effective control of post-processing listerial cross-contamination is needed in
Greek Myzithra, Anthotyros, and Manouri soft whey cheeses [38–40]. Thankfully, to the
best of the authors’ knowledge, the last documented survey conducted in the Greek retail
market, although published a decade ago, indicated a low prevalence of Listeria spp. and
the absence of positive samples for L. monocytogenes in soft cheeses [41]. In strict alignment
with those findings, a recent systematic review and meta-analysis conducted with data
from the European Food Safety Authority (EFSA) and the scientific literature emphasized
the lowest mean prevalence (ca. 0.8%) of L. monocytogenes in fresh cheeses, like Myzithra,
among all other European cheeses (i.e., ripened, veined, smear, and brined) [42].

The vast majority of human listeriosis cases are caused by L. monocytogenes serotypes
1/2a (lineage II), 1/2b and 4b (lineage I) [43–45]. Nevertheless, more than 50% of human
listeriosis outbreaks are associated with lineage I and to be precise most of these outbreaks
are attributed to serotype 4b (polymerase chain reaction serogroup IVb; PCR-serogroup
IVb), whereas serotype 1/2a (PCR-serogroup IIa) and 1/2b (PCR-serogroup IIb) strains of
the pathogen are mostly isolated from foods [45,46] (pp. 50–51). This could be attributed
not only to the inherent genetic characteristics [45] and the competitive growth advantage
between the strains (PCR-serogroups IIa, IIb and IIc vs. PCR-serogroup IVb) [47] but also
to the selective enrichment protocol used for the L. monocytogenes detection [48], justifying
in this way the overrepresentation of certain serotypes of the pathogen in foods.
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Epidemiological studies aim to link the pathogen responsible for the advent of an
outbreak, isolated from human clinical samples, with the implicated food commodity in
case of a foodborne disease investigation. Many times, food and environmental sampling
are established towards the investigation of the above linkage, leading to the decipher-
ing of relevant contamination routes for the pathogen under study [49]. Serotyping and
serogrouping of strains are of low discriminatory capacity and offer very little to the epi-
demiological surveillance of the pathogens, such as L. monocytogenes [43]. In this context,
laboratory methods with increased discriminatory power, such as pulsed-field gel elec-
trophoresis (PFGE), multilocus sequence typing (MLST) and repetitive element palindromic
PCR (rep-PCR) in combination with random amplified polymorphic DNA PCR (RAPD-
PCR) analysis, have been utilized for the subtyping of L. monocytogenes isolated from foods
and the food processing environment [50–52]. However, in recent years, whole-genome
sequencing (WGS) is gaining more and more ground and is tending to replace PFGE, MLST
and rep-PCR with RAPD-PCR fingerprinting of pathogen isolates [53,54], highlighting the
population diversity and persistence of L. monocytogenes in the environment of the food
production facility [28,55–57]. Therefore, the objective of this work was to carry out the
phenotypic and genomic characterization, as well as the antibiotic resistance profile of
L. monocytogenes strains isolated from both the cheese processing environment and samples
of an end-product (Myzithra cheese). The genetic variability of the strains, along with their
phylogenetic positions, were determined by means of WGS. In parallel, a stress response
and virulence gene analysis for the isolates was conducted, allowing for a better under-
standing of L. monocytogenes’ persistence in the cheese production environment and thus
contributing towards improved strategies for the elimination of the pathogen.

2. Materials and Methods
2.1. Sampling of Cheese and Related Food Processing Surfaces

Environmental and end-product sampling was performed during the production
process in a cheese processing facility located in the Epirus region of northwestern Greece.
Related cheese processing surfaces and Myzithra, a traditional Greek soft whey cheese
manufactured from sheep and/or goat milk, were sampled to detect L. monocytogenes.
Screening for the pathogen’s presence took place over a period of more than two-and-
a-half years of microbiological monitoring of L. monocytogenes in the facility (November
2016–July 2019).

