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Abstract: Crop yields are adversely affected by climate change; therefore, it is crucial to develop
climate adaptation strategies to mitigate the impacts of increasing climate variability on the agriculture
system to ensure food security. As one of the largest potato-producing provinces in Canada, Prince
Edward Island (PEI) has recently experienced significant instability in potato production. PEI’s
local farmers and stakeholders are extremely concerned about the prospects for the future of potato
farming industries in the context of climate change. This study aims to use the Decision Support
System for Agrotechnology Transfer (DSSAT) potato model to simulate future potato yields under
the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate scenarios (including SSP1–1.9,
SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5). The study evaluates the combined effects of changing
climatic conditions at local scales (i.e., warming temperature and changing precipitation patterns)
and increasing carbon dioxide (CO2) concentration in the atmosphere. The results indicate future
significant declines in potato yield in PEI under the current farming practices. In particular, under
the high-emission scenarios (e.g., SSP3–7.0 and SSP5–8.5), the potato yield in PEI would decline by
48% and 60% in the 2070s and by 63% and 80% by 2090s; even under the low-emission scenarios
(i.e., SSP1–1.9 and SSP1–2.6), the potato yield in PEI would still decline by 6–10%. This implies that
it is important to develop effective climate adaptation measures (e.g., adjusting farming practices
and introducing supplemental irrigation plans) to ensure the long-term sustainability of potato
production in PEI.

Keywords: potato (Solanum tuberusom); climate change; drought; food security; heat; phenology; tuber

1. Introduction

Potato is the most common non-grain crop, belonging to the family Solanaceae [1,2].
Globally, potato is the fourth most recognized tuber food crop consumed, after maize, rice,
and wheat, and is vital for food security because of its excellent potential for high yields
and nutritional value [2,3]. Globally, potato is produced in over 155 countries, contributing
nutritional value for more than a billion people [4,5]. Even though the global production is
one-half that of wheat, rice, and maize, its production has increased by one-fifth since 1990,
while its consumption has increased by more than double in developing countries [5,6]. In
2021, the Food and Agriculture Organization (FAO) estimated global potato yield to be
20.7 tonnes/hectare (t/ha), cultivated on about 18.2 million hectares (Mha) of land. The
increase in potato production has significantly overtaken many other crops accounting
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for more than 50% of potato production globally [7]. Specifically, in 2021, Canada was
ranked as one of the top twelve countries producing the highest potato yields of about
41.3 t/ha harvested from over 150,000 ha of land [8–11] and was ranked as the fifth and
sixth largest exporter of fresh and seed potatoes, respectively, with 25% of the yields from
Prince Edward Island (PEI) [9,12,13]. Potato is a major agricultural crop after canola, corn,
wheat, and soybean, and a high-producing vegetable crop cultivated in Canada. In PEI,
potato contributes majorly to the economy. It is cultivated on an average land size of
35,378 hectares (ha), producing about 36.8 t/ha yields annually [9]. Potato grows well in
PEI because of its particular soil characteristics, i.e., red and rich in iron, and retains the
required water during growth and development. Potato is grown during spring–summer
(May to October) under rainfed conditions. Adequate rainfall with cold winters and warm
summers with proper light, heat, and water balance contribute to the optimal quality potato
yields in PEI. PEI is a major producer of potatoes exported from Canada [14].

Potato is a staple food consumed daily around the world and is categorized as a
dietary vegetable containing many minerals and vitamins [15–17]. Potato contributes to the
four pillars of food security, “access, availability, stability, and utilization,” for Sustainable
Developmental Goal 2 (SDG 2-Zero Hunger). Approximately three-quarters of their total
dry weight is in the form of starch, with amounts that depend on the variety [16]. Potatoes
have a small protein content, but essential amino acids such as lysine and metabolites
increase their biological value and utilization [16]. They are good sources of vitamins
such as B6 and C and trace amounts of folate, thiamin, niacin, and riboflavin; 0.5–2%
of dietary fiber is contained in potatoes with other minerals, such as magnesium, iron,
potassium, and phosphorus [15,16]. Potatoes ensure food security and provide income and
employment [18]. Potatoes from Canada, especially from PEI, are globally recognized and
exported because of their safety and quality [19]. Assessing the impact of climate change
(SDG 13-Climate Action) on potato yields is crucial to enhancing food security.

Potato is one of the most vulnerable crops in changing climates, with events such
as long-lasting droughts, extreme heat, and unanticipated frosts [5,20]. The temperature
is expected to increase as the climate changes, with inconsistent precipitation patterns.
Climate change is impacting the frequency and intensity of extreme climate events, and
SDG 2 (Zero Hunger) can be achieved by addressing SDG 13 (Climate Action) [13,21,22].
Although crop management practices cause about 67% of the variations in potato yields,
climate change is a significant challenge faced by the agricultural sector [13]. Potato yields
likewise depend on factors such as water and soil management practices, seed quality,
chemical and bio-fertilization, soil moisture contents, elevation, slope, and supplement
irrigation [13]. Potato development stages, such as sprouting, emergence, and leaf area
development, are temperature sensitive. Temperature thresholds and photoperiod sen-
sitivity are vital in determining the development of potatoes and initiating potato tuber
induction vary with potato varieties [23]. Potato is a temperate crop that thrives between
16 ◦C and 19 ◦C if 20 to 24 inches of water requirement are fulfilled; however, when
the temperature exceeds 30 ◦C, it can cause slow tuber initiation and development and
physical damage to the tubers [24–28]. Surface temperatures below 0 ◦C during potato
development causes frost, which burns stems, leaves, and potato cell organelles to form
soft and blackened parts [29,30]. Considering the potato phenology, climate change can
cause an advancement or delays in the emergence, tuber initiation, bulking, and maturity
of potatoes, determined by regional location. Likewise, the emergence and drops of leaves
could be early or delayed [31,32]. Potato requires 400 to 800 mm of rain/water, which
invariably depends on meteorological variables and other factors [26,33]. Water shortage
beyond 60% to 65% causes drought that reduces the growth rate, while excessive water
causes leaching and tissue decay inside potato tuber called blackheart [26,34]. Considering
previous literature, carbon dioxide (CO2) is reported to be beneficial to potatoes, causing
increased photosynthesis rates that make potatoes bulk faster [35–37].

Meanwhile, the elevation of CO2 increases the rate of potato susceptibility to pests and
diseases and yields phenology, causing interferences between implemented and natural
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biological processes [20,38]. In addition to abiotic factors, biotic factors such as pests,
nematodes, and pathogens can affect potato yields [26,39]. Water stress conditions can
likewise affect optimal potato yields [26,38,40]. Due to the effect of the changing climate
conditions on crops in PEI, there is a dire need to assess the impacts of climate variables,
such as temperature, precipitation, and CO2, on potato yields [41–43]. The development
of adaptation strategies relies on understanding the effect of farming practices, genetics,
and thermal trends on potato cultivation [5,20,44,45]. Hence, the need to assess the climate
change impacts to strategize a coping mechanism for the cultivation of potatoes in PEI.

Recently, there has been high interest in using various crop–weather models to estimate
the impacts of climatic changes on potatoes. Crop simulation models (CSMs) are an essential
tool that uses input datasets with future emission scenarios to evaluate the potential effects
of climate change on crops, e.g., the Decision Support System for Agrotechnology Transfer
(DSSAT) model. Many studies use the DSSAT model to assess the effects of climate change
on potatoes [31,44,46]. Only a few studies use the model to assess variations in the Canadian
province’s potato yields [47]. In addition, Coupled Model Intercomparison Project Phase
6 (CMIP6) data have been used to assess the impacts of climate change on crops [48,49].
Many other studies use different methods and tools to assess potato yield response to
climatic variables; for instance, Maqsood et al. (2020) [13] used ClimPACT2, and Jiang et al.
2021 [50] used analysis of variance (ANOVA) and second-order polynomial regressions
to assess potato yield response to climate change and water. Overall, a study has yet to
be conducted in PEI to assess climate change impacts on potato yields using physically
based crop models such as the DSSAT model. In addition, the climate change scenarios
used in previous studies are from the CMIP3 or CMIP5 datasets rather than the latest
CMIP6 dataset [51,52]. CMIP6 is the latest scenario, published in the AR6 of the IPCC in
2021. The pattern of evolution and characteristics adaptation of the previous CMIP, such as
CMIP5, continues in CMIP6; nevertheless, CMIP6 evolves from centralized activity to a
federated activity with many individual Model Intercomparison Projects (MIPs). CMIP6
has more components and higher spatial resolution [53]. Previous studies using the DSSAT
model have yet to investigate the combined effects of multiple climate variables, such as
temperature, CO2, and precipitation, on potato yields.

Therefore, the objectives of this research are:

• To collect potato management, soil, weather, and future climate scenario data;
• To calibrate and validate the DSSAT model for a better performance;
• To assess the impacts of climate change on potato yields in PEI.

Specifically, we will collect the required data to set up the DSSAT model, calibrate,
and validate the model. Further, we will use the CMIP6 data from seven global climate
models (GCMs), including CanESM5, FGOAL-G3, GFDL-ESM4, MIROC6, MRI-ESM2,
IPSL-CM6A-LR, and EC-Earth3-Veg, under five shared socioeconomic pathways (SSPs),
including SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. We will use the CMIP6
data to drive the DSSAT model to evaluate the combined effects of changing climatic
conditions, including maximum temperature (Tmax), minimum temperature (Tmin), pre-
cipitation, and CO2 concentration in the atmosphere on potato yields in PEI. The results
from this research can help potato farmers and stakeholders in PEI understand the ongoing
and future challenges that the changing climate will bring to the local potato industries.
Furthermore, this study can provide a scientific base for policymakers to develop climate
change mitigation and adaptation measures to support sustainable production in the PEI
potato sector.

2. Data and Methods

This study uses methods and procedures according to DSSAT (2022) [54–58]. Specifi-
cally, we first collect the required input data, referred to as minimum dataset (MDS), for
model calibration and validation. The calibration and validation process follow subsequent
stages as data collection (observation or measurement) of the experimental data (planting,
maturity dates, and tuber yields), calibration of the model using experimental data; sen-
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sitivity analysis; validation of the model; assessment of the possibilities and limitations
(simulation of potential yields); and the climate change impacts on the yields.