Samples of fresh and dried Myzithra end-product comprised of ca. 150 g of cheese.
Surface sampling was performed according to the protocol of the International Organization
for Standardization (ISO 18593) [58,59] by using pre-moistened in half concentration-Fraser
broth (1/2-FB; Biokar Diagnostics, Pantin, France), sterile cotton applicators (AnQing Jiaxin
Medical Technology Co., Ltd., Anqing, China) and swabbing 100 cm2 (10 cm × 10 cm),
with a swabbing movement executed in both horizontal and vertical directions onto the
surface and by rotating the applicator between fingers, then placing the swab under aseptic
conditions in 10 mL of 1/2-FB contained in Sterilin ™ plastic round-based tubes with screw
cap (Sarstedt, Nümbrecht, Germany). Cheese and surface samples were transported into
isothermal boxes with ice packs and were analyzed upon arrival at the laboratory.

2.2. L. monocytogenes Isolation

The ISO 11290-1 protocol was used for the detection of L. monocytogenes [60,61] from
cheese and surface samples with some slight modifications. Briefly, 25 g of Myzithra end-
product were transferred aseptically in a stomacher bag and homogenized with 225 mL of
1/2-FB in a Stomacher blender (BagMixer® 400 W, Interscience, Saint Nom, France). The
homogenate was incubated at 30 ◦C for 24 h. In the case of surface samples, Sterilin™ tubes
containing the swabs in 10 mL of 1/2-FB were placed for incubation at the aforementioned
conditions immediately upon arrival at the laboratory. Following the primary enrichment
of samples, 0.1 mL of the initial suspension was transferred aseptically to a tube containing
10 mL of full concentration-FB (FB; Biokar Diagnostics) as a secondary enrichment medium.
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The inoculated FB was incubated then at 37 ◦C for 24–48 h. Primary and secondary
enrichment broths (1/2-FB and FB) were streaked on duplicate plates of COMPASS® Listeria
agar (Biokar Diagnostics), its formulation of which is in accordance with the agar Listeria
according to Ottaviani and Agosti (ALOA) referred in the ISO detection method (ISO
11290-1) [60,61].

ALOA plates were examined visually after incubation at 37 ◦C for 48 h for the presence
of the pathogen indicated by well-isolated blue-green colonies surrounded by an opaque
halo. Presumptive L. monocytogenes was confirmed through biochemical testing of the
isolates after subculturing the selected colonies from ALOA on tryptone soya agar contain-
ing 0.6% yeast extract (TSAYE) and incubating at 37 ◦C for 18 to 24 h. Biochemical tests
were carried out on colonies from pure cultures grown on TSAYE plates and comprised
of oxidase test, catalase reaction, motility test at 25 ◦C, hemolysis on sheep blood agar,
CAMP test, L-rhamnose and D-xylose utilization. Confirmed L. monocytogenes isolates
were maintained at −80 ◦C in brain heart infusion (BHI; LabM, Lancashire, UK) broth with
20% glycerol (Biolife, Milan, Italy). The strains were deposited in the microbial culture
collection of Eurofins Athens Analysis Laboratories S.A. (AAL; Microbiology Laboratory,
Metamorfosi, Attica, Greece) and received an accession number. Before further use of the
isolates, the frozen stock of each strain of the pathogen (Supplementary Table S1) was
subcultured twice in BHI broth incubated each time at 37 ◦C for 24 h and then streaked on
TSAYE which was incubated at 37 ◦C for 18 to 24 h.