2.1. Study Area

This study focuses on the smallest province in Canada, PEI (Figure 1), popularly called
the Island, located off the eastern coast of Canada. PEI is less populated and considered
part of Atlantic Canada [10,59].
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Figure 1. Elevation and agricultural lands in PEI.

PEI is a province that produces and exports a significant quantity of potatoes among
other Canadian provinces. As of 1 October 2022, the population of PEI was estimated
to be 172,707. The province lies between 46 ◦N to 47 ◦N latitude and 62 ◦W to 64 ◦W
longitude with a total land area of 566,560 ha. Farming occurs on about 42.5% of the total
land area (240,514 ha) and ultimately supports the Island’s economy, with about 35,378 ha
used to cultivate potatoes. The Island produces one-fourth of the potatoes produced in
Canada [9,13,60,61]. PEI potatoes are dominant in Canada and contribute significantly to
the agricultural economy of PEI. Although potatoes cultivated in PEI have a high nutritional
value and quality, according to FAO comparison of potato production, there has been a
decline in Canadian potato production since 2017 [8]; specifically, the annual potato yields
in PEI [9,62] have fluctuated over the years (Figure 2). Climate change is suggested to be
responsible for the instability of PEI potato yields; in essence, there is a need to study the
impacts of climate change on potato yields scientifically [13,42,50,63].
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2.2. Data Collection
2.2.1. Weather Data

The experiment involves daily measurements of precipitation, solar radiation, Tmax,
and Tmin. Daily weather data were downloaded from the “Environment and Climate
Change Canada” website, while solar radiation is from the National Aeronautics and Space
Administration’s “NASA-Prediction of Worldwide Energy Resource” website [64,65]. The
DSSAT Weatherman module is set up and run with the weather files.

2.2.2. Soil Data

Quantitative information on soil (Orthic Humo-Ferric Podzol class) texture and organic
carbon are computed with other parameters such as the drained upper limit, saturated
water content, saturated hydraulic conductivity, root growth factor, and lower limit using
the Sbuild module, a soil parameter estimation tool in the DSSAT suite (Table 1), and used
to set up the DSSAT soil module. Customized soil files by depth, between 10–90 cm, are
from the literature of a PEI study [63].

Table 1. Soil properties for PEI.

Depth
(cm)

Clay
(%)

Silt
(%)

Org. C.
(%)

BD
(Mg·m−3) pH DUL SWC SHC

(cm·h) RGF LL

0–10 8 36 1.9 1.33 6.1 0.272 0.459 2.59 1 0.118

10–20 9 38 1.9 1.39 6.1 0.282 0.437 2.59 1 0.123

20–30 9 35 1.6 1.39 6.2 2.260 0.439 2.59 0.607 0.115

30–40 9 37 1.2 1.54 6.2 0.244 0.388 2.59 0.497 0.104

40–50 11 36 0.5 1.60 6.2 0.217 0.372 2.59 0.407 0.095

50–60 13 34 0.2 1.60 6.3 0.209 0.375 2.59 0.333 0.096

60–70 14 34 0.2 1.79 6.3 0.214 0.306 2.59 0.273 0.101

70–80 13 35 0.1 1.79 6.3 0.206 0.307 2.59 0.223 0.094

80–90 14 35 0.1 1.79 6.4 0.211 0.307 1.32 0.183 0.099

Note: Org. C—Organic Carbon, BD—Bulk Density, DUL—Drained Upper Limit, SWC—Saturated Water Content,
SHC—Saturated Hydraulic Conduct, RGF—Root Growth Factor, and LL—Lower Limit.

2.2.3. Crop Management and Experimental Data

The study follows standard agronomic and management practices to set up the Xbuild
and ATCreate modules. Crop management and experimental data are collected through a
survey with assistance from the PEI Potato Board and local farmers (see the survey form in
Supplementary Information S1). Other required crop management and experimental data
are collected from the PEI Potato Board [14]. The collected data are used to simulate PEI’s
potato yields under rainfed conditions. The primary management practices are shown in
Table 2.

2.2.4. Future Climate Scenarios

In our impacts assessment study, we use one historical period (1995 to 2014) as
the baseline and three future periods, the 2050s (2045–2055), 2070s (2065–2075), 2090s
(2085–2095) under five SSPs (including SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–
8.5). We use GCMs data, including CanESM5, FGOAL-G3, GFDL-ESM4, MIROC6, MRI-
ESM2, IPSL-CM6A-LR, and EC-Earth3-Veg (Table 3), from CMIP6 developed by IPCC,
considering the resolutions for each GCMs accordingly in the study. The data are from the
World Bank Climate Knowledge portal and IPCC Our World in Data sites [51,52].
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Table 2. Key information about the potato management practices in PEI.

Crop Potato

Cultivar Russet Burbank *

Planting month May

Planting method Dry Seed

Planting depth 6.5 inches

Planting distribution Rows

Row spacing 14 inches

Fertilizer Ammonium Nitrate

Tillage Mouldboard Plough

Irrigation Not Irrigated

Harvest month October

Length of the growing season 130 days

Other practices (e.g., tillage type, depth, and date, initial
condition, fertilizer depth, and application date)

Observed according to the recommended practices by the PEI
potato board and farmers

* In this study, we use the potato variety Russet Burbank (RB) because it is the most common (about 90%) among
the potato varieties in PEI [66]. Additionally, the survey results we received in this study are mostly about RB,
and no sufficient data are collected for other varieties in PEI. Note that no supplemental irrigation plan was
implemented in PEI for the study period of 1995–2014.

Table 3. List of global climate models used in this study.

Full Name of GCM Abbreviation Institute

The Canadian Earth System Model
version 5 CanESM5

Canadian Centre for Climate Modelling and Analysis,
Canada

https://www.canada.ca/en/environment-climate-
change/services/science-technology/centres/british-

columbia.html#cccma (accessed on 12 November 2022)

Geophysical Fluid Dynamics Laboratory
Earth System Model version 4 GFDL-ESM4

Geophysical Fluid Dynamics Laboratory, United States of
America

https://www.gfdl.noaa.gov/ (accessed on 12 November
2022)

The Meteorological Research Institute
Earth System Model version 2 MRI-ESM2

The Meteorological Research Institute, Japan
https://www.mri-jma.go.jp/index_en.html (accessed on

12 November 2022)

Model for Interdisciplinary Research on
Climate version 6 MIROC6

Division of Climate System Research, Japan
https://ccsr.aori.u-tokyo.ac.jp/index-e.html (accessed on

12 November 2022)

Flexible Global Ocean-Atmosphere-Land
System Model: Grid-Point version 3 FGOAL-G3

The State Key Laboratory of Numerical Modeling for
Atmospheric Sciences and Geophysical Fluid Dynamics-

Institute of Atmospheric Physics, China
http://english.iap.cas.cn/rh/rd/200906/t20090626_9069

.html (accessed on 12 November 2022)

The Institute Pierre-Simon Laplace
Climate Model IPSL-CM6A-LR

The Institute Pierre-Simon Laplace Climate Modelling
Center, France

https://cmc.ipsl.fr/ (accessed on 12 November 2022)

European Community Earth 3 with
interactive vegetation module at low

resolution
EC-Earth3-Veg 12 European Countries

https://ec-earth.org (accessed on 12 November 2022)

SSPs describe the possible range of future climates based on human development,
economy, environmental action, atmospheric CO2 concentration, and sustainability as

https://www.canada.ca/en/environment-climate-change/services/science-technology/centres/british-columbia.html#cccma
https://www.canada.ca/en/environment-climate-change/services/science-technology/centres/british-columbia.html#cccma
https://www.canada.ca/en/environment-climate-change/services/science-technology/centres/british-columbia.html#cccma
https://www.gfdl.noaa.gov/
https://www.mri-jma.go.jp/index_en.html
https://ccsr.aori.u-tokyo.ac.jp/index-e.html
http://english.iap.cas.cn/rh/rd/200906/t20090626_9069.html
http://english.iap.cas.cn/rh/rd/200906/t20090626_9069.html
https://cmc.ipsl.fr/
https://ec-earth.org
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essential features. Each scenario depicts climate information with specified conditions, and
SSP5 represents the worst-case scenario. SSP1 reflects a steadily shifting world, sustainable
with regular challenges to mitigation and adaptation. SSP2 is with medium challenges to
mitigation and adaptation, representing the middle of the road. SSP3 has mitigation and
adaptation with high challenges, leading to a rivalry condition in regions. SSP5 exhibits
frequent challenges to adaptation but high challenges to mitigation in a fossil-fueled
development era [67–69]. This study considered five greenhouse gas (GHG) emission
scenarios, including SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5 (Figure 3).
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2.3. DSSAT Potato Model

The DSSAT model is a collection of independent application programs that operate
together, developed by the International Benchmark Sites Network for Agrotechnology
Transfer (IBSNAT). There are 42 crop modules with tools to expedite the efficient use of the
model [56–58]. The tools include a program database for weather, soil, crop management,
experimental data, and applications. The CSM assesses crop growth and development as a
function of the soil–plant–atmosphere dynamics related to soil, weather, crop experiment,
management practices, genotypes, water, and nitrogen dynamics in the databases [58,70,71].
The DSSAT model comprises modules, databases, and applications controlled by software
to aid in selecting and comparing alternatives to predict results [71]. It archives and sup-
plies the data to the models for simulating the various kinds of experimental situations
and assessing the risks or simulating yields on a long-term basis [58,72]. Simulation of
Underground Bulking Storage Organ component (SUBSTOR) is a member of the sixteen
computer software application programs that use Formula Translation (FORTRAN) lan-
guage embedded within the DSSAT model. It assesses the potato’s phenological effect,
yield accumulation, and biomass in response to environmental factors [73–75]. It is basically
used for various agroclimatic conditions and comprises modules that are used to input
data, mathematical calculations of the process of growth and development, and, finally, in-
terpretation of the potato simulation outputs [3,56]. The model considers several functions
simultaneously to produce the actual structure of the soil–crop–atmospheric dynamic at
different potato growth stages [75–77]. Potato development (Figure 4) occurs in various
stages: sprout elongation, emergence, tuber initiation, bulking, and maturity [78].
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Figure 4. The development stages of potatoes.