2.3. Antibiotic Resistance Profiles of L. monocytogenes Strains

Antimicrobial susceptibility and resistance to antibiotics of L. monocytogenes cheese
and surface isolates were determined using the standardized disk diffusion method as
recommended by the European Committee on Antimicrobial Susceptibility Testing (EU-
CAST) [62]. In brief, 3–4 colonies picked after activation of the pathogen on the TSAYE
plate were suspended in 3 mL of 0.85% peptone salt solution or maximum recovery diluent
(MRD; Merck, Darmstadt, Germany), and turbidity was adjusted to a 0.5 McFarland stan-
dard. The suspension was used to inoculate ready-to-use 9 cm Mueller-Hinton agar plates
supplemented with 5% defibrinated horse blood and 20 mg/l β-NAD (MH-F; Bioprepare,
Keratea, Attica, Greece). Inoculation of MH–F blood agar with the pathogen was achieved
by means of microbial lawn formed for each L. monocytogenes strain, using sterile cotton ap-
plicators (AnQing Jiaxin Medical Technology Co., Ltd.) moistened in the MRD suspension
and applied on the surface of MH–F agar with swabbing movement in both horizontal and
vertical directions and by rotating the applicator between fingers, covering in that manner
the whole agar surface. Antibiotic disks of seven antimicrobial agents were transferred on
the MH–F agar surface with the help of forceps. All disks were supplied by Oxoid (Bas-
ingstoke, UK): Erythromycin (E; 15 µg), tetracycline (TE; 30 µg), benzylpenicillin (P; 1 IU),
trimethoprim-sulfamethoxazole 1:19 (SXT; 25 µg), ampicillin (AMP; 2 µg), ciprofloxacin
(CIP; 5 µg) and meropenem (MEM; 10 µg). After 18 h of incubation at 35 ◦C, the diameters
of inhibition zones around the disks were measured to the nearest integral number (in
mm) by using a Vernier caliper with the least count of 0.1 mm. Results for inhibition
zone diameters per antibiotic and strain of the pathogen were interpreted as susceptible,
intermediate, or resistant L. monocytogenes isolates to the respective antimicrobial agent
based on the criteria provided by EUCAST [62]. Missing zone diameter breakpoints for
L. monocytogenes resistance against E and CIP were obtained from those recommended by
EUCAST for Gram-positive Staphylococcus aureus [62].

Profiles of antibiotic resistance for L. monocytogenes strains isolated from cheese and
related cheese processing surfaces were complemented with the determination of minimum
inhibitory concentrations (MICs) by using the E-test method for those antimicrobial agents
inducing resistance of the pathogen, screened through the antimicrobial susceptibility
testing (AST) as described above. Following inoculation of MH–F agar as previously
described, plastic strips with a gradient concentration of the antibiotic of interest to which
the strain showed resistance during AST were placed onto the surface of the agar medium,
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allowing for the diffusion of the antimicrobial agent into the agar and thus providing, after
overnight incubation at 37 ◦C, an inhibition ellipse where the MIC corresponds to the value
at the point of intersection of the growth and inhibition zone with the extremity of the
strip. The E-test MICs (in µg/mL or ppm) can be read directly from the upper of the Petri
dish [63] (pp. 323–324).

2.4. Whole-Genome Sequencing of Bacterial Isolates
2.4.1. DNA Extraction and Sequencing

Total DNA was extracted from the bacterial cells of L. monocytogenes strains, cultured
in BHI broth and incubated overnight at 37 ◦C after a purity check on TSAYE plates. The
genomic DNA was extracted and sequenced by Novogene Genomics Service (Novogene Co.,
Ltd., Cambridge, UK), and all procedures involving library preparation, genome assembly,
and quality control were performed as described by Syrokou et al. [64]. To this end, the
complete genomes of the corresponding reference genomes used were downloaded from the
NCBI website (https://www.ncbi.nlm.nih.gov; accessed on 30 August 2022). Genome quality
was assessed through a re-implementation of an algorithm from an online tool (CheckM) [65]
to ensure that genomes had acceptable completeness (≥95%) and contamination (≤5%), while
any potential bacterial misassemblies were evaluated with the help of a web app (SkewIT) [66].

2.4.2. Bioinformatics Analyses

All L. monocytogenes isolates were phenotypically characterized in silico from the obtained
nucleotide sequences by using the microbial trait analyzer Traitar (GitHub Inc., San Fran-
cisco, CA, USA; https://github.com/aweimann/traitar, accessed on 6 February 2023) [67].
Additionally, all strains were molecularly confirmed through PCR-serogrouping and serotyp-
ing [68] performed with the Bionumerics platform version 8.1.1 (bioMérieux, Marcy l’ Etoile,
France; https://www.applied-maths.com/bionumerics, accessed on 6 February 2023). The
core/whole-genome MLST (cg/wg MLST) analyses, along with the assessment of acquired
resistance, virulence factors, and screening for phage sequences, were also performed with
Bionumerics version 8.1.1 (bioMérieux) for the in silico subtyping of the strains.