SUBSTOR uses five genotype coefficients to define a potato cultivar’s growth and
development, which determines how the cultivar reacts to climatic conditions. The ge-
netic coefficients include (1) G2—the rate of leaf area expansion, (2) G3—the rate of po-
tential tuber growth, (3) PD—an index that suppresses tuber growth (dimensionless),
(4) P2—sensitivity of tuber initiation to photoperiod (dimensionless), and (5) TC—tuber
initiation upper critical temperature (Table 4). The varying genetic coefficients affect potato
biomass accumulation [33,46,73,79–81]. SUBSTOR is partitioned into sub-sections simulta-
neously, modeling soil water, nitrogen balances, phenological development, partitioning,
and biomass formation of potato crops, producing a real plant–soil–atmospheric system
description [58,70]. TC and P2 are vital parameters at the tuber initiation stage; initiation
and bulking are inhibited when the TC is exceeded, and a particular cultivar is less sensitive
to long photoperiods the closer P2 tends towards 0. G2, G3, and PD influence biomass
accumulation [74].

Table 4. Calibrated parameters in the DSSAT model.

Symbol Parameter Range Iteration
Interval

Calibrated Genetic
Coefficient Units

G2 Leaf area expansion rate after
tuber initiation 900–2100 5 2100 cm2·m−2·day−1

G3 Potential tuber growth rate 21–26 0.02 21 g·m−2·day−1

PD Suppression of tuber growth
following tuber induction 0.5–1.0 0.01 0.500 relative index

P2 Tuber initiation sensitivity
to long photoperiods 0.3–0.9 0.01 0.586 relative index

TC The upper critical temperature
for tuber initiation 5–22 0.02 22 ◦C

2.4. Model Calibration and Validation

The DSSAT model estimates potato yields in dry tuber weight using five genetic
coefficients describing crop growth and development processes. Under different weather,
soil, and management conditions, the potato coefficients aid the model in simulating the
performance of the genotypes. An accurate simulation of tuber yields requires the correct
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genetic coefficients. We use the genotype coefficient calculator (GENCALC) module in the
DSSAT model to calibrate model parameters in Table 4. Cultivar parameters are varied
over a wide range to capture the behavior of the crop across a wide genetic range. Each
parameter varies while holding the other four parameters constant at their calibration
values. The potential of using a physically based (dynamic) crop simulation model (i.e.,
model performance) is evaluated by comparing the aggregated and reported tuber yields.
The coefficient of determination (i.e., R2), Nash–Sutcliffe efficiency (i.e., NSE), and index
of agreement (i.e., d-stat) are used to ascertain the agreement between the observed and
simulated values. R2 ranges from 0 to 1; the closer the value to 1, the better the agreement
between the observed yield and the simulated yield, and a value of 1 shows a perfect
correlation, i.e., 0 ≤ R2 ≤ 1 [82]. R2 is calculated using the following equation.

R2 = 1 − SSE
SST

(1)

R2 is the coefficient of determination, SSE is the sum of squared error, and SST is
the sum of squares total. Equation (1) is used to confirm the R2 generated by the model.
Sensitivity analyses explore the variation of the genetic coefficient on potato yields to
validate the model. NSE ranges from −∞ to 1, where NSE is considered good between
0.75 and 1, satisfactory between 0.36 and 0.75, and unacceptable when below 0.36, i.e.,
0.36 ≤ NSE ≤ 1 [83,84]. NSE is calculated using the following equation.

NSE = 1 − (∑n
i=1(Xi − Yi)

2)(
∑n

i=1
(
Xi − X

)2
) (2)

NSE is the Nash–Sutcliffe efficiency, Xi is the observed value, Yi is the predicted
value, X is the observed mean, and n is the number of observations. Equation (2) is
used to calculate NSE. The d-stat value ranges from 0 to 1, where the closer the value to
1, the better the agreement between the observed yield and the simulated yield, where
d = 1 shows a perfect agreement, i.e., 0 ≤ d ≤ 1 [81,83]. The d-stat is calculated using the
following equation.

d = 1 − ∑n
i=1(Yi − Xi)

2

∑n
i=n

(∣∣Yi − Y
∣∣+ ∣∣Xi − X

∣∣)2 (3)

The d-stat is the index of agreement, Xi and Yi are observed and simulated yield values,
respectively, X and Y are the average observed and simulated yield values, respectively,
and n is the observation numbers. Equation (3) is used to calculate the d-stat.

2.5. Measuring Climate Change Impacts on Potato Yields

The DSSAT model uses CMIP6 data to assess the impacts of changing climate on potato
yields in PEI, with the coefficients validated in this study. The potato yields estimated
under the baseline are compared to those under emission scenarios between 2045 and 2095,
and the average of the seven GCMs was considered. The planting and harvest dates are
fixed each year with rainfed conditions, considering the planting date that reports the most
significant tuber yields. The entire PEI potato crop cycle is set to 130 days from planting
to harvesting. The baseline (1995–2014) assessed the historical yields, and the assessment
under each of the five emission classes captures the effect of climate variability on future
yields. The percentage yield changes under future climates were evaluated by the average
yield changes from the GCMs compared to the baseline yields. Under this approach, the
changes in potato yield are calculated using the following equation:

Change in Yield (%) =

(
Future Yield − Baseline Yield

Baseline Yield

)
× 100% (4)

Emission scenarios reveal a future decline in potato yields compared to the baseline.
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3. Results

The results for calibration, validation, and assessment of the impacts of climate change
on potato yields are summarized and discussed below.