3. Results
3.1. Phenotypic Characterization of L. monocytogenes Isolates

Fifty-four L. monocytogenes strains were isolated from Myzithra cheese (48 isolates) and
related cheese processing surfaces (six isolates). Biochemical testing of the isolates (Supple-
mentary Table S1) was consistent with the predicted phenotype for each L. monocytogenes
strain, and all the phenotypic characteristics of the strains were mapped (Figure 1).

3.2. Antibiograms of L. monocytogenes Cheese and Surface Isolates

Seven antibiotics belonging to the classes of macrolides (E), tetracyclines (TE), peni-
cillins (P, AMP), sulfonamides (SXT), fluoroquinolones (CIP), and carbapenems (MEM)
were tested for the resistance of L. monocytogenes cheese and surface isolates against them.
The antibiotic resistance profiles (antibiograms) of L. monocytogenes strains are presented in
Figure 2. All isolates were not clearly susceptible to CIP and presented mostly intermediate
(52/54 strains, 96.3% of isolates) to strong (2/54, 3.7%) resistance against the specific an-
timicrobial agent (Figure 2). CIP is not the drug of choice for the treatment of listeriosis
and is not included in the clinical breakpoint tables for L. monocytogenes published by EU-
CAST [62]. Apart from CIP, therefore, all surface isolates were susceptible to the remaining
six antibiotics tested, while 46 out of 48 (95.8%) of the cheese isolates were found to be
sensitive during AST to those six antibiotics (Figure 2). None of the strains showed any
multidrug resistance. In total, the resistance of four L. monocytogenes strains isolated from
Myzithra soft cheese (4/54, 7.4%) was recorded against E, MEM and CIP (Figure 2). Three
of the resistant isolates belonged to PCR-serogroup IIb (strains AAL 20153, AAL 20184,
AAL 20187) and were classified as ST3 (CC3) strains, while the fourth resistant isolate
belonged to PCR-serogroup IIa (strain AAL 20158) and was classified as an ST155 (CC155)

https://www.ncbi.nlm.nih.gov
https://github.com/aweimann/traitar
https://www.applied-maths.com/bionumerics
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strain (see Section 3.4). Furthermore, MIC values for the L. monocytogenes cheese isolates
against E, CIP, CIP, and MEM were estimated at 0.19, 0.19, 0.50, and 0.64 µg/mL for strains
AAL 20153, AAL 20184, AAL 20158, and AAL 20187, respectively. Following AST and MIC
determination, strain AAL 20187 was finally designated as resistant to MEM.
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Antibiotic resistance genes were identified in strain AAL 20158 and included fosX,
mdrL, and mdrM genes conferring resistance to fosfomycin, QACs/macrolides and mul-
tidrug resistance, respectively. However, no resistance genes were identified to the rest of
the isolates that exhibited antimicrobial resistance during AST.

3.3. Genetic Diversity of L. monocytogenes Isolates

PCR-serogrouping and serotyping performed for all the isolates revealed the presence
of three major serogroups for the pathogen with their respective serotypes (i.e., PCR-
serogroups IIa: ser. 1/2a, 3a; IIb: ser. 1/2b, 3b, 7; IVb: 4b, 4d, 4e) (Figure 3).

Foods 2023, 12, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 2. Antibiotic resistance profiles (antibiograms) of L. monocytogenes strains isolated from Myz-
ithra soft whey cheese and related food processing surfaces. The number and color in the antibio-
gram for each strain designate its resistance to the selected antibiotic: (1) Green: Sensitive strain. (2) 
Yellow: Intermediate resistant strain. (3) Red: Resistant strain. The first eleven strains are a subsam-
ple from the microorganisms’ pool which displayed exactly the same antibiogram profile for better 
resolution of the dendrogram. 