3.1. Model Calibration and Validation

The DSSAT model used PEI conditions (i.e., soil, weather, and crop management
practices data) to successfully perform the genetic coefficient estimation (i.e., calibration
and validation) by running the sub-model (GENCALC) to predict rainfed tuber yields for
potato variety RB. Calibration and validation are vital for improving model performance
and involve comparing field measurements (data) with the model outputs. In this study,
the model was calibrated using ten years of “2000–2009” (Table 5) data and validated with
eight years of “2010–2017” (Table 6) data in order to compare the observed to the simulated
yield. The simulated data are generated through SUBSTOR (potato module) under the
DSSAT model interface and compared to the observed yield. The observed yields are
island-wide harvested potato yields from potato farms in PEI [50,85].

Table 5. Observed and simulated yield (2000–2009).

Year Observed (t/ha) Simulated (t/ha)

2000 29.8 32.6

2001 16.3 16.0

2002 32.7 29.4

2003 30.5 31.0

2004 33.1 30.7

2005 31.8 29.9

2006 33.2 32.5

2007 33.6 32.8

2008 26.8 25.7

2009 27.1 26.1

Table 6. Observed and simulated yield (2010–2017).

Year Observed (t/ha) Simulated (t/ha)

2010 29.8 30.1

2011 28.9 29.7

2012 28.2 27.7

2013 28.4 29.4

2014 31.1 31.5

2015 31.0 32.2

2016 32.0 33.3

2017 30.1 29.8

The R2 with the intercept set to zero were 0.898 and 0.885 for calibration and validation,
respectively (Figure 5), indicating a better and closer correlation. The results indicate a
significant correlation between observed and simulated yields (i.e., the observed tuber
yields corresponded well with the simulated tuber yields), representing a good performance.
Additionally, the NSE and d-stat are 0.87 and 0.92, respectively, indicating a good correlation
between observed yield and simulated yield.
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The derived genetic coefficients are used to quantify the development responses of
rainfed tuber yields of RB to the changing climate. The mean observed and simulated
yields for calibration are 29.5 t/ha and 28.7 t/ha, respectively, and for validation, they are
30.0 t/ha and 30.5 t/ha, respectively. The validated calibration shows that the DSSAT model
can accurately assess potato yields under different management conditions in different
climatic regions.

3.2. Impacts of Future Climate Change on Potato Yields

The DSSAT model assesses the impacts of climate change on potato yields, showing
that the high-emission scenario could result in a significant decline. Future potato yields
were assessed using CMIP6 data for the 2050s, 2070s, and 2090s compared with the baseline
period (1995–2014) for SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. The yield
assessment using Tmax, Tmin, precipitation, and CO2 was compared among the generated
climate scenarios and the baseline period “1995–2014.” The results indicated that the
projections were based on combinations of seven GCMs under five SSP scenarios. Across
the seven GCMs, CanESM5 shows the most significant decline, while the least decline is
observed in the FGOAL-G3 (Figure 6 and Table 7). Overall, there is a significant decline in
high emission scenarios, especially towards the end of the century when the average of the
seven GCMs projection is considered.

Table 7. PEI’s future potato yields (units: t/ha) under SSP scenarios.

GCM Period
SSP Scenario

SSP1–1.9 SSP1–2.6 SSP−4.5 SSP3–7.0 SSP5–8.5

CanESM5

Baseline 15.1

2050s 12.3 8.6 9.2 3.9 5.9

2070s 10.8 7.0 3.3 2.5 4.6

2090s 12.4 10.7 2.8 2.0 0

GFDL-ESM4

Baseline 15.2

2050s 14.1 15.3 15.5 17.4 15.7

2070s 14.1 14.8 16.0 9.0 7.5

2090s 13.9 14.9 13.1 6.6 3.3

MRI-ESM2

Baseline 15.2

2050s 13.6 13.8 15.4 16.1 9.8

2070s 12.3 143 11.0 7.7 4.4

2090s 13.8 15.1 10.1 5.0 3.1
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Table 7. Cont.

GCM Period
SSP Scenario

SSP1–1.9 SSP1–2.6 SSP−4.5 SSP3–7.0 SSP5–8.5

MIROC6

Baseline 15.1

2050s 15.2 14.7 16.2 16,8 16.0

2070s 14.8 15.4 15.4 8.6 4.8

2090s 14.2 14.9 9.8 4.4 2.6

FGOAL-G3

Baseline 15.1

2050s 15.5 17.2 16.6 17,5 17.6

2070s 15.4 16.3 17.3 15,6 13.9

2090s 15.0 16.2 17.6 14.8 7.6

IPSL-CM6A-LR

Baseline 15.1

2050s 13.5 14.4 14.5 16.0 11.0

2070s 14.2 14.5 9.6 6.4 2.7

2090s 14.3 14.1 7.2 2.6 1.7

EC-Earth3-Veg

Baseline 15.1

2050s 14.1 15.3 16.1 15.7 10.0

2070s 13.6 13.5 14.0 5.4 4.5

2090s 12.7 13.3 6.8 3.7 2.9

Model Average

Baseline 15.1

2050s 14.0 14.2 14.8 14.8 12.3

2070s 13.6 13.7 12.4 7.9 6.1

2090s 13.7 14.2 9.6 5.6 3.0

There is a considerable variation in observed temperature, precipitation, and CO2
for future climate scenarios. Tmax, Tmin, precipitation, and CO2 are estimated to increase
compared to the baseline over the century until the worst emission scenario (SSP5–8.5).
Overall average yield decline is expected as simulated by the seven GCMs for the five SSPs,
which projects to be significant towards the end of the year. The model average projected
that it is likely to have the most significant yield decline under SSP5–8.5, followed by
SSP3–7.0 and then SSP2–4.5, with medium to low yield decline in SSP1–1.9 and SSP1–2.6.

Extensively, the average potato yields in the future, under SSP1–1.9, will likely decline
from 14.0 t/ha in the 2050s to 13.6 t/ha in the 2070s and 13.7 t/ha in the 2090s. Under
SSP1–2.6, the yields are expected to decline from 14.2 t/ha in the 2050s to 13.7 t/ha in the
2070s and increase to 14.2 t/ha in the 2090s. In addition, under SSP2–4.5, the yields suggest
a decline from 14.8 t/ha in the 2050s to 12.4 t/ha in the 2070s and 9.6 t/ha in the 2090s.
Furthermore, yields under SSP3–7.0 are expected to decline from 14.8 t/ha in the 2050s
to 7.9 t/ha in the 2070s and 5.6 t/ha in the 2090s. The most significant yield decline is
expected under SSP5–8.5, from 12.3 t/ha in the 2050s to 6.1 t/ha in the 2070s and 3.0 t/ha
in the 2090s.
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Figure 6. PEI’s future potato yields under CMIP6 scenarios. (a) CanESM5, (b) GFDL-ESM4, (c) MRI-
ESM2, (d) MIROC6, (e) FGOAL-G3, (f) IPSL-CM6A-LR, (g) EC-Earth3-Veg, and (h) multi-model average.

Compared to the baseline, yields under the SSP1–1.9 suggests a decline of 7.2% in
the 2050s, 10.2% in the 2070s, and 9.2% in the 2090s. Under the SSP1–2.6, the yields are
expected to decline by 6.4% in the 2050s, 9.6% in the 2070s, and 6.4% in the 2090s. Under
the SSP2–4.5, the yields suggest a decline of 2.2% in the 2050s, 18.3% in the 2070s, and 36.4%
in the 2090s. Yield decline of 2.3%, 47.8%, and 63.2% is likely under SSP3–7.0 in the 2050s,
2070s, and 2090s, respectively, while a decline of 18.8%, 60.0%, and 80.1% are expected in
the 2050s, 2070s, and 2090s under SSP5–8.5 (see Figure 7 and Table 8).
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Figure 7. Percentage change in PEI’s potato yields under CMIP6 scenarios. (a) CanESM5, (b) GFDL-
ESM4, (c) MRI-ESM2, (d) MIROC6, (e) FGOAL-G3, (f) IPSL-CM6A-LR, (g) EC-Earth3-Veg, and
(h) multi-model average.

However, the results were inconsistent between the different GCMs; there were mixed
results, including decreases (red cells in Table 8) and increases (green cells in Table 8) in
yields under the periods and SSPs.
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Table 8. Percentage change in PEI’s potato yields under SSP scenarios.

GCM Period
SSP Scenario

SSP1–1.9 SSP1–2.6 SSP−4.5 SSP3–7.0 SSP5–8.5

CanESM5
2050s −18.3% −43.0% −39.2% −74.3% −60.9%
2070s −28.8% −53.5% −78.2% −83.4% −69.5%
2090s −17.7% −29.3% −81.6% −86.6% −100%

GFDL-ESM4
2050s −6.8% +0.8% +2.4% −14.6% +3.6%
2070s −7.5% −2.7% +5.7% −40.8% −50.6%
2090s −8.6% −1.8% −13.5% −56.8% −78.1%

MRI-ESM2
2050s −10.4% −9.4% +1.5% +6.2% −35.6%
2070s −19.1% −5.7% −27.7% −49.5% −71.1%
2090s −9.3% −0.7% −33.3% −67.3% −79.9%

MIROC6
2050s +0.6% −2.7% +7.2% +11.8% −6.3%
2070s −2.0% +2.0% +2.2% −42.7% −67.9%
2090s −5.5% −1.3% −34.9% −70.5% −83.1%

FGOAL-G3
2050s +2.0% +13.5% +9.9% +15.5% +16.4%
2070s −1.8% +7.5% +14.3% +3.2% −8.1%
2090s −1.1% +7.3% +16.4% −2.2% −50.1%

IPSL-CM6A-LR
2050s −10.8% −4.9% −4.2% +6.1% −27.3%
2070s −5.8% −4.1% −36.8% −57.4% −82.4%
2090s −5.7% −6.9% −52.6% −83.0% −88.8%

EC-Earth3-Veg
2050s −6.7% +1.2% +6.7% +4.1% −33.8%
2070s −9.8% −10.8% −7.4% −64.3% −70.5%
2090s −16.2% −11.9% −55.2% −75.9% −80.7%

Model Average
2050s −7.2% −6.4% −2.2% −2.3% −18.8%
2070s −10.2% −9.6% −18.3% −47.8% −60.0%
2090s −9.2% −6.4% −36.4% −63.2% −80.1%

Note that the red cells showed percentage decrease in PEI potato yields while the green cells showed percentage
increase in PEI potato yields, across the periods and GCMs under SSP scenarios.