3.3. Genetic Diversity of L. monocytogenes Isolates 
PCR-serogrouping and serotyping performed for all the isolates revealed the pres-

ence of three major serogroups for the pathogen with their respective serotypes (i.e., PCR-
serogroups IIa: ser. 1/2a, 3a; IIb: ser. 1/2b, 3b, 7; IVb: 4b, 4d, 4e) (Figure 3). 

 
Figure 3. Distribution of PCR-serogroups and serotypes (ser.) of L. monocytogenes isolates recovered 
during microbiological monitoring of surfaces and end-products in a cheese processing facility. Dis-
tribution comprises of PCR-serogoups IIa: ser. 1/2a, 3a; IIb: ser. 1/2b, 3b, 7; IVb: ser. 4b, 4d, 4e, with 
the total number of strains and recovery percentages for each serogroup embedded in the chart. 

A total of five different sequence types (STs) and clonal complexes (CCs) were iden-
tified in the 54 isolates of L. monocytogenes through the MLST (Figure 4) and cg/wg MLST 
analyses (Figure 5); ST3 and CC3 (each containing n = 45 strains, 83.3% of isolates), ST121 
and CC121 (each n = 6, 11.0%), ST1 and CC1 (each n = 1, 1.9%), ST155 and CC155 (each n 
= 1, 1.9%), ST398 and CC398 (each n = 1, 1.9%). ST3 and CC3 strains belonged both to PCR-
serogroups IIa and IIb with serotypes 1/2a, 3a and 1/2b, 3b, and 7 assigned to them, re-
spectively. Strains of ST121 and CC121, ST155 and CC155, ST398 and CC398 all belonged 
to PCR-serogroup IIa and were assigned the serotypes 1/2a, 3a, whereas the ST1 and CC1 
single strain belonged to PCR-serogroup IVb, which is comprised of serotypes 4b, 4d, 4e. 

Figure 3. Distribution of PCR-serogroups and serotypes (ser.) of L. monocytogenes isolates recovered
during microbiological monitoring of surfaces and end-products in a cheese processing facility.
Distribution comprises of PCR-serogoups IIa: ser. 1/2a, 3a; IIb: ser. 1/2b, 3b, 7; IVb: ser. 4b, 4d, 4e,
with the total number of strains and recovery percentages for each serogroup embedded in the chart.

A total of five different sequence types (STs) and clonal complexes (CCs) were identi-
fied in the 54 isolates of L. monocytogenes through the MLST (Figure 4) and cg/wg MLST
analyses (Figure 5); ST3 and CC3 (each containing n = 45 strains, 83.3% of isolates), ST121
and CC121 (each n = 6, 11.0%), ST1 and CC1 (each n = 1, 1.9%), ST155 and CC155 (each
n = 1, 1.9%), ST398 and CC398 (each n = 1, 1.9%). ST3 and CC3 strains belonged both
to PCR-serogroups IIa and IIb with serotypes 1/2a, 3a and 1/2b, 3b, and 7 assigned to
them, respectively. Strains of ST121 and CC121, ST155 and CC155, ST398 and CC398 all
belonged to PCR-serogroup IIa and were assigned the serotypes 1/2a, 3a, whereas the ST1
and CC1 single strain belonged to PCR-serogroup IVb, which is comprised of serotypes 4b,
4d, 4e. The minimum spanning tree shows that the number of allelic differences between
neighboring STs (CCs) ranged from 4 to 6 (Figure 4), but cg/wg MLST reveals genetic
diversity between and within STs (CCs) (Figure 5).

3.4. Analysis of Resistance, Virulence and Persistence of L. monocytogenes Isolates

The analysis performed with the Bionumerics software led us to focus on 12 important
Listeria genes (Figure 6). Seven genes were related to acquired virulence potential (i.e., inlA,
inlB, inlC, inlF, inlH, inlJ, and inlK), three corresponded to pathogenicity islands found in
the bacterium (i.e., LIPI-1, LIPI-3, and SSI-1) and two genes were related with acquired
resistance mechanisms (i.e., qacH and mdrL) against quaternary ammonium compounds
(QACs) commonly used as disinfectants in the food industry.
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All strains of PCR-serogroup IIa (with the notable exception of strain AAL 20174, which
did not possess the operon LIPI-3) had the internalin A (inlA) gene truncated (Figure 6),
something that confers to the reduced virulence potential of those strains. Moreover,
the PCR-serogroup IIa strains belonging to ST121 (CC121) possessed the qacH and mdrL
(Figure 6) genes indicating acquired resistance to QACs.
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Figure 6. Dendrogram depicting the clustering of strains and clustering analysis of genes in L. monocy-
togenes isolates from Myzithra cheese and food processing surfaces. The heatmap shows the presence
(color) or absence (no color) of the selected gene among the isolates. The black color indicates the
presence of a truncated inlA gene. Column 1: Sequence type (ST), 2: Strain ID (AAL code), 3: Clonal
complex (CC), 4: Isolation source (end-product or surface), 5: PCR-serogroup, 6: Year of strain
isolation, 7: Detected genes and persistence trait, 8: Detected phages. Abbreviations for detected
genes are given in the text.

ST3 (CC3) and ST121 (CC121) L. monocytogenes strains showed persistence in the food
processing environment as they were continuously isolated (even for over 2.5 years) from
end-product cheeses and cheese-making surfaces, while they also exhibited mobile phage
elements inserted and incorporated into their DNA (prophages) (i.e., from 2 to 8 elements;
Figure 6), which are considered to promote increased resistance and adaptation of the
strains to the adverse environmental conditions encountered in the food production plant.
In contrast, the PCR-serogroup IVb strain belonging to ST1 (CC1) did not exhibit any
such prophages at all and was more or less sporadic, indicative of a rather transient than
persistent human contamination (Figure 6).

4. Discussion

A total of 54 L. monocytogenes strains isolated from Myzithra soft cheese and swabs
collected from food contact surfaces in a cheese processing plant were characterized pheno-
typically and genetically using a WGS approach. The phenotypic characterization of the
isolates in silico was consistent with the biochemical testing performed on the presumptive
colonies of the pathogen recovered from ALOA, regarding at least some basic traits utilized
for the L. monocytogenes identification (Figure 1). This confirms the constant recovery of the
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pathogen from end-product and surface samples during routine microbiological monitoring
for L. monocytogenes presence in the facility, which in turn indicates potential colonization
of the cheese processing environment with different listerial STs [52].

The majority of isolates were classified as PCR-serogroup IIb strains (44/54, 81.5%; ser.
1/2b, 3b, 7), followed by PCR-serogroup IIa (9/54, 16.7%; ser. 1/2a, 3a) and PCR-serogroup
IVb strains (1/54, 1.8%; ser. 4b, 4d, 4e). Hence, lineage I and II strains accounted for 83.3
and 16.7% of the isolates, respectively. Many studies have highlighted the dominance of
PCR-serogroup IIa (lineage II) strains of L. monocytogenes over a variety of food matrices
as compared to other serogroups [6–8,50,69–73]. Nevertheless, the aforementioned dis-
tribution of serogroups (with the predominance of molecular serogroup IIb; lineage I) is
not uncommon and has been reported elsewhere [74–77]. Especially when it comes to
meat and dairy products, PCR-serogroup IIb is most prevalent among the L. monocytogenes
isolates [69,74,76].