4. Discussions

The current study showed that potato yields are expected to decrease in PEI toward
the end of the century when we consider the combined effect of Tmax, Tmin, precipitation,
and CO2. The seven GCMs projected increased temperature in the future, i.e., in the
2050s–2090s, Tmax and Tmin are expected to increase by 1.2 ◦C to 5.6 ◦C and 1.4 ◦C to 6.1 ◦C,
respectively, depending on the climate scenario and period. CO2 increased by 2.4% to
140.9%, while precipitation increased by 3.4% to 12.8% compared to the baseline values.
There is instability in precipitation patterns across the scenarios and period; hence, the
yield decline can be attributed to precipitation variation because the significant potato yield
changes correlate with precipitation changes.

Our study result showed that future yields decrease under rainfed conditions, com-
pared to Brassard and Singh’s (2007) [47] studies, which reported a decrease in future
potato yields in Quebec. In addition, Vashisht et al.’s (2015) [83] studies showed that future
potato production under rainfed conditions in Minnesota, US, is projected to decrease due
to climate change. Nevertheless, other studies showed that climate change might increase
future potato yields. For instance, Tooley et al. (2021) [86] reported increased future potato
yields in Maine, US, due to climate change, while some studies projected increased future
potato yields under rainfed conditions compared to irrigated conditions [87,88]. Further-
more, Tubiello F. N. et al. (2002) [89] projected that climate change would increase future
potato yield in the northern United States of America (US) while it will be reduced in the
southern areas of the US. The observed variations in the projected future potato yields are
due to differences in geographical area and management practices. The variation could
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also be caused by the differences in the GCMs used [74]. Our study suggests that the potato
yield decrease correlates with an increase in future temperature and CO2 concentration
with varying precipitation patterns. Overall, our results indicate the potential negative
impacts of climate change on future potato yields under rainfed conditions in PEI. It is
worth mentioning that the crop yields determinant is not only limited to temperature,
precipitation, and CO2 but also depends on other factors, such as pests, soil salinity, and
other parameters which play an essential role in crop growth processes and the harvested
yields but are not included in our study’s scope [26,29,30,90,91]. Although temperature and
CO2 changes influence the yields, their reaction with precipitation significantly influences
tuber yields under rainfed conditions in PEI. The amount of precipitation and distribution
within a specified temperature range drives potato development. Precipitation affected the
yields simulated, which mostly declined from decreased precipitation with some compen-
sation through elevated atmospheric CO2. Our results suggest that future potato yields are
expected to decrease in PEI, which could be attributed to the future drought effect under
rainfed potato production systems. Considering that PEI potato cultivation is significantly
rainfed [13,92], and since the decrease in precipitation decreases our simulated yield, we
attributed the decline in potato yields to the drought effect, which could be compensated
through supplemental irrigation. This study is a foundation to examine further and ascer-
tain proper adaptation strategies to increase potato yields, which can be recommended to
farmers. Ultimately, this study methodology can be applied to assess the impacts of climate
change on potato yields in any geographical region worldwide.

5. Conclusions

In this study, we used the DSSAT model to assess the potential impacts of future
climate change on potato yields in PEI. In particular, we used the IPCC CMIP6 data under
five GHG emission scenarios, SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5, to
assess the effects of climate change on potato yields in PEI. GCMs (CanESM5, FGOAL-G3,
GFDL-ESM4, MIROC6, MRI-ESM2, IPSL-CM6A-LR, and EC-Earth3-Veg) were used to
generate emission scenarios for the study. The assessment evaluates the combined impacts
of climate variables, Tmax, Tmin, precipitation, and CO2, on potato yields.

This study calibrates and validates the DSSAT model using dry tuber weight as the
parameter to evaluate the model’s performance. The observed and simulated values were
in close agreement and fell within the statistical significance limit. Using the average of
the GCMs, the potato yields suggested a gradual decline under SSP1–1.9 and SSP1–2.6,
with a distinct decline under SSP2–4.5. The most significant decline is expected under
high-emission scenarios SSP3–7.0 and SSP5–8.5. The reduction is expected to be enormous
towards the end of the century, indicating significant negative impacts on the yields
due to climate change. Adapting to climate change’s impacts requires exploring various
strategies to guarantee food security. These strategies are crucial to improve crop and soil
management and enhancing potato production. The results from this study can provide
farmers and policymakers with a scientific basis to develop coping mechanisms for climate
change impacts which can be adopted for optimal and quality potato yields to ensure
food security.
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