Antibiotic resistance profiles for L. monocytogenes isolates from raw and/or pasteur-
ized/fresh milk and milk products (e.g., cheeses) were revealed in previous research works
against most of the antimicrobial agents tested in our study (i.e., TE, P, E, and SXT) [76,78–80].
Likewise, resistance to macrolides (E) emerged for strain AAL 20153 (Figure 2), although no
resistance was recorded against tetracyclines, penicillins and sulfonamides in the present
work. Furthermore, the MIC for E was found to range between 0.05 to 0.2 ppm in eight
strains of L. monocytogenes tested for their antimicrobial resistance [81], something which
agrees with our estimate of 0.19 ppm for the lethal concentration of the antibiotic in strain
AAL 20153. The surface isolates belonged to two STs (ST3 and ST121; Figure 4) instead of
the five STs identified for the cheese isolates (ST1, ST3, ST121, ST155, and ST398). How-
ever, no signs of antimicrobial resistance to any of the antibiotics used in the study were
inferred for the surface isolates. All L. monocytogenes isolates showed no multidrug resis-
tance, while the vast majority of them (50/54, 92.6%) were susceptible to all the antibiotics,
except for CIP, to which generally all strains presented intermediate to strong resistance
(Figure 2). The level of tolerance to the fluoroquinolone antibiotic CIP could be the result
of cross-resistance developed in L. monocytogenes, when cells of the pathogen are exposed
to sublethal concentrations of residual QACs, widely used as biocides in the food indus-
try, leading to the formation of QAC-adapted subpopulations of L. monocytogenes with
increased survival against CIP [82–84]. Interestingly, the resistance phenotype correlated
with genotype in just one (strain AAL 20158) of the four L. monocytogenes strains initially
screened as resistant to the single use of one of the three implicated antibiotics. On the other
hand, no genes known to encode resistance against either E, CIP, or MEM were detected
originally in the rest of the three resistant strains (strains AAL 20153, AAL 20184, and
AAL 20187). Zhang et al. [85] described a similar situation where the authors could not
detect by WGS any genes encoding resistance to MEM, against which antibiotic two clinical
L. monocytogenes isolates showed resistance, suggesting that more research is needed on the
matter. We hypothesize that this could be due to the possible fragmentation or mutation
of the implicated resistance genes, and thus the necessity of using other search tools for
gene alignment is highlighted in this case. For instance, L. monocytogenes genomes were
studied with GWAS methodology (genome-wide association studies using pyseer) for the
MEM-resistant phenotype, and the results are summarized in Figure 7. The top gene hit
ranked by the −log10 (p-value), and the number of k-mer hits (cds-NP_463988.1; upper
left) was related to a helix-turn-helix domain-containing protein with an average effect size
of ca. 0.4 (0.370). MarR or Multiple antibiotics resistance-type regulators are characterized
by winged helix-turn-helix (HTH) DNA-binding motifs and control genes that confer resis-
tance to antibiotics, organic solvents, detergents, etc. This implies that this gene might have
a significant role in assisting L. monocytogenes AAL 20187 resistance to MEM. However,
other L. monocytogenes isolates may also possess this gene. The k-mer methodology showed
regions in the sequence that are overrepresented in AAL 20187 compared to the rest of
the strains.
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The overwhelming majority of L. monocytogenes strains (51/54, 94.4%) belonged to
CC3 and CC121 (Figures 4 and 5), with those CCs commonly found among the food
isolates [71,73,86,87]. All CC3 strains except one (strain AAL 20174) together with CC1
carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1 (Figure 6).
On the contrary, LIPI-3 was absent in CC121, CC155 and CC398, strains of which CCs
present a hypovirulent potential mainly because of the absence of the aforementioned
major virulence factor LIPI-3 [88,89]. This hypovirulence is further expressed in CC121
strains of the pathogen due to the lack of internalins (i.e., inlF, inlH, inlI) noticed in the
internalin gene family of the strains (Figure 6). Besides, the mutation in the inlA gene that
leads to premature stop codons (PMSCs) has been found for CC121, CC155, and CC398
(Figure 6). It is now known that hypervirulent clones of L. monocytogenes, particularly CC1,
are strongly associated with dairy products [87], whereas isolates of the pathogen carrying
a virulence-attenuated mutation in inlA gene are frequently recovered from food processing
environments [90]. Alarmingly, the isolation of the hypervirulent CC1 and CC3 strains
from fresh and dry Myzithra as well as cheese processing surfaces, could represent a major
public health issue, especially due to the ST1 strain’s close relation to dairy cattle farms [91].
Indeed, it is generally accepted that hypervirulent clones of L. monocytogenes colonize better
the intestinal tract and more easily infect humans than the hypovirulent ones [87]. However,
it is worthy of comment that hypo- or hypervirulence does not necessarily imply that the
strain is capable of adhering to the human colon or effectively invading the host since
foodborne diseases, such as listeriosis, are the result of the interaction between the host, the
pathogen and the food commodity where the microorganism resides [92]. In that essence,
many times, even hypovirulent clones of L. monocytogenes are able to cause infection in
YOPI individuals.

Stress survival islet 1 (SSI-1) is comprised of a five-gene islet which contributes to the
growth of L. monocytogenes under unfavorable conditions and allows for the pathogen’s
survival in food processing environments [93]. SSI-1 was present only in the hypervirulent
CC3 strains and the hypovirulent strain AAL 20158 (CC155), which is indicative of the
good adaptive response these strains showed to the environment of the cheese processing
plant, reflecting the constant recovery and, in absolute numbers, the higher persistence of
CC3 strains in the facility (Figure 6). The persistence of L. monocytogenes in the facility was
also evident for the hypovirulent strains of CC121 containing the QAC-resistant qacH and
mdrL genes and harboring highly conserved plasmids and prophages [94]. CC121 is widely
suspected of benzalkonium chloride (BC) tolerance [70,87,95], and strains of this cluster are
normally equipped with the transposon Tn6188, which encodes, among others, the qacH
gene conferring potential BC resistance [96]. In CC121, the mobile phage elements were
at least six and reached up to eight elements for most of the strains as compared to any
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other CC (Figure 6). The Listeria phages detected in our study were among those used in a
comparative genomic analysis of prophages conducted by Vu et al. [97].

Bioinformatics analysis revealed the presence of the competence transcription factor
comK for all CC3 strains. L. monocytogenes strains carrying the SSI-1 cluster of genes as
well as the comK prophage are more likely to possess a comparatively higher biofilm-
forming ability and present enhanced persistence than strains of the pathogen lacking those
genes [95,98], something that still has to be elucidated for our strain collection in terms
of cell density and biofilm production for the CC3 strains. In addition, future research
is to be focused on the single-nucleotide polymorphism (SNP) differences between the
isolates in order to determine the genetic evolution of L. monocytogenes over the years in
the cheese processing facility through the observed SNP differences caused by the limited
single-nucleotide mutations but rapid diversification of prophages [99]. Facility-specific
molecular markers utilized from the allelic variations detected across the whole genome
of the pathogen’s isolates may be unique for specific processing plants and could be used
as signatures for tracking L. monocytogenes throughout the food chain [100]. This has yet
to be clarified in this instance. Incorporating cgMLST fingerprinting data obtained by
WGS under the umbrella of a single tool used for the comparison of the whole genome of
L. monocytogenes across distinct geographical regions is quite challenging. Recently a web-
based platform has been proposed for tracking the pathogen worldwide to help with public
health surveillance and resolution of foodborne disease outbreak investigations [101].

Notably, CC155 is mostly identified among L. monocytogenes isolates of clinical ori-
gin [85,87]. However, a WGS analysis showed that the specific CC was most prevalent
among the pathogen’s isolates recovered from food and food production environments in
Poland [102]. As far as CC398 is concerned, the only strain contained in this group (strain
AAL 20493) warrants further investigation due to the limited information provided in the
literature regarding this CC.

The present study provides insights into the pathogenic potential and persistence of
the L. monocytogenes isolates recovered from a cheese processing facility. The findings of
this work should be useful as they could be utilized for epidemiological investigations of
L. monocytogenes in the food processing environment, revealing possible contamination
scenarios, acquired antimicrobial resistance along the food production chain and providing
critical information for post-outbreak management in the facility [103–105]. These findings
also suggest that further research is needed for definitive genome mapping of the isolates.
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in the study.
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